# Water Resources Data Iowa Water Year 1994 U.S. GEOLOGICAL SURVEY WATER-DATA REPORT IA-94-1 Prepared in cooperation with the Iowa Department of Natural Resources (Geological Survey Bureau), Iowa Department of Transportation and with Federal agencies ### **CALENDAR FOR WATER YEAR 1994** ### 1993 | | | OC | ТОВ | ER | | | | | NO | VEM | BER | | | | | DE | CEM | BER | 2 | | |----|----|----|------|----|----|----|----|----|-----|------|-----|----|----|----|----|------|------|-----|----|----| | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | Т | F | S | | | | | | | 1 | 2 | | 1 | 2 | 3 | 4 | 5 | 6 | | | | 1 | 2 | 3 | 4 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 28 | 29 | 30 | | | | | 26 | 27 | 28 | 29 | 30 | 31 | | | 31 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1994 | 1 | | | | | | | | | | | | | JA | NUA | RY | | | | | FEE | BRUA | ARY | | | | | N | IARC | CH | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | | | | | 1 | | | 1 | 2 | 3 | 4 | 5 | | | 1 | 2 | 3 | 4 | 5 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 27 | 28 | | | | | | 27 | 28 | 29 | 30 | 31 | | | | 30 | 31 | | | | | | | | | | | | | | | | | | | | | | | A | PRI | L | | | | | ľ | MAY | | | | | | J | UNE | | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | | | | 1 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | 1 | 2 | 3 | 4 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 29 | 30 | 31 | | | | | 26 | 27 | 28 | 29 | 30 | | | | | | 1 | IULY | ė. | | | | | AL | JGUS | ST | | | | | SEPT | EMI | BER | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | | | | 1 | 2 | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | 1 | 2 | 3 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 17 | | 19 | 20 | 21 | 22 | 23 | 21 | 22 | | | 25 | 26 | 27 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 28 | 29 | 30 | 31 | | | | 25 | 26 | 27 | 28 | 29 | 30 | | | 31 | | | | | | | | | | | | | | | | | | | | | # Water Resources Data Iowa Water Year 1994 by J.E. May, D. Sneck-Fahrer, J.G. Gorman, R.D. Goodrich, B.K. Nations, and V.E. Miller U.S. GEOLOGICAL SURVEY WATER-DATA REPORT IA-94-1 Prepared in cooperation with the lowa Department of Natural Resources (Geological Survey Bureau), lowa Department of Transportation and with Federal agencies # DEPARTMENT OF THE INTERIOR Bruce Babbitt, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For information on the water program in Iowa write to: District Chief, Water Resources Division U.S. Geological Survey P.O. Box 1230 Iowa City, Iowa 52244 #### **PREFACE** This volume of the annual hydrologic data report of Iowa is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico and, the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by local, State, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. Personnel in charge of the field offices are: Joseph G. Gorman, Council Bluffs Field Headquarters Robert D. Goodrich, Iowa City Field Headquarters Alvin R. Conkling, Fort Dodge Field Headquarters The data were collected, computed and processed by the following personnel: | C.J. Anderson | C.N. Boge | J.F. Cerveny | |---------------|----------------|---------------| | J.E.Colyer | D.T. Conell | D.A.Eash | | C.A. Harvey | J.T. Hazelett | T.M. Kluesner | | R.L. Kopish | R.L. Kuzniar | P.B. Ladd | | S.M. Linhart | P.D. Lustgraaf | N.A. Miller | | J.A. Noe | B.R. Porter | B.D. Schaap | | P.J. Soenksen | P.K. Smith | J.R. Sondag | | D.J. Tanko | J.J. Wellman | D.G. Wydra | This report was prepared in cooperation with the State of Iowa and with other agencies under the general supervision of Jayne E. May, Chief Hydrologic Surveillence Section, and Robin G. Middlemis-Brown, District Chief, Iowa. ### REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503. | 4.4051014105.01114.4 | | | | | | | | |--------------------------------------------------------------------------------------|---------------------------------|-----------------|-----------|-------------|------------|---------------------------|------------------------------------| | 1. AGENCY USE ONLY (Leave blank) | 2. REPOR | RT DATE June | 1995 | | | DATES COVE<br>193 - 30 Se | | | 4. TITLE AND SUBTITLE | | | | | , | 5. FUNDING | * | | Water Resources Data, Iowa | , Water Year 1 | 994 | | | | | | | | | | | | | | | | | | | | | | | | | 6. AUTHOR(S) J.E. May, D. Sneck-Fahrer, J | G Gorman I | D Goodric | h R K | Nations | | | | | V.E. Miller | .o. Gorman, r | C.D. Goodiic | II, D.IX. | i vacions, | | | | | | | | | | | | | | 7. PERFORMING ORGANIZATION NAME | | | | | | 8. PERFORMI | NG ORGANIZATION | | U.S. Geological Survey, Wat | ter Resources I | Division | | | | REPORT N | омвен<br>DR-IA-94-1 | | P.O. Box 1230<br>Iowa City, Iowa 52244 | | | | | | OSOS-W | DK-1A-34-1 | | 10 Wa City, 10 Wa 322 14 | | | | | | | | | | | | | | | | | | 9. SPONSORING / MONITORING AGENC<br>U.S. Geological Survey, Wat | | | | | | | RING / MONITORING<br>REPORT NUMBER | | P.O. Box 1230 | ei Kesouices i | JIVISIOII | | | | USGS/W | RD/HD-95/296 | | Iowa City, Iowa 52244 | | | | | | | | | | | | | | | | | | 11. SUPPLEMENTARY NOTES | | | | | | | | | Prepared in cooperation with | the Iowa De | partment of | Natural | Resource | es (Geolo | gical Surve | ey Bureau) and other | | agencies. | | | | | | | | | | | *************** | | | | | | | No restriction on distribution | | nav he nurch | ased fro | ım· | | 12b. DISTRIB | UTION CODE | | 140 restriction on distribution | . This report i | nay oc purch | iasca ire | ,111. | | | | | National Technical Service | | | | | | | | | Springfield, VA 22161 | | | | | | | | | 13. ABSTRACT (Maximum 200 words) | | 20.4 | | | 1 6 | 1. 1 | 1 | | Water resources data for 3 of streams; stage, contents, a | | | | | | | | | ground-water wells. This rep | | | | | | | | | reservoirs; water quality for 6 | stream-gagin | g stations; se | diment | records for | or 11 stre | am-gaging | stations; water levels | | for 232 observation wells; and | | | | | | | | | partial-record stations. Addit collection program and are p | | | | | | | | | analyses. | | | <b>G</b> | 5 | | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 14. SUBJECT TERMS | | | | | | dr an | MADED OF DACES | | *Iowa, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rates, | | | | | | l l | MBER OF PAGES | | Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediment, Water temperatures, | | | | | | res, 16. PR | ICE CODE | | Sampling sites, Water levels, | • | • | | | | | | | 17. SECURITY CLASSIFICATION OF REPORT | 18. SECURITY CL<br>OF THIS PAGE | ASSIFICATION | OF | ABSTRACT | SSIFICATIO | 20. LIN | MITATION OF ABSTRACT | | Unclassified | Unclassified | | Uncl | assified | | | | ### **CONTENTS** | Page | |------| |------| | Preface | iii | |---------------------------------------------------------------------|------| | List of discontinued surface-water discharge or stage-only stations | xvii | | List of discontinued surface-water-quality stations | xix | | Introduction | | | Cooperation | | | Summary of hydrologic conditions | | | Surface water | | | Sediment | | | Ground water | | | Surface-water quality | | | Ground-water quality | | | Trends assessment network | | | Missouri River and tributary alluvium assessment | | | Special networks and programs | | | Explanation of the records | | | Station identification numbers | | | Downstream order system | | | Latitude-longitude system | | | Numbering system for wells | | | Records of stage and water discharge | | | Data collection and computation | | | Data presentation | | | Identifying estimated daily discharge | | | Accuracy of the records | | | Other records available | | | Records of surface-water quality | | | Classification of records | | | Arrangement of records | | | On-site measurements and sample collection | | | Water temperature and specific conductance | | | Sediment | | | Laboratory measurements | | | Data presentation | | | Remark codes | | | Records of ground-water levels | | | Data collection and computation | | | Data presentation | | | Records of ground-water quality | | | Data presentation | | | Explanation of descriptive headings | 39 | | Access to WATSTORE data | 40 | | Definition of terms | 41 | | Publications on Techniques of Water-Resources Investigations | 47 | | Station records, surface water | | | Crest-stage partial-record stations | | | Miscellaneous water-quality data | | | Station records, ground-water levels | | | Quality of ground-water data | | | Zuniti, or Eronin-wan ana | | | Precipitation water-quality data | | | | | |----------------------------------|-----|-----------------------------------------------------------------------------------------------------------------|-----|--| | Index | | | 367 | | | | | | | | | | | | | | | | | ILLUSTRATIONS | | | | Figure | 1. | Precipitation record in the National Weather Service's designated climatological districts for water year 1994 | 4 | | | Figure | 2. | Annual runoff, in acre-feet, for period of record at three index stations. | 6 | | | Figure | 3. | Location of active, continuous-record gaging stations in Iowa. | 7 | | | Figure | 4. | Location of active, crest-stage gaging stations in Iowa. | 9 | | | Figure | 5. | Location of active and discontinued sediment and surface-water-quality stations in Iowa | 10 | | | Figure | 6. | Comparison of annual sediment discharge for water year 1994 with mean, previous maximum, and previous | | | | | | minimum annual sediment discharges for periods of record at four long-term daily sediment stations in Iowa | 12 | | | Figure | 7. | Location of recording and nonrecording wells in the ground-water-level observation network in Iowa, water | | | | | | year 1994 | 13 | | | Figure | 8. | Monthly water-level measurements made during water year 1994 compared to percentile distribution of | ٠,- | | | г. | ^ | monthly water levels for a specific month for period of record for three index wells completed in glacial drift | 15 | | | - | | Location of wells in the trends assessment network of the ground-water-quality monitoring program | 20 | | | | | Location of wells in the Missouri River and tributary alluvium assessment | 21 | | | _ | | Latitude-longitude well number. | | | | rigure | 12. | Local well-numbering system for well | 21 | | | | | | | | | | | TABLES | | | | Table | 1. | Monthly and annual precipitation during the 1994 water year as a percentage of normal precipitation (1961-90) | 5 | | | Table | 2. | Historical high water level measured during the 1994 water year in wells completed in unconsolidated | J | | | 10010 | | aquifers | 14 | | | Table | 3. | Historical low water level measured during the 1994 water year in wells completed in unconsolidated aquifers | 16 | | | Table | 4. | Historical high water level measured during the 1994 water year in wells completed in bedrock aquifers | 17 | | | Table | | Historical low water level measured during the 1994 water year in wells completed in bedrock aquifers | 18 | | | Table | | Summary of nitrogen species and herbicides detected in samples from the trends assessment project of | | | | | | | 22 | | | Table | 7. | Summary of nitrogen species and herbicides detected in samples from the Missouri River and tributary | | | | | | alluvium assessment project of the ground-water-quality monitoring network, water year 1994 | 24 | | [Letter after station name designates types of data: (d) discharge, (c) chemical, (b) biological, (m) microbiological, (s) sediment, (t) temperature, (e) elevations, gage heights, or contents, (p) precipitation] | (e) or various, (e) or various, gage neighbor, (p) precipitation | | | |------------------------------------------------------------------|--------------|-----------| | | Station | _ | | | number | Page | | UPPER MISSISSIPPI RIVER BASIN | , | | | Mississippi River: | 124 | | | UPPER IOWA RIVER BASIN | r | | | Upper Iowa River near Dorchester (d) | 05388250 | 50 | | Bloody Run Creek near Marquette (dts) | | 51 | | Mississippi River at McGregor (dts) | | 55 | | Sny Magill Creek near Clayton (dts) | | 59 | | TURKEY RIVER BASIN | 05411400 | 39 | | Big Spring near Elkader (d) | 05/11050 | 63 | | Roberts Creek: | 03411730 | 03 | | Silver Creek: | | | | | 05/12060 | 61 | | Silver Creek near Luana (d) | | 64 | | Roberts Creek above Saint Olaf (d) | | 65 | | Turkey River at Garber (d) | 03412300 | 66 | | MAQUOKETA RIVER BASIN | | | | Maquoketa River: | 05410500 | <b>(7</b> | | Maquoketa River near Maquoketa (d) | | 67 | | Mississippi River at Clinton (d) | 05420500 | 68 | | WAPSIPINICON RIVER BASIN | 0.7.47.4.000 | | | Wapsipinicon River at Independence (d) | | 69 | | Wapsipinicon River near De Witt (d) | 05422000 | 70 | | CROW CREEK BASIN | | | | Crow Creek at Bettendorf (d) | 05422470 | 71 | | IOWA RIVER BASIN | | | | Iowa River: | | | | East Branch Iowa River near Klemme (d) | | 72 | | Iowa River near Rowan (d) | | 73 | | Iowa River at Marshalltown (dts) | | 74 | | Timber Creek near Marshalltown (d) | | 78 | | Richland Creek near Haven (d) | | 79 | | Salt Creek near Elberon (d) | 05452000 | 80 | | Walnut Creek near Hartwick (d) | | 81 | | Big Bear Creek at Ladora (d) | 05453000 | 82 | | Iowa River at Marengo (d) | 05453100 | 83 | | Coralville Lake near Coralville (e) | 05453510 | 84 | | Iowa River below Coralville Dam near Coralville (d) | 05453520 | 85 | | Iowa River: | | | | Rapid Creek near Iowa City (d) | 05454000 | 86 | | Clear Creek near Coralville (d) | 05454300 | 87 | | Iowa River at Iowa City (d) | 05454500 | 88 | | South Branch Ralston Creek at Iowa City (d) | | 89 | | Old Mans Creek near Iowa City (d) | 05455100 | 90 | | English River at Kalona (d) | 05455500 | 91 | | Iowa River near Lone Tree (d) | | 92 | | Cedar River at Charles City (d) | 05457700 | 93 | | Little Cedar River near Ionia (d) | | 94 | | Cedar River at Janesville (d) | | 95 | | West Fork Cedar River at Finchford (d) | | 96 | | Winnebago River at Mason City (d) | | 97 | | Willow Creek: | | | | Clear Creek: | | | | Clear Lake at Clear Lake (e). | 05460000 | 98 | | | | - | Station | | Station<br>number | Page | |---------------------------------------------------------|-------------------|------| | | namou | 50 | | UPPER MISSISSIPPI RIVER BASINContinued | | | | IOWA RIVER BASINContinued | | | | Cedar River: | | | | Shell Rock River at Shell Rock (d) | 05462000 | 99 | | Beaver Creek at New Hartford (d) | | 100 | | Cedar River at Cedar Falls (c) | | 101 | | Black Hawk Creek at Hudson (d) | | 103 | | Cedar River at Waterloo (d) | 05464000 | 104 | | Cedar River at Cedar Rapids (d) | 05464500 | 105 | | Cedar River near Conesville (d) | 05465000 | 106 | | Iowa River at Wapello (dcmts) | 05465500 | 107 | | SKUNK RIVER BASIN | | | | South Skunk River (head of Skunk River) near Ames (d) | 05470000 | 112 | | Squaw Creek at Ames (d) | | 113 | | South Skunk River below Squaw Creek near Ames (d) | | 114 | | South Skunk River at Colfax (dts) | 05471050 | 115 | | Indian Creek near Mingo (d) | | 118 | | South Skunk River near Oskaloosa (d) | 05471500 | 119 | | North Skunk River near Sigourney (d) | 05472500 | 120 | | Cedar Creek near Oakland Mills (d) | 05473400 | 121 | | Skunk River at Augusta (dcmts) | 05474000 | 122 | | Mississippi River at Keokuk (d) | 05474500 | 127 | | DES MOINES RIVER BASIN | | | | Des Moines River at Estherville (d) | 05476500 | 128 | | Des Moines River at Humboldt (d) | 05476750 | 129 | | East Fork Des Moines River at Dakota City (d) | 05479000 | 130 | | Des Moines River at Fort Dodge (d) | 05480500 | 131 | | Boone River near Webster City (d) | 05481000 | 132 | | Des Moines River near Stratford (d) | 05481300 | 133 | | Saylorville Lake near Saylorville (e) | 05481630 | 134 | | Des Moines River near Saylorville (dts) | 05481650 | 135 | | Beaver Creek near Grimes (d) | 05481950 | 139 | | North Raccoon River (head of Raccoon River): | | | | North Raccoon River near Newell (d) | | 140 | | North Raccoon River near Sac City (d) | 05482300 | 141 | | North Raccoon River near Jefferson (d) | 05482500 | 142 | | South Raccoon River: | | | | Hazelbrush Creek near Maple River(dcts) | 05483343 | 143 | | Middle Raccoon River near Bayard (d) | 05483450 | 147 | | Lake Panorama at Panora (e) | 05483470 | 148 | | Middle Raccoon River at Panora (d) | 05483600 | 149 | | South Raccoon River at Redfield (d) | 05484000 | 150 | | Raccoon River at Van Meter (dcmt) | 05484500 | 151 | | Walnut Creek at Des Moines (d) | | 154 | | Des Moines River below Raccoon River at Des Moines (d). | 05485500 | 155 | | Fourmile Creek at Des Moines (d) | | 156 | | North River near Norwalk (d) | | 157 | | Middle River near Indianola (d) | | 158 | | South River near Ackworth (d) | | 159 | | Des Moines River near Runnells (d) | | 160 | | White Breast Creek near Dallas (d) | | 161 | | Lake Red Rock near Pella (e) | | 162 | | Des Moines River near Pella (d) | | 163 | | English Creek near Knoxville (d) | 05488200 | 164 | | | | | | | Station<br>number | Page | |----------------------------------------------------------------|-------------------|------| | UPPER MISSISSIPPI RIVER BASINContinued | | _ | | DES MOINES RIVER BASINContinued | | | | Des Moines River near Tracy (d) | 05488500 | 165 | | Cedar Creek near Bussey (d) | | 166 | | Des Moines River at Ottumwa (d) | | 167 | | Des Moines River at Keosauqua (d) | | 169 | | MISSOURI RIVER BASIN | 00.70000 | | | Missouri River: | | | | BIG SIOUX RIVER BASIN | | | | Big Sioux River: | | | | Rock River near Rock Valley (d) | 06483500 | 170 | | Big Sioux River at Akron (d) | | 171 | | Missouri River at Sioux City (dts) | | 172 | | PERRY CREEK BASIN | 00.0000 | | | Perry Creek at 38th Street, Sioux City (d) | 06600000 | 176 | | FLOYD RIVER BASIN | 0000000 | | | Floyd River at Alton (d) | 06600100 | 177 | | West Branch Floyd River near Struble (d) | | 178 | | Floyd River at James (d) | | 179 | | Missouri River at Decatur, Nebraska (d) | | 180 | | MONONA-HARRISON DITCH BASIN | 00002020 | 100 | | West Fork ditch (head of Monona-Harrison ditch) at Hornick (d) | 06602020 | 181 | | Monona-Harrison ditch near Turin (d) | | 182 | | LITTLE SIOUX RIVER BASIN | | | | Little Sioux River: | | | | Milford Creek; | | | | Spirit Lake near Orleans (e) | 06604000 | 183 | | West Okoboji Lake at Lakeside Laboratory near Milford (e) | | 184 | | Ocheyedan River near Spencer (d) | | 185 | | Little Sioux River at Linn Grove (d). | | 186 | | Little Sioux River at Correctionville (d). | | 187 | | Maple River at Mapleton (d) | | 188 | | Little Sioux River near Turin (d) | | 189 | | SOLDIER RIVER BASIN | 00007500 | 107 | | Soldier River at Pisgah (d) | 06608500 | 190 | | BOYER RIVER BASIN | 00000500 | 1,0 | | Boyer River at Logan (d) | 06609500 | 191 | | Missouri River at Omaha, Nebraska (dts) | | 192 | | Missouri River at Nebraska City, Nebraska (dts). | | 196 | | NISHNABOTNA RIVER BASIN | 0000.000 | | | West Nishnabotna River at Hancock (d) | 06807410 | 200 | | West Nishnabotna River at Randolph (d) | | 201 | | East Nishnabotna River near Atlantic (d) | | 202 | | East Nishnabotna River at Red Oak (d) | | 203 | | Nishnabotna River above Hamburg (d) | | 204 | | Missouri River at Rulo, Nebraska (d) | | 205 | | NODAWAY RIVER BASIN | | | | Nodaway River at Clarinda (d) | 06817000 | 206 | | PLATTE RIVER BASIN (Iowa-Missouri) | | | | One Hundred and Two River: | | | | East Fork One Hundred and Two River near Bedford (d) | 06819185 | 207 | | | | | | Station number | Page | |-------------------------------------------------|------| | MISSOURI RIVER BASINContinued | | | GRAND RIVER BASIN | | | Grand River: | | | Thompson River: | | | Elk Creek near Decatur City (dcmts) | 208 | | Thompson River at Davis City (d) | 211 | | CHARITON RIVER BASIN | | | Chariton River near Chariton (d) | 212 | | | 213 | | South Fork Chariton River near Promise City (d) | 214 | | Chariton River near Rathbun (d) | 215 | | Chariton River near Moulton (d) | 217 | | | Page | |--------------------------------------------------------------------------------------------|-------| | ADAMS COUNTY | | | 405731094480801 Local number, 71-34-07 DCCD | 257 | | 410247094324801 Local number, 72-32-09 CBCC | | | 410248094324801 Local number, 72-32-09 CCBB | | | 410317094324801 Local number, 72-32-09 BBCC | | | 410548094452101 Local number, 73-34-27 BCBB | | | AUDUBON COUNTY | 230 | | 413044094565601 Local number, 78-36-35 ADCC1 | 258 | | 413843094541701 Local number, 79-35-15 DCDD | | | 413958094544501 Local number, 79-35-10 CABB | | | 415023094593801 Local number, 81-36-12 CBCA | | | BENTON COUNTY | 200 | | 415211092164101 Local number, 82-12-31 DAAD1 | 260 | | 415211092164102 Local number, 82-12-31 DAAD1 | | | 420319091540102 Local number, 84-09-28 DBCC2 | | | 420731092083801 Local number, 85-11-33 CCBC1 | | | 420731092083803 Local number, 85-11-33 CCBC1 | | | BUENA VISTA COUNTY | 203 | | 424023095571401 Local number, 91-35-26 BCCC | 262 | | 425233094545001 Local number, 93-35-13 ADAA | | | CALHOUN COUNTY | | | 422812094383501 Local number, 88-33-01 BACD | 264 | | CARROLL COUNTY | 204 | | 415658094462601 Local number, 82-34-02 ABBB | . 264 | | 420230094455101 Local number, 84-34-35 DAAA | | | 420233094475901 Local number, 83-35-34 BCDC | | | 420233094473901 Local number, 83-33-34 BCDC 420643094403701 Local number, 84-33-03 CADA | | | 420705094394501 Local number, 84-33-03 CADA 420705094394501 Local number, 84-33-02 BDBA | | | 421058094582701 Local number, 85-35-07 CCCC | | | CASS COUNTY | 200 | | 411117095091901 Local number, 74-37-30 BBBB1 | 267 | | 411117095091901 Local number, 74-37-30 BBBB1 | | | 41117/093091902 Local number, 74-37-30 BBBB2 411900094530101 Local number, 75-35-07 BBAB | | | 411900094330101 Local number, 73-33-07 BBAB | | | CERRO GORDO COUNTY | 206 | | 430757093131801 Local number, 96-20-17 DAAD | 260 | | 430806093164501 Local number, 96-21-13 BCCB | | | CHEROKEE COUNTY | 209 | | 423833095365701 Local number, 90-40-06 BDCD | 270 | | 423633093363701 Local number, 90-40-06 BDCD 424039095342801 Local number, 91-40-21 CDDD1 | | | 424039095342801 Local number, 91-40-21 CDDD1 424039095342802 Local number, 91-40-21 CDDD2 | | | 424039093342802 Local number, 91-40-21 CDDD2 424132095480211 Local number, 91-42-16 DDDD11 | | | | | | 424348095231601 Local number, 91-39-01 ADAD1 | | | · · · · · · · · · · · · · · · · · · · | | | 424459095322411 Local number, 92-40-26 CCDD11 | | | 424523095313101 Local number, 92-40-26 ADDD1 424523095313102 Local number, 92-40-26 ADDD2 | | | 424523095313102 Local number, 92-40-26 ADDD2 424523095313103 Local number, 92-40-26 ADDD3 | | | 424802095331201 Local number, 92-40-10 BDDD | | | 72700207JJJ1201 LOCAI HUHHUCI, 72-40-10 DDDD | | | | Page | |----------------------------------------------|------| | | | | CLAY COUNTY | | | 431316095135201 Local number, 97-37-17 ADDA1 | | | 431316095135202 Local number, 97-37-17 ADDA2 | 274 | | CLAYTON COUNTY | 2 | | 424023091291201 Local number, 91-05-30 BBBB | | | 424057091320001 Local number, 91-06-22 ACAC | | | 425433091285001 Local number, 94-05-31 DACC1 | | | 425433091285002 Local number, 94-05-31 DACC2 | | | 425940091194701 Local number, 95-04-32 DDDD | | | 430156091182901 Local number, 95-04-22 BCBD | 211 | | CRAWFORD COUNTY | 270 | | 415512095313801 Local number, 82-40-17 ABBC | | | 415514095312001 Local number, 82-40-17 AABB | | | 420147095161301 Local number, 83-38-04 DABC | | | 420608095111701 Local number, 84-37-08 BCCB | | | 421005095342801 Local number, 85-41-13 CCCC | | | 421031095225602 Local number, 85-39-16 ADDD1 | | | 421106095125501 Local number, 85-38-12 DCBA | | | DELAWARE COUNTY | 201 | | 422029091144302 Local number, 87-03-18 CBCD2 | 201 | | FLOYD COUNTY | 201 | | 430200092435301 Local number, 95-16-22 BCA1 | 282 | | 430200092435303 Local number, 95-16-22 BCA3 | | | 430200092435304 Local number, 95-16-22 BCA4 | | | 430200092435305 Local number, 95-16-22 BCA5 | | | 430200092435306 Local number, 95-16-22 BCA6 | | | FRANKLIN COUNTY | 203 | | 423332093034302 Local number, 90-19-35 CDCC | 283 | | FREMONT COUNTY | | | 404946095344801 Local number, 70-41-32 AABB1 | 284 | | 404946095344802 Local number, 70-41-32 AABB2 | | | GREENE COUNTY | | | 415448094163401 Local number, 82-29-18 CBAA | 285 | | 415449094155601 Local number, 82-29-18 DBAA | | | 415449094161501 Local number, 82-29-18 CAAA1 | | | 415449094173201 Local number, 82-30-13 CABA | | | 415608094260701 Local number, 82-31-10 AAAA | | | 420116094363001 Local number, 83-32-08 BBBC | 287 | | 420146094272301 Local number, 83-31-04 ADDB | 287 | | 420149094344701 Local number, 83-32-04 ACCC | 288 | | 420507094141901 Local number, 84-29-16 CBAB | 288 | | GRUNDY COUNTY | | | 422605092560001 Local number, 88-18-15 DBBB | 289 | | GUTHRIE COUNTY | | | 413223094150801 Local number, 78-30-24 CAAB | | | 413248094314301 Local number, 78-32-21 AAAA | | | 414110094260501 Local number, 79-31-23 BBBB | | | 414652094293301 Local number, 81-31-32 CBCC | | | 414728094385301 Local number, 81-33-26 DDDD | | | 414728094392401 Local number, 81-33-35 ABBC | 291 | Page | GUTHRIE COUNTYContinued | | |-----------------------------------------------|-----| | 414821094271301 Local number, 81-31-22 CCCC | 292 | | HARDIN COUNTY | | | 423310093032802 Local number, 89-19-02 BDAC2 | 292 | | HARRISON COUNTY | | | 413024095353901 Local number, 78-41-31 DDDD | 292 | | 413523095483101 Local number, 78-43-05 ACDD | | | 413524095490601 Local number, 78-43-05 BCDD | | | 413838095462001 Local number, 79-42-19 AADB | | | 414149095422401 Local number, 80-42-35 BDCC | | | 414213095431602 Local number, 80-42-34 ABBB2 | | | 414517095453401 Local number, 80-42-08 ACCC | | | 414700095373001 Local number, 81-41-33 CAAA | | | 414955096000601 Local number, 81-44-18 AADA | | | 415148095545001 Local number, 81-44-01 ABAB | | | HENRY COUNTY | | | 405010091424901 Local number, 70-07-30 BCDD | 297 | | 410852091394301 Local number, 73-07-09 AABD | | | HUMBOLDT COUNTY | | | 424039094103601 Local number, 91-28-20 CAAA | 208 | | 424736094244701 Local number, 92-30-08 CDAA | | | 424736094244702 Local number, 92-30-08 CDAA | | | IDA COUNTY | 433 | | 422215095390811 Local number, 87-41-05 CCCC11 | 200 | | 423107095383201 Local number, 89-41-13 CCCC | | | 423131095442601 Local number, 89-41-18 CBBB | | | IOWA COUNTY | 300 | | 414709091515801 Local number, 81-09-35 BCAA | 200 | | 414709091313801 Local number, 81-09-33 BCAA | | | JACKSON COUNTY | 301 | | 420842090165701 Local number, 85-06-29 ACAD1 | 201 | | | | | 420842090165702 Local number, 85-06-29 ACAD2 | | | 420842090165703 Local number, 85-06-29 ACAD3 | | | 420842090165704 Local number, 85-06-29 ACAD4 | 303 | | JASPER COUNTY | 204 | | 414147093035401 Local number, 80-19-33 ACAC | 304 | | 414210092592001 Local number, 80-18-31 ABBB | 304 | | JOHNSON COUNTY | 205 | | 413925091324001 Local number, 79-06-09 DDBC | | | 414107091322901 Local number, 79-06-04 AAAA | | | 414132091345501 Local number, 80-06-31 ADAC1 | | | 414132091345502 Local number, 80-06-31 ADBC1 | | | 414132091345503 Local number, 80-06-31 ADBD1 | | | 414221091361101 Local number, 80-07-25 DBAC1 | | | 414221091361102 Local number, 80-07-25 DBAC2 | | | 414221091361103 Local number, 80-07-25 DBAD1 | | | 414315091252001 Local number, 80-05-22 CBCB1 | | | 414315091252002 Local number, 80-05-22 CBCB2 | | | 414853091425101 Local number, 81-07-19 BCBB1 | 309 | Page | JONES COUNTY | | |------------------------------------------------|-----| | 415808091160501 Local number, 83-04-25 CBBB | 309 | | KEOKUK COUNTY | | | 412030092121601 Local number, 76-12-35 DBDC | 310 | | LINN COUNTY | | | 415343091360101 Local number, 82-07-25 AAAB | 310 | | 415422091422601 Local number, 82-07-18 CDCD | | | 415509091461801 Local number, 82-08-20 ACBB | 311 | | 415725091410101 Local number, 83-07-32 ACDC | | | 415834091351601 Local number, 83-06-30 ABBA | 313 | | 420300091325801 Local number, 84-06-33 ABBB | | | 420320091472201 Local number, 84-08-28 CBDD | 314 | | 420508091395811 Local Number, 84-07-16 DBBB | 314 | | 420526091370701 Local number, 84-07-13 BCBB | 315 | | 420730091490401 Local number, 85-08-31 DDCD1 | 315 | | 420730091490402 Local number, 85-08-31 DDCD2 | 316 | | 421149091403301 Local Number, 85-07-04 CCCC | 316 | | LYON COUNTY | | | 431713096140501 Local number, 98-46-24 CCCC1 | 316 | | 431713096140502 Local number, 98-46-24 CCCC2 | 317 | | 431812096302701 Local number, 98-48-16 DDAD | | | 432140095595301 Local number, 99-44-26 DDDD | 318 | | 432553096105701 Local number, 99-45-05 ABAC | 318 | | 432601096335511 Local number, 100-48-31 CCCC11 | | | 432834096102701 Local number, 100-45-21 BBBB1 | | | 432834096102702 Local number, 100-45-21 BBBB2 | 320 | | MADISON COUNTY | | | 411727093483001 Local number, 75-26-23 AAAC | 320 | | MAHASKA COUNTY | | | 411912092273601 Local number, 75-14-10 BAAC | | | 411914092274701 Local number, 75-14-10 BABC | | | 412002092470301 Local number, 75-17-02 BAAB | | | 412020092471002 Local number, 76-17-35 CADB | | | 412023092471201 Local number, 76-17-35 CADB | 322 | | MARION COUNTY | | | 411323093142601 Local number, 74-21-11 DBCB1 | | | 411328093143503 Local number, 74-21-11 CAAD3 | | | 411329093142902 Local number, 74-21-11 DBBB2 | 323 | | MARSHALL COUNTY | | | 415640093062101 Local number, 82-19-06 ACCB | | | 420355092534701 Local number, 84-18-24 CDCA | | | 421120093003001 Local number, 85-19-12 ADCD | 325 | | MILLS COUNTY | 205 | | 405641095365101 Local number, 71-42-24 AAAA | | | 405813095433201 Local number, 71-42-07 BBCD | | | 405911095302301 Local number, 71-41-04 AADA1 | | | MITCHELL COUNTY | 326 | | 432156092484101 Local number, 95-17-23 DAA | 226 | | 432156092484101 Local number, 95-17-23 DAA | | | 432156092484103 Local number, 95-17-23 DAA | | | | Page | |------------------------------------------------------------------------------------------|---------------------| | | | | 432156092484104 Local number, 95-17-23 DAA | 327 | | 432156092484105 Local number, 95-17-23 DAA | 328 | | MONONA COUNTY | | | 415456095414101 Local number, 82-42-14 ADCA | 328 | | 420004095451501 Local number, 83-42-17 ACDD | | | 420004095454801 Local number, 83-42-17 CABB | | | 420139095155701 Local number, 83-43-04 CBCB | 329 | | 420730095510701 Local number, 84-43-04 ABAA | | | 421006095580301 Local number, 85-44-16 DCDD | | | 421018095582001 Local number, 85-44-16 CDAA | | | 421018095591301 Local number, 85-44-17 DCAA | | | MONTGOMERY COUNTY | | | 405403095004401 Local number, 71-36-32 DCCD | 332 | | 405841095012702 Local number, 71-36-06 DADA2 | | | 410057095075101 Local number, 72-37-29 BABA | | | 410103095594501 Local number, 72-36-04 CDDD | | | 410134095141601 Local number, 72-38-20 ACAA1 | | | 410134095141602 Local number, 72-38-20 ACAA2 | | | MUSCATINE COUNTY | | | 412120091080401 Local number, 76-02-30 CBAA1 | 335 | | O'BRIEN COUNTY | 555 | | 425610095250611 Local number, 94-39-26 BADB11 | 335 | | 425808095480311 Local number, 94-42-09 DDDD11 | | | 430930095350401 Local number, 96-40-05 DDDA1 | | | OSCEOLA COUNTY | 556 | | 431613095251801 Local number, 98-39-26 CDCC | 337 | | 431620095250501 Local number, 98-39-26 CDAD1 | | | 431620095250511 Local number, 98-39-26 CDAD11 | | | 431620095482402 Local number, 98-42-33 AABB2 | | | 432129095315001 Local number, 99-40-26 DCDD1 | | | 432129095315002 Local number, 99-40-26 DCDD2 | | | 432129095315003 Local number, 99-40-26 DCDD3 | | | 432828095283611 Local number, 100-39-17 DCCB11 | | | PAGE COUNTY | 337 | | 403446095010701 Local number, 67-36-30 DCCD | 340 | | 404257095150801 Local number, 68-38-07 CCAA | | | PALO ALTO COUNTY | 540 | | 430246094421201 Local number, 95-33-14 ACDD | 341 | | 430246094421202 Local number, 95-33-14 ACDD | | | 430246094421203 Local number, 95-33-14 ACDD | | | 430246094421204 Local number, 95-33-14 ACDD | | | 431047094415201 Local number, 97-33-36 BCBB | | | 431047094415202 Local number, 97-33-36 BCBB | | | 431047094415203 Local number, 97-33-36 BCBB | | | PLYMOUTH COUNTY | ,, J <del>4</del> 3 | | 424552096141301 Local number, 96-46-23 DDC | 3/13 | | 424332096141301 Local number, 90-46-23 DDC 424833096324701 Local number, 92-48-06 DDDA | | | 424850096074801 Local number, 92-48-00 DDDA 424850096074801 Local number, 92-45-02 CBCB | | | 425249096125001 Local number, 93-46-12 DDDD | | | POCA HONTAS COLINTY | ,. J <del>111</del> | | | 1 age | |-----------------------------------------------|-------| | 425329094272501 Local number, 93-31-12 BABB | 345 | | 425329094272502 Local number, 93-31-12 BABB | | | POCAHONTAS COUNTYContinue | | | 425329094272503 Local number, 93-31-12 BABB | 345 | | POTTAWATTAMIE COUNTY | | | 411024095095501 Local number, 74-38-36 BAAA1 | 346 | | 411024095095502 Local number, 74-38-36 BAAA2 | | | 411359095171901 Local number, 74-39-01 CCCC | | | SAC COUNTY | | | 422500095084801 Local number, 88-37-22 CCCC | 347 | | 422850095171501 Local number, 89-38-36 CBCC | | | SCOTT COUNTY | | | 413544090212901 Local number, 78-05-03 AADA | 348 | | SHELBY COUNTY | | | 413255095070401 Local number, 78-37-17 DDDD | 349 | | 413359095182701 Local number, 78-39-11 CCBC | 349 | | 413442095193101 Local number, 78-39-10 BBBA | 350 | | 413953095302601 Local number, 79-40-09 DBCA | 350 | | 414211095161701 Local number, 80-38-33 AABB | 350 | | 414624095252301 Local number, 80-39-06 AADC | 351 | | 414856095160101 Local number, 81-38-21 ADAD | 351 | | SIOUX COUNTY | | | 430140095573101 Local number, 95-43-07 AAAA | 352 | | 430913096033201 Local number, 96-44-08 ADAA | 352 | | 431200096221601 Local number, 97-47-23 CCCD | 352 | | STORY COUNTY | | | 420137093361501 Local number, 83-24-02 DABC | 353 | | VAN BUREN COUNTY | | | 404150091483001 Local number, 68-08-08 CDD | 353 | | WASHINGTON COUNTY | | | 411300091320701 Local number, 74-06-15 BDAC | | | 412037091564701 Local number, 76-09-31 CBBC | | | 412750091495201 Local number, 77-09-24 AADA | | | 421829091304701 Local number, 75-06-14 ABBB | 355 | | WEBSTER COUNTY | | | 421837094083601 Local number, 87-28-29 CCCD | | | 423018094214701 Local number, 89-30-23 CCBB | 356 | | WOODBURY COUNTY | | | 422058095573701 Local number, 87-44-15 CBBB | | | 422830096000511 Local number, 88-44-16 BAAB11 | | | 422910096135811 Local number, 89-46-36 BBDC11 | 357 | #### DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Iowa have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (\*) after the station number are currently operated as crest-stage partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report. [Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)] | Charles Name | Otation Number | Drainage area | Davis d of second | |---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|--------------------------------------| | Station Name | Station Number | (square miles) | Period of record | | Upper Iowa River at Decorah, Ia. (d)<br>Upper Iowa River near Decorah, Ia. (d) | 05387500<br>05388000 | 511<br>568 | 1952-83<br>1913-14; 1919-27; | | opportona tevor near becorair, ia. (a) | 0330000 | 300 | 1933-51 | | Paint Creek at Waterville, Ia. (d) | 05388500 | 42.8 | 1952-73 | | Yellow River at Ion, Ia. (d) | 05389000 | 221 | 1934-51 | | Mississippi River at Clayton, Ia. (d) | 05411500 | 9,200 | 1930-36 | | Turkey River at Spillville, Ia. (d) | 05411600 | 177 | 1957-73; 1978-91 | | Turkey River at Elkader, Ia. (d) | 05412000<br>05412070 | 891<br>1.15 | 1932-42<br>1986-92 | | Unnamed Creek near Luana, Ia. (d)<br>Little Maquoketa River near Durango, Ia. (d) | 05414500* | 130 | 1934-82 | | Maquoketa River near Manchester, Ia. (d) | 05417000 | 305 | 1933-73 | | Maquoketa River near Delhi, Ia. (d) | 05417500 | 347 | 1933-40 | | Bear Creek near Monmouth, Ia. (d) | 05417700 | 61.3 | 1957-76 | | Maquoketa River above North Fork Maquoketa River<br>near Maquoketa, Ia. (d) | 05418000 | 938 | 1913-14 | | North Fork Maguoketa River at Fulton, Ia. (d) | 05418450 | 516 | 1977-91 | | Wapsipinicon River at Stone City, Ia. (d) | 05421500 | 1,324 | 1903-14 | | Crow Creek at Eldridge, Ia. (d) | 05422420 | 2.20 | 1977-82 | | Crow Creek at Mt. Joy, Ia. (d) | 05422450 | 6.90 | 1977-82 | | Pine Creek at Muscatine, Ia. (d) | 05448150 | 38.9 | 1975-82 | | Eagle Lake inlet near Britt, Ia. (e) | 05448285 | 3.83 | 1975-80 | | Eagle Lake outlet near Britt, Ia. (e) | 05448290 | 11.3 | 1975-80 | | West Branch (West Fork) Iowa River near Klemme, Ia. (d) | 05448500 | 112<br>665 | 1948-58<br>1911-14 | | owa River near Iowa Falls, Ia. (d) | 05450000<br>05450500 | 14.9 | 1936-70 | | Upper Pine Lake at Eldora, Ia. (e)<br>Lower Pine Lake at Eldora, Ia. (e) | 05451000 | 15.9 | 1936-70 | | owa River near Belle Plaine, Ia. (d) | 05452500 | 2,455 | 1939-59 | | Lake Macbride near Solon, Ia. (e) | 05453500 | 27.0 | 1936-71 | | Ralston Creek at Iowa City, Ia. (d) | 05455000 | 3.01 | 1924-87 | | Cedar River at Mitchell, Ia. (d) | 05457500 | 826 | 1933-42 | | Shell Rock River near Northwood, Ia. (d) | 05459000 | 300 | 1945-86 | | Shell Rock River at Marble Rock (Greene), Ia. (d) | 05460500 | 1,318 | 1933-53 | | Shell Rock River at Greene, Ia. (d) | 05461000 | 1,357 | 1933-42 | | Shell Rock River near Clarksville, Ia. (d) | 05461500 | 1,626 | 1915-27; 1932-34 | | Fourmile Creek near Lincoln, Ia. (d) | 05464130<br>05464133 | 13.78<br>1.33 | 1962-67; 1969-74<br>1962-67; 1969-74 | | Half Mile Creek near Gladbrook, Ia. (d)<br>Fourmile Creek near Traer, Ia. (d) | 05464137 | 19.51 | 1962-74; 1975-80 | | Prairie Creek at Fairfax, Ia. (d) | 05464640 | 178 | 1966-82 | | ake Keomah near Oskaloosa, Ia. (e) | 05472000 | 3.06 | 1936-71 | | Skunk River at Coppock, Ia. (d) | 05473000 | 2,916 | 1913-44 | | Big Creek near Mount Pleasant, Ia. (d) | 05473500 | 106 | 1955-79 | | East Fork Des Moines River near Burt, Ia. (d) | 05478000 | 462 | 1971-74 | | East Fork Des Moines River near Hardy, Ia. (d) | 05478500 | 1,268 | 1940-54 | | Des Moines River near Fort Dodge, Ia. (d) | 05479500 | 3,753 | 1911-13 | | izard Creek near Clare, Ia. (d) | 05480000 | 257 | 1940-82 | | Des Moines River near Boone, Ia. (d) | 05481500<br>05482000 | 5,511<br>6,245 | 1920-68<br>1905-06; 1915-61 | | Des Moines River at Des Moines, Ia. (d)<br>Storm Lake at Storm Lake, Ia. (e) | 05482140 | 28.3 | 1970-75 | | Big Cedar Creek near Varina, Ia. (d) | 05482170 | 80.0 | 1960-91 | | East Fork Hardin Creek near Churdan, Ia. (d) | 05483000 | 24.0 | 1953-91 | | Springbrook Lake near Guthrie Center, Ia. (d) | 05483500 | 5.18 | 1936-71 | | Raccoon River at Des Moines, Ia. (d) | 05485000 | 3,590 | 1902-03 | | ake Ahquabi near Indianola, Ia. (e) | 05487000 | 4.93 | 1936-71 | | White Breast Creek near Knoxville, Ia. (d) | 05488000 | 380 | 1945-62 | | Muchakinock Creek near Eddyville, Ia. (d) | 05489190 | 70.2 | 1975-79 | | ake Wapello near Drakesville, Ia. (e) | 05490000 | 7.75 | 1936-71 | | Sugar Creek near Keokuk, Ia. (d) | 05491000 | 105 | 1922-31; 1958-73 | | Fox River at Bloomfield, Ia. (d) | 05494300 | 87.7 | 1957-73 | | Fox River at Cantril, Ia. (d) | 05494500 | 161<br>788 | 1940-51<br>1959-74 | | Rock River at Rock Rapids, Ia. (d) | 06483270<br>06484000 | 48.4 | 1948-69 | | Ory Creek at Hawarden, Ia. (d)<br>Vest Fork ditch at Holly Springs, Ia. (d) | 06602000 | 399 | 1939-69 | | oon Creek near Orleans, Ia. (d) | 06603920 | 31 | 1971-74 | | Spirit Lake outlet at Orleans, Ia. (e) | 06604100 | 75.6 | 1971-74 | | Ailford Creek at Milford, Ia. (d) | 06604400 | 146 | 1971-74 | | Amora Cieck at Miniora, 14. (a) | | 990 | 1936-42 | | ittle Sioux River at Spencer, Ia. (d) | 06605100 | | | | | 06605100<br>06605600 | 1,334 | 1958-73 | | ittle Sioux River at Spencer, Ia. (d) ittle Sioux River at Gillett Grove, Ia. (d) ittle Sioux River near Kennebeck, Ia. (d) | 06605600<br>06606700 | 1,334<br>2,738 | 1958-73<br>1939-69 | | ittle Sioux River at Spencer, Ia. (d) ittle Sioux River at Gillett Grove, Ia. (d) ittle Sioux River near Kennebeck, Ia. (d) debolt Creek near Arthur, Ia. (d) | 06605600<br>06606700<br>06607000 | 1,334<br>2,738<br>39.3 | 1958-73<br>1939-69<br>1957-75 | | ittle Sioux River at Spencer, Ia. (d) ittle Sioux River at Gillett Grove, Ia. (d) ittle Sioux River near Kennebeck, Ia. (d) | 06605600<br>06606700 | 1,334<br>2,738 | 1958-73<br>1939-69 | ### DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued | Station Name | Station Number | Drainage area<br>(square miles) | Period of record | |-------------------------------------------------------|----------------|---------------------------------|------------------| | Steer Creek near Magnolia, Ia. (d) | 06609200 | 9.26 | 1963-69 | | Thompson Creek near Woodbine, Ia. (d) | 06609590 | 6.97 | 1963-69 | | Willow Creek near Logan, Ia. (d) | 06609600 | 129 | 1972-75 | | Indian Creek at Council Bluffs, Ia. (d) | 06610500 | 7.99 | 1954-76 | | Mosquito Creek near Earling, Ia. (d) | 06610520 | 32.0 | 1965-79 | | Waubonsie Creek near Bartlett, Ia. (d) | 06806000 | 30.4 | 1946-69 | | West Nishnabotna River at Harlan, Ia. (d) | 06807320 | 316 | 1977-82 | | West Nishnabotna River at (near) White Cloud, Ia. (d) | 06807500 | 967 | 1918-24 | | Mule Creek near Malvern, Ia. (d) | 06808000 | 10.6 | 1954-69 | | Spring Valley Creek near Tabor, Ia. (d) | 06808200 | 7.6 | 1955-64 | | Davids Creek near Hamlin, Ia. (d) | 06809000 | 26.0 | 1952-73 | | Tarkio river at Blanchard, Ia. (d) | 06812000 | 200 | 1934-40 | | Tarkio River at Stanton, Ia. (d) | 06811840 | 49.3 | 1958-91 | | West Nodaway River at Villisca, Ia. (d) | 06816500 | 342 | 1918-25 | | Platte River near Diagonal, Ia. (d) | 06818750 | 217 | 1969-91 | | Weldon River near Leon, Ia. (d) | 06898400 | 104 | 1959-91 | | Honey Creek near Russell, Ia. (d) | 06903500 | 13.2 | 1952-62 | | Chariton River near Centerville, Ia. (d) | 06904000 | 708 | 1938-59 | ### DISCONTINUED SURFACE-WATER-QUALITY STATIONS The following water-quality stations have been discontinued in Iowa. Continuous daily records of water temperature or sediment and monthly or periodic samples of chemical quality were collected and published for the period of record shown for each station. [Type of record: Chem.--chemical quality, Temp.--water temperature, Sed--sediment] | | | Drainage area | | | |-----------------------------------------------------------------------|----------------|--------------------|--------------------|--------------------| | Station name | Station number | (mi <sup>2</sup> ) | Type of record | Period of record | | pper Iowa River at Decorah, Ia. | 05387500 | 511 | Sed., Temp. | 1963-83 | | pper Iowa River near Dorchester, Ia. | 05388250 | 770 | Sed., Temp. | 1975-81 | | int Creek at Waterville, Ia. | 05388500 | 42.8 | Temp. | 1952-56 | | · | | | Sed. | 1952-57 | | named Creek near Luana | 05412070 | 1.15 | Chem. | 1986-92 | | rkey River at Garber, Ia. | 05412500 | 1,545 | Temp., Sed.* | 1957-62 | | ssissippi River at Dubuque, Ia. | 05414700 | 1,600 | Chem. | 1969-73 | | aquoketa River near Maquoketa, Ia. | 05418500 | 1,553 | Chem., Temp., Sed. | 1978-82 | | ssissippi River at Clinton, Ia. | 05420500 | 85,600 | Chem. | 1973-87 | | apsipinicon River at Independence, Ia. | 05421000 | 1,048 | Chem.* | 1968-70 | | . r - r | | 2,0 .0 | Temp.*, Sed.* | 1967-70 | | ow Creek at Bettendorf, Ia. | 05422470 | 17.8 | Chem., Temp., Sed. | 1978-82 | | wa River near Rowan. Ia. | 05449500 | 429 | Temp.*, Sed.* | 1957-62 | | dar River near Gilbertville, Ia. | 05464020 | 5,234 | Chem. | 1971; 1975-81 | | va River at Iowa City, Ia. | 05454500 | 3,271 | Chem., Temp., Sed. | 1952-1987 | | Iston Creek at Iowa City, Ia. | 05455000 | 3.01 | Chem., Temp., Sed. | 1906-1907; 1944-88 | | urmile Creek near Lincoln, Ia. | | 13.78 | Chem., Temp., Sed. | 1969-74 | | If Mile Creek near Cladbrook, Ia. | 05464130 | 1.33 | Chem., Temp., Sed. | 1969-74 | | | 05464133 | | | 1969-74 | | urmile Creek near Traer, Ia. | 05464137 | 19.51 | Chem., Temp., Sed. | 1909-72 | | dar River near Palo, Ia. | 05464450 | 6,380 | Chem. | | | dar River at Cedar Rapids, Ia. | 05464500 | 6,640 | Chem.* | 1906-07; 1944-54 | | | | | Temp.* | 1944-54 | | | | | Sed. | 1943-54 | | dar River near Bertram, Ia. | 05464760 | 6,955 | Chem. | 1975-81 | | ssissippi River at Burlington, Ia. | 05469720 | 4,000 | Chem. | 1969-73 | | uth Skunk River at Colfax, Ia | 05471050 | 803 | Chem., Temp., Sed. | 1989-93 | | ssissippi River at Keokuk, Ia. | 05474500 | 119,000 | Chem. | 1974-87 | | s Moines River at Fort Dodge, Ia. | 05480500 | 4,190 | Chem. | 1972-73 | | s Moines River at Des Moines, Ia. | 05482000 | 6,245 | Chem. | 1954-55 | | | | | Temp., Sed. | 1954-61 | | st Fork Hardin Creek near Churdan, Ia. | 05483000 | 24.0 | Temp.*,Sed.* | 1952-57 | | ddle Fork Raccoon River near Bayard, Ia. | 05483450 | 375 | Chem., Temp., Sed. | 1979-85 | | ddle Fork Raccoon River at Panora, Ia. | 05483600 | 440 | Chem., Temp., Sed. | 1979-85 | | ccoon River at Des Moines, Ia. | 05485000 | 3,590 | Chem., Temp. | 1945-47 | | s Moines River below Raccoon River | 05485500 | 9,770 | Chem.* | 1944-45 | | at Des Moines, Ia. | 05-105500 | 2,770 | Temp.*, Sed. | 1944-47 | | es Moines River below Des Moines, Ia. | 05485520 | 9,901 | Chem. | 1971; 1975-81 | | iddle River near Indianola, Ia. | 05486490 | 503 | Temp.*, Sed. | 1962-67 | | hite Breast Creek near Dallas, Ia. | 05487980 | 342 | Chem. | 1968-73 | | inc Dieast Cicca fical Dallas, fa. | 03487980 | 372 | Temp., Sed. | 1967-73 | | g Sioux River at Sioux City, Ia. | 06485950 | 9,410 | Chem. | 1969-73 | | ssouri River at Sioux City, Ia. | 06486000 | 314,600 | Chem. | 1972-86 | | | | | Temp., Sed. | 1968-73 | | oyd River at James, Ia. | 06600500 | 882 | | 1969-73 | | yd River at Sioux City, Ia. | 06600520 | 921 | Chem. | | | ssouri River at Decatur, Neb. | 06601200 | 316,160 | Chem. | 1974-81 | | tle Sioux River at Correctionville, Ia. | 06606600 | 2,500 | Chem.* | 1954-55 | | | | | Temp.* | 1951-62 | | | | | Sed. | 1950-62 | | tle Sioux River near Kennebec, Ia. | 06606700 | 2,738 | Temp. | 1950-55 | | | | | Sed. | 1950-57 | | tle Sioux River at River Sioux, Ia. | 06607513 | 3,600 | Chem. | 1969-73 | | dier River near Mondamin, Ia. | 06608505 | 440 | Chem. | 1970-73 | | er Creek near Magnolia, Ia. | 06609200 | 9.26 | Temp., Sed. | 1963-69 | | ompson Creek near Woodbine, Ia. | 06609590 | 6.97 | Temp., Sed. | 1963-69 | | llow Creek near Logan, Ia. | 06609600 | 129 | Chem., Temp. | 1972-75 | | <u>.</u> | | | Sed. | 1971-75 | | ssouri River at Omaha, Nebr. | 06610000 | 322,800 | Chem. | 1969-86 | | ile Creek near Malvern, Ia. | 06808000 | 10.6 | Temp. | 1958-69 | | | | | Sed. | 1954-69 | | vids Creek near Hamlin, Ia. | 06809000 | 26.0 | Temp.* | 1952-53; 1965-68 | | shnabotne River above Hamburg, Ia. | 06810000 | 2,806 | Chem. | 1979-83 | | | ~~~~~~ | _,000 | Temp., Sed. | 1979-81 | | daway River near Clarinda | 06817000 | 762 | Chem., Temp., Sed. | 1976-92 | | st Nishnabotna River at Red Oak, Ia. | 06809500 | 762<br>894 | Temp., Sed. | 1962-73 | | st Nishnadotha River at Red Oak, ia.<br>atte River near Diagonal, Ia. | | | Chem. | 1969-73 | | | 06818750 | 217 | | 1967-73 | | ompson River at Davis City, Ia. | 06898000 | 701 | Chem. | | | dan Disamana Lago To | 06000400 | 104 | Temp., Sed. | 1968-73 | | eldon River near Leon, Ia. | 06898400 | 104 | Chem. | 1968-73 | | ariton River near Chariton, Ia. | 06903400 | 182 | Temp., Sed. | 1969-73 | | oney Creek near Russell, Ia. | 06903500 | 13.2 | Sed. | 1952-62 | | nariton River near Rathbun, Ia. | 06903900 | 551 | Temp.*, Sed.* | 1962-69 | <sup>\*</sup> Periodic data is available subsequent to the period of daily record. #### WATER RESOURCES DATA - IOWA, 1994 #### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside of the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Iowa." This report contains records for water discharge at 115 gaging stations, stage or contents for 8 lakes and reservoirs, water quality records for 6 gaging stations, sediment records for 11 gaging stations, and water levels for 232 observation wells. Also included are data for 93 crest-stage partial-record stations and water-quality data from 101 municipal wells. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended-sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225. For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports in conjunction with streamflow records. Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report IA-94-1." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone, (319) 337-4191. A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225. #### **COOPERATION** The U.S. Geological Survey and organizations in the State of Iowa have had cooperative agreements for the systematic collection of streamflow records since 1914, for ground-water levels since 1935, and for water-quality records since 1943. Organizations that assisted in collecting data through cooperative agreements with the U.S. Geological Survey in Iowa during water year 1994 are: - Iowa Department of Natural Resources (Geological Survey Bureau), Donald L. Koch, Bureau Chief and State Geologist - Iowa Department of Transportation, Highway Division, Highway Research Board, Robert Humphrey, Director, and Vernon J. Marks, Research Engineer - Iowa State University, Department of Agricultural Engineering and Biosystems Engineering, James Gilley, Chairperson - Iowa State University, Department of Contracts and Grants, Richard E. Hasbrook, Contracts and Grants Officer - Iowa State University, Iowa State Water Resources Research Institute, Dennis Keeney, Director - University of Iowa, College of Engineering, Robert G. Hering, Dean, Institute of Hydraulic Research, Robert Ettema, Acting Director - University of Iowa, Department of Preventive Medicine and Environmental Health, Robert B. Wallace, Department Head University of Iowa, Hygienic Laboratory, W.J. Hausler, Jr., Director City of Cedar Rapids, Donald Canney, Mayor City of Des Moines, John Dorrian, Mayor City of Fort Dodge, Michael D. McCarville, Mayor. Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers in collecting streamflow records for 84 stream gaging stations. Assistance was also furnished by NOAA-National Weather Service, U.S. Department of Commerce. The following organizations aided in collecting records: Carroll County Soil and Water Conservation District; City of Charles City; City of Clear Lake; City of Denison; City of Des Moines Water Works; City of Iowa City; City of Marshalltown; City of Sioux City; City of Waterloo; City of Waterloo Sewage Treatment Plant; Union Electric Company, Keokuk; University of Iowa; and West Central Iowa Rural Water Association, Manning. Organizations that supplied data are acknowledged in the station descriptions. #### SUMMARY OF HYDROLOGIC CONDITIONS #### Surface Water Water year 1994 (October 1, 1993 to September 30, 1994) was the 24th coolest and the 28th driest for 122 years of record. Precipitation recorded for the state averaged 27.89 inches which was 5.22 inches below normal. All climatological districts in the state recorded below normal precipitation with precipitation ranging from 0.34 inches below normal in the Northwest climatological district to 11.63 inches below normal in the Southwest climatological district (fig.1). State-wide average precipitation of 27.89 inches was 84 percent of the normal 33.11 inches for 1961-90 (table 1). Temperatures were above normal during December, March through June, and September. Below normal temperatures were recorded for the remaining months of the year. [In this summary of hydrologic conditions, all data and statistics pertaining to precipitation and temperature in Iowa were provided by Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, (oral and written commun., 1994)]. #### **EXPLANATION** 27.99 PRECIPITATION DURING WATER YEAR 1994--In inches -0.34 PRECIPITATION DEVIATION FROM LONG-TERM AVERAGE (1961-90)--In inches Figure 1. Precipitation record in the National Weather Service's designated climatological districts for water year 1994 (source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written commun., 1995). Table 1. Monthly and annual precipitation during the 1994 water year as a percentage of normal precipitation (1961-90) [Source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written commun., 1995] | National Weather<br>Service<br>Climatological | | 1993 1994 | | | | | | | | | | | | |-----------------------------------------------|-----|-----------|-----|-----|-----|-----|-----|-----------|------|------|-----|-----|--------| | District | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Annual | | Northwest | 60 | 117 | 123 | 218 | 70 | 3 | 111 | 51 | 183 | 84 | 85 | 115 | 99 | | North Central | 45 | 66 | 79 | 169 | 91 | 5 | 92 | 64 | 150 | 131 | 93 | 99 | 94 | | Northeast | 65 | 50 | 46 | 172 | 139 | 8 | 78 | 49 | 142 | 135 | 105 | 106 | 93 | | West Central | 62 | 70 | 79 | 144 | 85 | 3 | 69 | 38 | 125 | 102 | 134 | 120 | 88 | | Central | 63 | 60 | 53 | 152 | 126 | 6 | 67 | 61 | 136 | 84 | 98 | 130 | 87 | | East Central | 29 | 54 | 61 | 92 | 196 | 24 | 55 | <b>55</b> | 140 | 89 | 92 | 78 | 78 | | Southwest | 76 | 49 | 64 | 70 | 91 | 6 | 72 | 37 | 175 | 81 | 67 | 66 | 76 | | South Central | 52 | 54 | 53 | 71 | 164 | 7 | 72 | 62 | 126 | 74 | 72 | 64 | 72 | | Southeast | 28 | 61 | 35 | 63 | 201 | 20 | 86 | 60 | 118 | 63 | 76 | 55 | 68 | | Statewide | 53 | 63 | 63 | 124 | 132 | 9 | 77 | 53 | 144 | 94 | 93 | 94 | 84 | Average precipitation state wide during the month of October was 53 percent of normal, with all climatological districts reporting below normal precipitation. Despite below normal precipitation state-wide the mean monthly discharge for all three index stations in the district was in excessive range. The three index stations are 05464500 Cedar River at Cedar Rapids, 05480500 Des Moines River at Fort Dodge, and 06810000 Nishnabotna River above Hamburg (fig. 2, 3). During November and December the state-wide average precipitation was 63 percent of normal. Precipitation was below normal for all climatological districts during the period with the exception of the Northwest district. This area of the state recorded precipitation that was 117 percent above normal for the month of November and 123 percent above normal for December. Discharge in most streams throughout the state continued to decline during November and December. However, despite continued decline in stream flow, mean monthly discharge for all three index stations was in the excessive range during this period, with exception of the Des Moines River at Fort Dodge during November when the mean monthly discharge was in the normal range. Recorded state-wide precipitation rebounded during the month of January. Average precipitation during the month was 124 percent of normal but precipitation amounts varied greatly with the Northwest climatological district reporting average precipitation 218 percent of normal while the Southeast district reported average precipitation 63 percent of normal. Precipitation during January came in the form of snow, with a snowpack of 15-20 inches on the Floyd River Basin, in the Northwest district. Temperatures for January were below normal so precipitation had little impact on river discharge throughout the state. Monthly mean discharge for the index stations was in the excessive range for the month of January. February precipitation averaged 132 percent of normal state wide. Breakdown of precipitation by climatological districts indicated that precipitation varied over the state with the Southeast district recording precipitation amounts 201 percent of normal while the Northwest district average precipitation was 70 percent of normal. Temperatures experienced during February averaged below normal with exception of a warming period the week of February 14-21, when temperatures were 15-20 degrees above normal. Many streams throughout the state experienced ice breakup as a result of this warming trend. By month's end temperatures dropped below average and snow ranging Figure 2. Annual runoff, in acre-feet, for period of record at three index stations. oversex. ▲ Figure 3. -- Location of active, continuous-record gaging stations in lows. from 4-8 inches, covered the entire state. Discharge in many streams responded to variations in temperatures experienced in February. Flows increased significantly during the warming trend during February 14-21 but by months end discharge in most streams was receding. Mean monthly discharge at the three index stations was in the excessive range for February. Average precipitation for the state during March was 9 percent of normal, making March 1994 the second driest in 122 years of record. Review of the nine climatological districts in the state indicate the East Central district average precipitation was 24 percent of normal, the Southeast district 20 percent of normal, and the remaining seven districts average precipitation ranged from 8 percent of normal to 3 percent of normal. Many streams experienced significant rises during the first week of March as a result of runoff from melting snowpack After depletion of snow cover, discharge in most streams had dropped by month's end. The three index stations all had mean monthly discharges in the normal range. State-wide precipitation for the months of April and May averaged 77 percent of normal for April and 53 percent of normal for May. May of 1994 was tenth driest in 122 years of records and March, April, May of 1994 were the sixth driest for this period in 122 years of year of record. Dry conditions resulted in monthly mean discharge in the normal range at the three index stations. Precipitation for June ranged from 183 percent of normal in the Northwest climatological district to 118 percent of normal in the Southeast district with the state-wide average precipitation 144 percent of normal. Rainfall amounts resulted in small rises on some streams and rivers recorded during the middle of the month and again by months end. Monthly mean discharge was in the normal range at the Cedar River at Cedar Rapids, and at the Nishnabotna River above Hamburg. Index station Des Moines River at Fort Dodge had mean monthly discharge in the excessive range for June. The average temperature for the month of July was the tenth coolest in 122 years of record. Precipitation during the month varied widely with the Northeast climatological district receiving an average precipitation 135 percent of normal while the Southeast district average precipitation was 63 percent of normal. The statewide average precipitation was 94 percent of normal. Monthly mean discharge at index station Des Moines River at Fort Dodge was in the excessive range while monthly mean discharge at index stations Cedar River at Cedar Rapids and Nishnabotna River above Hamburg was in the normal range. State-wide average precipitation for August and September was 93 percent and 94 percent of normal respectively. Temperatures during this period averaged below normal statewide during August while during September the state-wide average temperature was above normal. Monthly mean discharge at index station Cedar River at Cedar Rapids and Des Moines River at Fort Dodge was in the excessive range for August and in the normal range for the Nishnabotna River above Hamburg. September mean monthly flow was in the excessive range for the Cedar Rapids while index stations Des Moines River at Fort Dodge and Nishnabotna River above Hamburg recorded mean monthly discharge in the normal range. The location of active, continuous-record gaging stations is shown in figure 3 and the location of active, crest-stage gaging stations is shown in figure 4. #### Suspended Sediment Daily suspended-sediment data (hereafter referred to as sediment discharge in this report) were collected at 11 streamflow-gaging stations across Iowa during the 1994 water year. Four of these stations have 16 years or more of record. These stations are (1) 05389500 Mississippi River at McGregor, (2) 05465500 Iowa River at Wapello, (3) 05474000 Skunk River at Augusta, and (4) 05481650 Des Moines River near Saylorville. Three stations on the Missouri River, (1) 06486000 Missouri River at Sioux City, Iowa, (2) 06610000 Missouri River at Omaha, Nebraska, and (3) 06807000 Missouri River at Nebraska City, Nebraska have 8 years of record. The remaining stations have 3-6 years of record. The location of active and discontinued sediment and surface-water-quality stations is shown in figure 5. Figure 4. -- Location of active, crest-stage gaging stations in lowa. Figure 5. -- Location of active and discontinued surface water-quality stations in lowa. With the exception of the Mississippi River at McGregor, which has most of its drainage basin in Minnesota and Wisconsin, the sediment discharge at the sediment stations reflected the near normal statewide precipitation during water year 1994. The Mississippi River at McGregor had an annual sediment discharge of 1.18 million tons, which was the fourth lowest sediment discharge in 19 years of record (fig. 6). The annual sediment discharge for the Iowa River at Marshalltown (05451500), located in central Iowa, was 250,800 tons, the second lowest annual average sediment discharge in 6 years of record. Hazelbrush Creek near Maple River (05483343), located in west-central Iowa, has only a 9 sq mi drainage area and had an annual sediment discharge of 643.6 tons. The sediment station on the Des Moines River near Saylorville (05481650), is located in central Iowa and is downstream from a major flood-control reservoir (Saylorville Reservoir). The annual sediment discharge at this station for water year 1994 was 211,750 tons, and was the eighth smallest discharge in the 17 years since closure of the dam. The average annual sediment discharge since closure of the dam is 277,600 tons (fig. 6). Sediment discharges for the Iowa River at Wapello (05465500) and the Skunk River at Augusta (05474000), located in southeast Iowa, indicate the near normal precipitation in central and eastern Iowa in water year 1994. The Iowa River basin drainage includes parts of southeast, east-central, central, northeast, and north-central Iowa, and drains an area nearly three times as large as the Skunk Basin. The Iowa River at Wapello had an annual sediment discharge of 1.44 million tons. This represents 50 percent of the 16-year average sediment discharge of 2.83 million tons (fig. 6). The headwaters of the Skunk River basin are in central and southeast Iowa, and flow is southeasterly to the confluence with the Mississippi River. A substantial part of the drainage basin is located in the southeast, and the annual precipitation for this area was 68 percent of normal during water year 1994. The annual sediment discharge for the Skunk River at Augusta was 629,800 tons, which is 24 percent of the 19-year average sediment discharge of 2.62 million tons (fig. 6). The annual sediment discharge for the two stations located in northeast Iowa also reflect the effect of precipitation patterns on small drainage basins. The annual sediment discharge for Bloody Run Creek near Marquette (05489400) was 3,117 tons, of which 61.8 percent was measured during the month of February. Also, 54 percent of the February total was on one day, February 19. The annual sediment discharge for Sny Magill Creek near Clayton (05411400) was 4,775 tons. Twenty-nine percent of this annual discharge was measured in February and 38.3 percent of the yearly total was measured in June. The three Missouri River stations (fig. 5) have large drainage areas, and the sediment discharges reflect that. The annual sediment discharges in downstream order are: 06486000 Missouri River at Sioux City, Iowa (6.46 million tons), 06610000 Missouri River at Omaha, Nebraska (16.2 million tons), and 06807000 Missouri River at Nebraska City, Nebraska (26.2 million tons). Figure 6. Comparison of annual sediment discharge for water year 1994 with mean, previous maximum, and previous minimum annual sediment discharges for periods of record at four long-term daily sediment stations in Iowa. #### **Ground Water** Monitoring water-level changes in wells provides valuable information on the effects of natural stresses and human activities on the ground-water resources of Iowa. Water-level measurements are compiled into a long-term, regional data base. Uses of the data base include: (1) evaluation of changes in ground-water storage through time in the major aquifers; (2) assessment of the effects of natural and human stresses on ground-water systems; and (3) a source of information to help State and local officials effectively manage the resource and predict future supplies. The 1994 ground-water-level monitoring network in Iowa consisted of 232 monitoring wells that were measured quarterly, intermittently, or on a monthly basis (fig. 7). Ground-water supplies in Iowa are withdrawn from unconsolidated aquifers and, in most areas of the State, deeper bedrock aquifers. There are three types of unconsolidated aquifers: (1) alluvial aquifers, which consist of sand-and-gravel deposits associated with present-day fluvial systems; (2) glacial-drift aquifers, which consist of shallow, discontinuous, permeable lenses of sand and gravel interbedded with less-permeable glacial drift; and (3) buried-channel aquifers. Buried-channel aquifers are formed in areas where coarse sand and gravel were deposited in bedrock valleys and overlain by a thick layer of glacial drift. jure 7. -- Location of recording and nonrecording wells In the ground-water-level observation network in lows. Recharge to the shallow, unconsolidated aquifers occurs mainly by infiltration of precipitation and is dependent on the amount of precipitation received by the aquifer at the land surface in the immediate area. In general, water levels in unconsolidated alluvial and glacial-drift aquifers commonly exhibit a regular, seasonal pattern. This pattern consists of a moderate rise during the fall, then a gradual decline during the winter, followed by a second rise in the water levels in the spring due to precipitation and runoff from snowmelt, then a gradual decline throughout the summer growing season. During the 1994 water year, the statewide average annual precipitation in Iowa was 84 percent, or slightly below normal (water years 1961-90) (table 1). The below-normal precipitation is reflected in the water levels measured in the three index wells in the State (fig. 8). The water levels measured in the index well completed in glacial drift of Pleistocene age in Linn County (fig. 8) slightly exceeded the 25th percentile from April 1994 through May 1994. Water levels less than the 25th percentile of the monthly mean water levels for the specified month for the period of record are considered in the below normal range. The water levels measured in the well completed in the glacial-drift aquifer in Webster County were also in the below normal range April 1994 through May 1994. Water-level measurements made in the well completed in glacial-drift aquifer in Marion County were within average percentiles except for October 1993 when the monthly water measurement was slightly above the 75th percentile. Ground-water levels in monitoring wells completed in the unconsolidated aquifers were generally normal. During water year 1994, ten wells completed in unconsolidated aquifers recorded new historical high water levels. These wells were located in seven counties, six of which are in the western part of the state, and completed in alluvial, glacial-drift, and alluvial aquifers (table 2). The Johnson County well was the only well with a historical high water level that was located in eastern Iowa. Table 2. Historical high water level measured during the 1994 water year in wells completed in unconsolidated aquifers [Water-level measurements are in feet below land surface] | County | Well number<br>(fig. 7) | Aquifer<br>type | New historical high water level | Date<br>measured | Previous<br>historical<br>high water<br>level | Date<br>measured | |---------------|-------------------------|-----------------------|---------------------------------|------------------|-----------------------------------------------|------------------| | Adams | 410247094324801 | Glacial Drift | 1.46 | 10-29-93 | 2.08 | 05-07-93 | | Adams | 410248094324801 | Glacial Drift | 3.72 | 02-03-94 | 4.70 | 05-07-93 | | Cass | 412832095033501 | <b>Buried Channel</b> | 113.50 | 11-04-93 | 114.47 | 08-11-93 | | Clay | 431316095135202 | Alluvial | 9.06 | 11-03-93 | 9.11 | <b>08-</b> 10-93 | | Harrison | 414149095422401 | Glacial Drift | 47.28 | 11-01-93 | 47.30 | 08-12-93 | | Johnson | 414221091361103 | <b>Buried Channel</b> | 124.43 | 02-04-94 | 124.74 | 08-27-93 | | Palo Alto | 431047094415201 | Alluvial | 1.08 | 05-03-94 | 3.99 | 05-05-93 | | Palo Alto | 431047094415202 | Alluvial | 1.78 | 05-03-94 | 4.03 | 05-05-93 | | Palo Alto | 431047094415203 | Alluvial | 1.21 | 05-05-93 | 3.94 | 05-05-93 | | Pottawattamie | 411359095171901 | Buried Channel | 124.45 | 05-05-94 | 124.86 | 04-04-88 | Figure 8. Monthly water-level measurements made during water year 1994 compared to percent distribution of monthly water levels for a specific month for period of record for three index wells completed in glacial drift. Table 3. Historical low water level measured during the 1994 water year in wells completed in unconsolidated aquifers [Water-level measurements are in feet below land surface] | County | Well number<br>(fig. 7) | Aquifer<br>type | New<br>historical<br>low water<br>level | Date<br>measured | Previous<br>historical<br>low water<br>level | Date<br>measured | |------------|-------------------------|-----------------|-----------------------------------------|------------------|----------------------------------------------|------------------| | Adams | 405731094480801 | Alluvial | 22.95 | 02-04-94 | 21.95 | 02-01-93 | | Adams | 410317094324801 | Alluvial | 3.60 | 02-03-94 | 2.61 | 02-01-93 | | Adams | 410247094324801 | Glacial Drift | 2.40 | 07-27-94 | 2.29 | 06-14-93 | | Carroll | 415658094462601 | Alluvial | 8.33 | 08-03-94 | 7.52 | 02-02-93 | | Carroll | 420230094455101 | Alluvial | 5.48 | 08-03-94 | 4.55 | 02-01-93 | | Cherokee | 424039095342802 | Alluvial | 16.34 | 05-04-94 | 16.28 | 02-04-93 | | Cherokee | 424523095313101 | Alluvial | 14.06 | 02-08-94 | 13.22 | 02-04-93 | | Cherokee | 424523095313102 | Alluvial | 13.73 | 02-08-94 | 12.90 | 02-04-93 | | Cherokee | 424523095313103 | Alluvial | 13.83 | 02-08-94 | 12.96 | 02-04-93 | | Freemont | 404946095344801 | Alluvial | 19.96 | 05-05-94 | 19.58 | 11-03-92 | | Freemont | 404946095344802 | Alluvial | 19.90 | 05-05-94 | 19.44 | 11-03-92 | | Humboldt | 424736094244702 | Alluvial | 7.60 | 12-20-93 | 4.98 | 02-04-93 | | Ida | 404946095344802 | Alluvial | 14.40 | 05-03-94 | 12.63 | 02-05-93 | | Mitchell | 432156092484101 | Glacial Drift | 5.07 | 01-31-94 | 3.51 | 08-04-92 | | Montgomery | 405403095004401 | Alluvial | 15.49 | 05-05-94 | 13.94 | 08-04-92 | | Montgomery | 410103095594501 | Alluvial | 15.36 | 05-05-94 | 15.20 | 00-04-94 | | Page | 403446095010701 | Alluvial | 3.00 | 07-26-94 | 2.80 | 10-06-87 | | Palo Alto | 430246094421201 | Alluvial | 4.34 | 01-31-94 | 2.15 | 02-04-93 | | Palo Alto | 430246094421202 | Alluvial | 6.48 | 05-03-94 | 2.95 | 07-27-90 | | Palo Alto | 430246094421203 | Alluvial | 6.14 | 05-03-94 | 2.94 | 07-27-90 | | Palo Alto | 430246094421204 | Alluvial | 6.14 | 05-03-94 | 2.93 | 07-27-90 | | Plymouth | 424552096141301 | Alluvial | 9.85 | 07-28-94 | 9.76 | 02-04-93 | | Shelby | 414211095161701 | Alluvial | 21.79 | 07-29-94 | 20.96 | 08-07-92 | Historical low water levels were measured in twenty three wells in the state completed in glacial-drift aquifers (table 3). These wells were located in twelve counties, all, with the exception of Mitchell county, in the western part of the state. All wells in unconsolidated aquifers having historic lows were in alluvial aquifers, except for wells in Adams and Mitchell counties which are completed in glacial drift aquifers. There are five major bedrock-aquifer units in Iowa. The first is the Cambrian-Ordovician aquifer system, which consists of aquifers in sandstone of Early Cambrian age and dolomite and sandstone of Late Cambrian to Early Ordovician age. The basal aquifer of the Cambrian-Ordovician aquifer system, the Dresbach, is present locally in northeastern and east-central Iowa. Overlying the Dresbach aquifer is the more areally extensive Jordan-St. Peter aquifer. The uppermost aquifer in the Cambrian-Ordovician aquifer system is the Galena aquifer, which is separated from the underlying Jordan-St. Peter aquifer by a shale confining unit. Overlying the Cambrian-Ordovician aquifer system is the Silurian-Devonian aquifer, which yields water from fractures in Silurian dolomite and Devonian limestone. Above the Silurian-Devonian aquifer is the Mississippian aquifer, which is composed of limestone and dolomite of Mississippian age, which underlies about 60 percent of Iowa. Overlying the Mississippian aquifer are discontinuous lenses of sandstone in the Cherokee and Kansas City Groups of Pennsylvanian age, which form small, localized aquifers. The Dakota aquifer, which yields water from sandstone of Cretaceous age in northwest and western Iowa, is the youngest, bedrock-aquifer unit in the State. Although not directly dependent on local infiltration by precipitation, recharge to confined buried-channel and bedrock aquifers is affected by extended changes in climatic conditions as well as human-induced activities, such as withdrawals by pumping. In most cases, the response of the confined aquifers to natural- and human-induced stresses is not as rapid as the response exhibited by the unconfined, unconsolidated aquifers. New historical high water levels were measured in eleven wells throughout the State (table 4). One historical high water level was measured in a well completed in the Cambrian-Ordovician aquifer system, one in the Silurian aquifer, two in the Mississippian aquifer, and seven historical high water levels were measured in wells completed in the Dakota aquifer. Table 4. Historical high water level measured during the 1994 water year in wells completed in bedrock aquifers [Water-level measurements are in feet below land surface] | County | Well number<br>(fig. 7) | Aquifer<br>type | New<br>historical<br>high water<br>level | Date<br>measured | Previous<br>historical<br>high<br>water level | Date<br>measured | |-------------|-------------------------|---------------------|------------------------------------------|------------------|-----------------------------------------------|------------------| | Buena Vista | 425233094545001 | Dakota | 115.06 | 01-31-94 | 131.65 | 05-06-85 | | Carroll | 420705094394501 | Dakota | 46.93 | 08-03-94 | 47.38 | 10-11-91 | | Delaware | 422029091144302 | Silurian | 10.74 | 08-10-94 | 16.59 | 05-30-91 | | Guthrie | 414728094385301 | Dakota | 36.76 | 05-04-94 | 37.82 | 08-13-93 | | Ida | 423107095383201 | Mississippian | 180.97 | 07-27-94 | 186.45 | 07-27-83 | | Mahaska | 411914092274701 | Mississippian | 100.79 | 08-01-94 | 101.06 | 08-10-93 | | Monona | 420139095155701 | Dakota | 183.60 | 11-03-93 | 184.38 | 08-25-93 | | Monona | 421018095591301 | Dakota | 49.62 | 11-03-93 | 49.78 | 08-05-93 | | Plymouth | 424805096074801 | Cambrian-Ordovician | 56.56 | 02-10-94 | 57.12 | 08-04-93 | | Woodbury | 422058095573701 | Dakota | 53.39 | 11-03-93 | 54.14 | 08-05-93 | | Woodbury | 422910096135811 | Dakota | 128.10 | 07-28-94 | 128.32 | 07-08-87 | New historical low water levels were measured in sixteen wells completed in bedrock aquifers in Iowa (table 5). One of the historical low water levels were measured in wells completed in the Cambrian-Ordovician aquifer system, six in the Silurian aquifer, seven in the Devonian aquifer, one in the Mississippian aquifer, and one historical low water level was measured in a well completed in the Dakota aquifer. Table 5. Historical low water level measured during the 1994 water year in wells completed in bedrock aquifers [Water-level measurements are in feet below land surface] | County | Well number (fig. 7) | Aquifer<br>type | New historical low water level | Date<br>measured | Previous<br>historical<br>low water<br>level | Date<br>measured | |----------|----------------------|---------------------|--------------------------------|------------------|----------------------------------------------|------------------| | Benton | 420731092083801 | Devonian | 87.50 | 08-02-94 | 64.96 | 10-12-88 | | Benton | 420731092083803 | Devonian | 65.36 | 02-03-94 | 65.03 | 10-12-88 | | Floyd | 430200092435303 | Devonian | 74.35 | 05-02-94 | 74.00 | 08-04-92 | | Floyd | 430200092435305 | Devonian | 76.63 | 11-01-93 | 73.84 | 08-07-92 | | Jackson | 420842090165701 | Cambrian-Ordovician | 8.87 | 05-03-94 | 7.67 | 09-06-84 | | Johnson | 413925091324001 | Silurian | 168.89 | 08-02-94 | 168.89 | 08-02-88 | | Johnson | 414132091345501 | Silurian | 259.49 | 07-22-94 | 253.87 | 07-31-91 | | Johnson | 414132091345502 | Silurian | 251.34 | 07-22-94 | 246.43 | 07-31-91 | | Johnson | 414132091345503 | Silurian | 291.00 | 07-22-94 | 287.00 | 07-31-91 | | Lyon | 432601096335511 | Silurian | 151.57 | 02-11-94 | 152.17 | 10-09-86 | | Madison | 411727093483001 | Mississippian | 277.34 | 07-27-94 | 276.23 | 07-21-93 | | Marshall | 415640093062101 | Silurian | 232.32 | 11-01-93 | 228.72 | 07-23-90 | | Mithcell | 432156092484102 | Devonian | 11.92 | 01-31-94 | 10.73 | 02-01-93 | | Mithcell | 432156092484103 | Devonian | 12.26 | 01-31-94 | 11.55 | 02-01-93 | | Mithcell | 432156092484104 | Devonian | 14.92 | 01-31-94 | 14.24 | 02-01-93 | | Osceola | 431620095482402 | Dakota | 238.48 | 07-28-94 | 236.27 | 05-05-93 | ## **Surface-Water Ouality** Surface-water-quality data were collected in Iowa during water year 1994 at four National Stream-Quality Accounting Network (NASQAN) stations and one Hydrologic Benchmark Network (HBMN) station. The NASQAN stations in Iowa are 05463050 Cedar River at Cedar Falls, 05465500 Iowa River at Wapello, 05474000 Skunk River at Augusta, and 05484500 Raccoon River at Van Meter. The HBMN station is 06897950 Elk Creek near Decatur City (fig. 5). The combined drainage area of the five stations is approximately 25,000 mi<sup>2</sup>. Land use throughout the five drainage basins is primarily agricultural. Samples were collected six times during the 1994 water year at the NASQAN sites Cedar River at Cedar Falls and Raccoon River at Van Meter, five times at sites Iowa River at Wapello and Skunk River at Augusta, and four times at the HBMN station Elk Creek near Decatur City. Nearly all the samples collected at the five stations contained detectable concentrations of agricultural chemicals. Dissolved nitrate plus nitrite as nitrogen (hereafter referred to as nitrate) was detected frequently in Iowa streams during water year 1994, with most samples containing concentrations greater than the detection level of 0.05 mg/L (milligrams per liter). Nitrate concentrations in these samples did not exceed 10 mg/L, which is the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) for public drinking water (USEPA, 1990, Maximum contaminant levels, subpart B of part 141, National primary drinking-water regulations: U.S.Code of Federal Regulations, Title 40, Parts 100 to 149, revised as of July 1, 1990, p.553-677). For comparison, in water year 1993, Raccoon River at Van Meter equalled 10ug/L two times. Water samples collected three times at three NASQAN stations were analyzed for seven herbicides. Alachlor, atrazine, cyanazine, metolachlor, metribuzin and deeththylatrazine were detected at least once, and trifluralin was not detected. Water samples were collected four times at Raccoon River at Van Meter and analyzed for the same seven herbicides as mentioned above with the same results. The largest herbicide concentration was 4.1ug/L (micrograms per liter) of atrazine in a sample collected from the Cedar River at Cedar Falls in June 1994. The largest overall concentration of these compounds in a single event was also on the Cedar River at Cedar Falls in June. This contained 4.1ug/l of atrazine, 2.40ug/l of metolachlor, 0.87ug/l of cynazine, 0.69ug/l of deethylatrazine, and 0.44 ug/l of metribuzin. The atrazine concentration exceeded the USEPA MCL of 3.0ug/L (USEPA,1992, Fact sheet: EPA 570/9-91-012FS, December 1992). Herbicide concentrations were generally larger in water samples collected during May and June than in samples collected at other times during water year 1994. Samples collected in October had the lowest overall concentrations of the six herbicides during the 1994 water year. # **Ground-Water Onality** The Iowa ground-water-quality monitoring program has been operated since 1982 by the U.S. Geological Survey in cooperation with the University of Iowa Hygienic Laboratory and the Iowa Department of Natural Resources, Geological Survey Bureau. The purpose of the program is twofold: 1) to provide consistent and representative data describing the chemical water quality of the principal aquifers of the State; and 2) to determine possible trends in both water quality and spatial distribution of non-point source contaminants. The ground-water-quality monitoring program was initiated to continue a program begun in 1950 by the State Health Department that consisted of periodic, nonspecific sampling of untreated water from municipal supply wells. Each year, approximately 250 wells, primarily municipal supply, were randomly-selected for sampling between April and November. Between 1985 and 1989, the emphasis of the program was on the analysis of nitrate and herbicide concentrations in samples from wells less than 200 feet in depth. Because of the random pattern of sampling both spatially (different wells each year) and seasonally (different times during the year), trends in ground-water quality were difficult to determine from the data. Therefore, in 1990, to provide year-to-year continuity of data and a more statistically sound basis for the study of long-term water-quality trends, a sampling strategy based on a random selection of wells weighted by aquifer vulnerability was implemented. Aquifer vulnerability was determined by the frequency of atrazine detections in water samples collected from wells in the respective aquifers. In 1990 and 1991, a fixed network of 50 wells was selected to be sampled annually, and approximately 200 wells continued to be selected on a rotational basis. In 1992, the investigation of water-quality trends became the primary focus of the program, and a 10-year work plan was designed to eliminate spatial and seasonal variance, yet allow flexibility within the schedule to address additional data needs. For sampling site selection in 1992, the well inventory was divided into categories based on aquifer type and again on well depth for surficial aquifers, and into categories designated "vulnerable to contamination" and "not vulnerable to contamination" based on the map "Groundwater Vulnerability Regions of Iowa" for bedrock aquifers. Vulnerability was determined by the combination and interpretation of factors including geologic and soil data, thickness of Quaternary cover, proximity to agricultural injection wells and sinkholes through which contaminants can be introduced to the aquifer, and evaluation of historical ground water and well contamination (Hoyer, B.E., and Hallberg, G.R., 1991, Groundwater Vulnerability Regions of Iowa, Special Map Series 11: Iowa Department of Natural Resources, scale 1:500,000). A total of 90 sites was chosen for sampling from a well inventory comprising approximately 1,640 public supply wells. The sampling effort during the 1994 water year is the third year of this 10-year program to determine possible ground-water-quality trends. During the 1994 water year, a total of 101 ground-water samples were collected from municipal wells (figs. 9,10) consisting of one bedrock (5 samples) and two surficial (96 samples) aquifers located throughout the State. Forty-five of the wells from surficial aquifers were sampled as part of an ongoing program to determine water-quality trends, and the remaining 56 wells were sampled in an effort to assess the water quality of shallow (< 300 feet deep) wells located on the alluvial plains of the Missouri River and its tributaries. Because the samples from the latter assessment will not be used as part of the ongoing network to investigate long-term water-quality trends, both the analytical data and discussion of the results of the respective sampling efforts will be presented separately. Figure 9.--Location of wells in the trends assessment network, of the ground-water-quality monitoring program. Figure 10.--Location of wells in the Missouri River and tributary alluvium assessment. Butylate Cyanazine Metolachlor Metribuzin Prometryn Trifluralin **Nitrate** Deethylatrazine Deisopropylatrazine #### Trends Assessment Network Forty-five wells from two surficial aquifer types throughout the State were sampled (fig. 9). The aquifer types include: 1) alluvial aquifers (31 wells) comprising sand and gravel associated with present-day fluvial systems; and 2) glacial drift and buried channel aquifers (14 wells) associated with previous glaciation. Samples were collected during June and July, 1994. All samples were analyzed by the University of Iowa Hygienic Laboratory for nutrients, herbicides and regulated, volatile organic compounds VOC's, and are published in this report. Discussion of analytical results will be limited to the nitrogen species nitrate and ammonia, and herbicides. A summary of results of nutrient and herbicide analyses is listed by compound in table 6. Nitrate or ammonia was detected in 43 of 45 samples analyzed for these compounds, and one or more herbicides were detected in 7 samples. Table 6. Summary of nitrogen species and herbicides detected in samples from the trends assessment project of the ground-water-quality monitoring network, water year 1994 | Compound | Number of samples analyzed | Number of<br>samples in<br>which<br>compound was<br>detected | Detection level | Maximum concentration detected | |------------|----------------------------|--------------------------------------------------------------|-----------------|--------------------------------| | Acetochlor | 15 | 0 | 0.10 μg/L | <.10 μg/L | | Ammonia | 43 | 27 | .10 mg/L | 7.5 mg/L | | Alachlor | 15 | 0 | $.10\mu g/L$ | <.10 μg/L | | Atrazine | 15 | 4 | .10 μg/L | 1.0 μg/L | 0 1 5 0 3 0 26 2 0 .10 µg/L .10 µg/L $.10\,\mu g/L$ .10 µg/L .10 µg/L .10 µg/L .10 mg/L .10 µg/L .10 µg/L $<.10 \mu g/L$ .13 µg/L .23 µg/L $<.10 \mu g/L$ 2.1 µg/L <.10 µg/L 17.0 mg/L .73 µg/L $<.10 \mu g/L$ 15 15 15 15 15 15 45 15 15 $[\mu g/L \text{ micrograms per liter; mg/L, milligrams per liter; <, less than detection limit]}$ Concentrations of nitrate greater than 3.0 mg/L generally can be attributed to human activities, whereas concentrations less than 3.0 mg/L may indicate ambient concentrations from naturally occurring soil nitrogen or geologic deposits (Madison, R.J., and Brunett, J.O., 1984, Overview of the occurrence of nitrate in ground water of the United States, in National water summary 1984--Water quality trends: U.S. Geological Survey Water-Supply Paper 2275, p. 93-105). Nitrate concentrations were greater than 3.0 mg/L in 17 of 45 samples. Concentrations in six samples exceeded 10 mg/L, which is the USEPA MCL for public drinking water. Of the 26 samples that contained detectable concentrations of nitrate, 85 percent were from wells completed in alluvial aquifers, and 15 percent were from glacial drift and buried channel aquifers. The median concentration of all samples was 0.5 mg/L, however when the wells are separated into categories based on well depth, the median nitrate concentrations vary from 1.8 mg/L in wells less than 50 feet deep to 3.4 mg/L in wells from 50 to 100 feet deep to <0.10 mg/L in wells greater than 100 feet deep. The maximum nitrate concentration was 17.0 mg/L. Twenty-seven samples had detectable ammonia concentrations. Of these samples, 59 percent were collected from alluvial aquifers, and 41 percent were from glacial drift and buried channel aquifers. Water from 7 of the 15 wells sampled for herbicides contained detectable concentrations of one or more herbicides or herbicide degradation products. For analysis, a screen for triazines and for alachlor was performed on all samples. Those with concentrations above the detection level (0.10 mg/L) were further analyzed for 8 herbicides commonly used in Iowa, two atrazine degradation products, and acetochlor, which was first introduced during the 1994 water year. No sample contained herbicide concentrations that exceeded the MCL or proposed MCL of any of the analytes. Six of seven samples contained atrazine or its metabolite, deethylatrazine. Cyanazine, metolachlor, and/ or prometryn were also detected in four samples. No detectable amounts of alachlor, metribuzin, butylate, trifluralin, deisopropylatrazine, or acetochlor were found in any of the samples. All samples with detectable herbicide concentrations were from wells completed in alluvial aquifers. The detection frequency in wells less than 100 feet deep (20 percent) is greater than the rate of occurrence during the same period of the previous two years (15 percent in 1992; 11 percent in 1993), but less than the 22-percent rate described for the same periods prior to 1988 (Detroy, M.G., 1988, Ground-water-quality-monitoring program in Iowa: Nitrate and pesticides in shallow aquifers: U.S. Geological Survey Water-Resources Investigations Report 88-4123, 32 p.). A direct comparison of detection frequency between 1988 and 1994 may be misleading because each year different wells were sampled, however comparison is feasible between years 1992 through 1994 because essentially the same wells were used. Variance in detection frequency may reflect several factors including changes in agricultural practices concerning use of herbicides, and climactic conditions. ### Missouri River and Tributary Alluvium Assessment Fifty-six wells located in the alluvial plains of the Missouri River and its tributaries were sampled (fig. 10). The wells were completed in two surficial and one bedrock aquifer consisting of alluvium (38 wells), glacial drift or buried channel deposits (13 wells), and Cretaceous-age sandstones of the Dakota Group (5 wells). Based on the combination and interpretation of factors including geologic and soil data, well depth, thickness of Quaternary cover, and the evaluation of historical groundwater and well contamination, all wells sampled were considered to be vulnerable to surface-applied agricultural chemicals or other compounds. The purpose of this assessment was to compare analytical results from a portion of the State to the 1994 results of the statewide ground-water-quality monitoring program. Samples were collected during August and September, 1994. All samples were analyzed by the University of Iowa Hygienic Laboratory for nutrients, herbicides and (VOC's), and are published in this report. Discussion and comparison of analytical results with the ongoing water-quality trends network will be limited to the nitrogen species nitrate and ammonia, and herbicides. A summary of results of nutrient and herbicide analyses is listed by compound in table 7. Nitrate or ammonia was detected in 54 of 56 samples analyzed for these compounds, and one or more herbicides were detected in 9 samples. Table 7. Summary of nitrogen species and herbicides detected in samples from the Missouri River and tributary alluvium assessment project of the ground-water-quality monitoring network, water year 1994 | [µg/L micrograms] | per liter: mg/L. | milligrams ne | er liter: <. | less than | detection limit] | |-------------------|------------------|---------------|-----------------------|------------|------------------| | Dept muorogramm | por nor, men, | unturgrama po | <b>VI IIIVI, ~</b> 9. | tonn mimit | acmenous minnel | | Compound | Number of samples analyzed | Number of<br>samples in<br>which<br>compound was<br>detected | Detection level | Maximum concentration detected | |---------------------|----------------------------|--------------------------------------------------------------|------------------|--------------------------------| | Acetochlor | 19 | 0 | 0.10 μg/L | <.10 μg/L | | Ammonia | 56 | 26 | .10 mg/L | 4.0 mg/L | | Alachlor | 19 | 1 | .10 μg/ <b>L</b> | .11 μg/L | | Atrazine | 19 | 8 | .10 μg/ <b>L</b> | 2.2 μg/L | | Butylate | 19 | 0 | .10 μg/L | <.10 μg/L | | Cyanazine | 19 | 1 | .10 μg/L | .26 μg/L | | Deethylatrazine | 19 | 4 | .10 μg/L | .23 μg/L | | Deisopropylatrazine | 19 | 1 | .10 μg/L | .19 μg/L | | Metolachlor | 19 | 4 | .10 μg/L | 4.7 μg/L | | Metribuzin | 19 | 0 | .10 μg/L | <.10 µg/L | | Nitrate | 56 | 35 | .10 mg/L | 18.0 mg/L | | Prometryn | 19 | 2 | .10 μg/L | .20 μg/L | | Trifluralin | 19 | 0 | .10 μg/L | <.10 μg/L | Nitrate concentrations from samples from these wells were greater than 3.0 mg/L in 21 of 56 samples. Concentrations in four samples exceeded the USEPA MCL of 10 mg/L. Of the 35 samples that contained detectable concentrations of nitrate, 77 percent were from wells completed in alluvial aquifers, 14 percent were from glacial drift and buried channel aquifers, and 9 percent were from the Dakota Group. The median nitrate concentrations from these groupings were 2.6 mg/L, <0.1 mg/L and 0.3 mg/L, respectively. The median concentration of all samples from surficial aquifers was 1.0 mg/L, however when the wells are separated into categories based on well depth, the median nitrate concentrations decrease from 3.9 mg/L in wells less than 50 feet deep to 0.4 mg/L in wells from 50 to 100 feet deep to <0.10 mg/L in wells greater than 100 feet deep. The maximum nitrate concentration was 18.0 mg/L. Twenty-six samples had detectable ammonia concentrations. Of these samples, 54 percent were collected from alluvial aquifers, 35 percent were from glacial drift and buried channel aquifers, and 11 percent were from the Dakota Group. Water from 9 of the 19 wells sampled for herbicides contained detectable concentrations of one or more herbicides or herbicide degradation products. No sample contained herbicide concentrations that exceeded the MCL or proposed MCL of any of the analytes. All nine samples contained atrazine or its metabolite, deethylatrazine. Alachlor, cyanazine, metolachlor, prometryn and/or deisopropylatrazine were also detected in five samples. No detectable amounts of metribuzin, butylate, trifluralin, or acetochlor were found in any of the samples. Eight of nine samples with detectable herbicide concentrations were from wells completed in alluvial aquifers, and one sample was from the bedrock aquifer. The detection frequency in wells less than 100 feet deep is 24 percent. ### WATER RESOURCES DATA - IOWA, 1994 ### SPECIAL NETWORKS AND PROGRAMS <u>Hydrologic Benchmark Network</u> is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). <u>Radiochemical Program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. <u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. ### **EXPLANATION OF THE RECORDS** The surface-water and ground-water records published in this report are for the 1994 water year that began October 1, 1993, and ended September 30, 1994. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 3-5, 7, 9, 10. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. # Station Identification Numbers Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells. # Downstream Order System Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 05388250, which appears just to the left of the station name, includes the two-digit Part number "05" plus the six-digit downstream-order number "388250." The Part number designates the major river basin; for example, Part "05" is the Mississippi River Basin. # Latitude-Longitude System The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.) Latitude and longitude coordinates for wells: - 1. 414315091252001 - 2. 414315091252002 - 3. 414316091251901 Figure 11. Latitude-longitude well number. ### Numbering System For Wells Each well is identified by means of (1) a 15-digit number that is based on the grid system of latitude and longitude, and (2) a local number that is provided for continuity with older reports and for other use as dictated by local needs. For maximum utility, latitude and longitude code numbers are determined to seconds in order that each well may have a unique number. The first six digits denote degrees, minutes, and seconds of north latitude; the next seven digits are degrees, minutes, and seconds of west longitude; and the last two numbers are a sequential number assigned in the order in which the wells are located in a 1-second quadrangle. The local well numbers are in accordance with the Bureau of Land Management's system of land subdivision. Each well number is made up of three segments. The first segment indicates the township, the second the range, and the third the section in which the well is located (fig. 12. The letters after the section number which are assigned in a counterclockwise direction (beginning with "A" in the northeast quarter), represent subdivisions of the section. The first letter denotes a 160-acre tract, the second a 40-acre tract, the third a 10-acre tract, and the fourth a 2.5 acre tract. Numbers are added as suffixes to distinguish wells in the same tract. Thus, the number 96-20-3CDBD1 designates the well in the SE 1/4 NW 1/4 SE 1/4 SW 1/4 sec.3, T.96 N., R.20 W. Figure 12. Local well-numbering system for well 96-20-3CDBD1. ### Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." Location of all complete-record surface water stations which are given in this report are shown in figure 12. Partial records are obtained through discrete measurements without using a continuous stage-recording device and generally pertain only to a characteristic of either high, medium or low flow. The location of all active, crest-stage gaging stations are shown in figure 14. ## **Data Collection and Computation** The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-capacity curves or tables to compute lake storage. Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6. In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed using stage-discharge relations. For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For these periods, the daily discharges are estimated from the recorded range in stage, discharge computed before and after the missing record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." #### **Data Presentation** Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preference. The records published for each continuous-record surface-water discharge station (gaging station) consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. ### Station manuscript The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.— because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.—The type of gage in current use, the datum of the current gage sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Extremes are published only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did no occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum. EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given. Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. EXTREMES FOR PERIOD OF RECORD are now presented only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. No changes have been made to the data presentations of lake contents or reservoir storage. #### Data table of daily mean values The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. ### Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR PERIOD OF RECORD, BY WATER YEAR (WY)," for unregulated streams for the water years listed in the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams the first and last water years of the range of years will be given for the post-regulation period. ### **Summary statistics** A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "PERIOD OF RECORD," for unregulated streams, will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams the period selected will be designated as "WATER YEARS \_\_\_\_\_\_," for the post regulation period. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. - ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. - ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. - LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. - HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period. - LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period. - ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) - INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.) - INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. - INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. - ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. - Cubic feet per second per square mile (CSFM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. - Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. - 10 PERCENT EXCEEDS.--The discharge that is exceeded 10 percent of the time for the designated period. - 50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period. - 90 PERCENT EXCEEDS.--The discharge that is exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. ### Identifying Estimated Daily Discharge Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified by listing the dates of the estimated record in the REMARKS paragraph of the station description. #### Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft<sup>3</sup>/s the nearest tenth between 1.0 and 10 ft<sup>3</sup>/s; to whole numbers between 10 and 1,000 ft<sup>3</sup>/s; and to 3 significant figures for more than 1,000 ft<sup>3</sup>/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published. ### Other Records Available Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in various field offices of the Iowa District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report. #### **Records of Surface-Water Quality** Records of surface-water quality ordinarily are obtained at or near streamgaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. #### Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 4. #### Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. # On-Site Measurements and Sample Collection In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, alkalinity and dissolved oxygen, are made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures of onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. C2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on p. 54-56 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain the representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector. Chemical-quality data published in this report are considered to be the most representative values available for stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. ### Water Temperature and Specific Conductance Water temperatures are measured at most of the water-quality stations. The measurement of temperature and specific conductance is performed during each regular site visit (usually at a six week interval) to streamgaging stations. Records of stream temperature indicate significant thermal characteristics of the stream when analyzed over a long period of record. Large streams have small daily temperature variations while shallow streams may have a daily range of several degrees and may closely follow the changes in air temperature. Furthermore, some streams may be affected by waste-heat discharge. Specific conductance can be used as a general indicator of stream quality. This determination is easily made in the field with a portable meter, and the results are very useful as general indicators of dissolved-solids concentration or as a base for extrapolating other analytical data. Records for temperature and specific conductance appear in the section "Analyses of samples collected at miscellaneous sites". ### Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samples. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of the quantities of suspended-sediment, records of the periodic measurements of the particle-size distribution of the suspended-sediment and bed material are included. Miscellaneous suspended-sediment samples were collected during flood events have been included with the station's water quality data or in the section "Analyses of samples at miscellaneous sites". ### Laboratory Measurements Sediment samples, samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado and the University of Iowa Hygienic Laboratory. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratories are given in TWRI, Book 1, Chap. D2, Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. #### Data Presentation For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### Remark Codes The following remark codes may appear with the water-quality data in this report: | PRINTED OUTPUT | REMARK | |----------------|------------------------------------------------------------------------------------------------| | E | Estimated value | | > | Actual value is known to be greater than the value shown | | < | Actual value is known to be less than the value shown | | K | Results based on colony count outside the acceptance range (non-ideal colony count) | | L | Biological organism count less than 0.5 percent (organism may be observed rather than counted) | | D | Biological organism count equal to or greater than 15 percent (dominant) | | & | Biological organism estimated as dominant | #### **Records of Ground-Water Levels** Ground-water level data from a network of observation wells in Iowa are published in this report. These data provide a limited historical record of water-level changes in the State's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 6. Information about the availability of the data in the water-level files and reports of the U.S. Geological Survey may be obtained from the Iowa District Office (see address on back of title page). ## **Data Collection and Computation** Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensures that measurements at each well are of consistent accuracy and reliability. Tables of water-level data are arranged alphabetically by counties. The site identification number, based on latitude and longitude, for a given well is the 15-digit numeric value that appears in the upper left corner of the station description. The secondary identification number is the local well number, an alphanumeric value, derived from the township, range, and section location of the well (fig. 15). Water-level records are obtained from direct measurements with a chalked steel tape, electric line, airline, or from the graph of a water-level recorder. The water-level measurements in this report are in feet with reference to land-surface datum. Land-surface datum is a plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM). Water-level measurements are reported to the nearest hundredth of a foot. Estimates, indicated by an "e" may be reported in tenths of a foot. Adjustments to the water level recorder chart are indicated by an "a". The error of water-level measurements may be, at most, a few hundredths of a foot. #### **Data Presentation** Each well record consists of two parts, the station description and the table of water levels observed during the water year. The description of the well is presented by headings preceding the tabular data. The following explains the information presented under each heading. LOCATION.--This paragraph follows the well identification number and includes the latitude and longitude (given in degrees, minutes, and seconds), the hydrologic unit number, the distance and direction from a geographic point of reference, and the well owner's name. AQUIFER.--This entry is the aquifer(s) name (if one exists) and geologic age of the strata open to the well. WELL CHARACTERISTICS.--This entry describes the well depth, casing diameter, casing depth, opening or screened interval(s), method of construction, and use of water from the well. INSTRUMENTATION.--This paragraph provides information on the frequency of measurement and the collection method used. DATUM.--This entry includes the measuring point and the land-surface elevation at the well. The measuring point is described physically and in relation to land surface. The elevation of the land-surface datum is describe in feet above (or below) sea level; it is reported with a precision depending on the method of determination. REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level and any information not presented in the other parts of the station description but considered useful. PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the beginning of publication of water-level records by the U.S. Geological Survey. REVISED RECORDS.--If any revisions of previously published data were made for water-levels, the Water Data Report in which they appeared and year published would appear here. EXTREMES FOR PERIOD OF RECORD.—This entry contains the highest and lowest water levels for the period of record, below land-surface datum, and the dates of their occurrence. A table of water levels follows the station description for each well. Water levels are reported in feet below landsurface datum. For wells equipped with recorders, only abbreviated tables are published. The highest and lowest water levels of the water year and the dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. Hydrographs are included for 59 wells which are representative of hydrologic conditions in the important aquifers in Iowa. Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 6. ### Records of Ground-Water Ouality Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes. The records of ground-water quality in this report were obtained as a part a statewide ground-water quality monitoring network operated by the Iowa District. All samples were obtained from municipal wells throughout Iowa. This program is conducted in cooperation with the University of Iowa Hygienic Laboratory (UHL) and the Iowa Department of Natural Resources (Geological Survey Bureau). All samples are collected by USGS personnel, field-preserved and submitted to UHL for analysis. Chemical analyses include common constituents (major ions), nutrients, organic compounds, radionuclides and pesticides. Approximately 10 percent of the samples receive additional analyses for about 90 organic priority pollutants, however these analyses are not presented in this report but are on file in the Iowa District Office. Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material comprising the casings. The samples collected represent raw water ### **Data Presentation** The records of ground-water quality are published in a section titled GROUND-WATER QUALITY DATA immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by county, and are identified by station number. The prime identification number for wells sampled is the 15-digit station number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the station number, date and time of sampling, depth of well, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records. Explanation of Quality of Ground-Water Data Tables -- Descriptive Headings STATION NUMBER: 15-digit number based on grid system of latitude and longitude. LOCAL WELL NUMBER: Refers to the Bureau of Land Management System of land subdivision. DATE: The date that construction on the well was completed. LOCAL WELL NAME: Name used by community to identify well. COUNTY: The name of the county where the well is located. SAMPLE DATE: Date the well was sampled. SAMPLE TIME: Time the sample was collected. AQUIFER CODE: Refers to the lithologic unit in which the well is completed. Derived from two digits of the GEOLOGIC UNIT, the principal unit which provides the majority of water to the well. | 11 - Quaternary | 34 - Devonian | |--------------------|-----------------| | 21 - Cretaceous | 35 - Silurian | | 32 - Pennsylvanian | 36 - Ordovician | | 33 - Mississippian | 37 - Cambrian | The third digit and remaining alphabetic characters refer to the more specific lithologic unit which the well is tapping. The following examples are commonly used units: | Code | <u>General</u> | <u>Specific</u> | |---------|----------------|--------------------------| | 111ALVM | Quaternary | (alluvium) | | 217DKOT | Cretaceous | (Dakota sandstone) | | 344CDVL | Devonian | (Cedar Valley limestone) | DEPTH OF WELL, TOTAL (FT): Total depth of well in feet. #### ACCESS TO WATSTORE DATA The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National WATer Data STOrage and REtrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases. - \* Station Header File Contains descriptive information on more than 40,000 sites throughout the United States and its territories where the Geological Survey collects or has collected data. - \* Daily Values File Contains more than 220 million daily value of stream flows, stages, reservoir contests, water temperatures, specific conductances, sediment concentrations, sediment discharges, and ground-water levels. - \* Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage-height values at surface-water sites. - \* Water Quality File Contains approximately 2 million analyses of watersamples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water. - \* Ground-Water Site Inventory Data Base Contains inventory data for morethan 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature. In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requestor will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting: U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092 In addition to providing direct access to WATSTORE, data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk; and, as noted in the introduction, on CD-ROM discs. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD\_ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices. (See address on the back of the title page.) A limited number of CD\_ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver Colorado 80225. ## WATER RESOURCES DATA - IOWA, 1994 #### **DEFINITION OF TERMS** Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover. Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. <u>Aquifer</u> is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs. <u>Artesian</u> means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface. <u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. <u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 C plus or minus 0.2 C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. <u>Fecal streptococcal bacteria</u> are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35 C plus or minus 1.0 C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. Bottom material: See Bed material. <u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. <u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel. <u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water. <u>Cubic foot per second</u> (ft<sup>3</sup>/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second. <u>Cubic foot per second day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1,9835 acre-feet, about 646,000 gallons, or 2,445 cubic meters. <u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area. <u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time. Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. <u>Instantaneous discharge</u> is the discharge at a particular instant of time. Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused withe the 7-day 10-year low-flow statistic). <u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 mm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate. <u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change. <u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. <u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water. <u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage. <u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained. <u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO<sub>3</sub>). <u>Hydrologic Benchmark Network</u> is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. <u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number. <u>Land-surface datum</u> (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level. Micrograms per gram (µg/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. Micrograms per liter (UG/L, $\mu$ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture. National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. The <u>National Trends Network</u> (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). <u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes. <u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses. <u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual- accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). <u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:: | Classification | Size | (mm) | Method of analysis | |----------------|---------|---------|------------------------| | Clay | 0.00024 | - 0.004 | Sedimentation | | Silt | .004 | 062 | Sedimentation | | Sand | .062 | - 2.0 | Sedimentation or sieve | | Gravel | 2.0 | - 64.0 | Sieve | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis. <u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. <u>Picocurie</u> (PC, pCi) is one trillionth $(1 \times 10^{-12})$ of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields $3.7 \times 10$ radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute). <u>Radiochemical program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. <u>Return period</u> is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval. Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. <u>Sea level</u>. In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) -- a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929. <u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation. Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed. <u>Bed load discharge</u> (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time. <u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. <u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). <u>Mean concentration</u> is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day. <u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge ft<sup>3</sup>/s x 0.0027. <u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration. <u>Total sediment discharge</u> (tons/day) is the sum of the suspended sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time. <u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge. $\underline{7\text{-day }10\text{-year low flow}}$ (7 $Q_{10}$ ) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow). <u>Sodium adsorption ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation. Solute is any substance that is dissolved in water. Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65-percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. <u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel. <u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. <u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. <u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers. <u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter. <u>Suspended, recoverable</u> is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 mm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95-percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent. <u>Suspended, total</u> is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 mm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95-percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent. <u>Thermograph</u> is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. <u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year. <u>Tons per acre-foot</u> indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period. Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95-percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.) <u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," total chloride discharge," and so on. Total. recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95-percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. <u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. Water year in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1992, is called the "1992 water year." <u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976). Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports. ### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publications as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations." - 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J. F. Ficken, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. - 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages - 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages. - 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. McCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages. - 2-E2. Borehole geophysics applied to ground-water investigations, by W. S. Keys: USGS--TWRI Book 2, Chapter - E2. 1990. 150 pages. - 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W. E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages. - 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages. - 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS-TWRI Book 3, Chapter A2, 1967. 12 pages. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3., 1968. 60 pages. - 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book3, Chapter A4. 1967. 44 pages. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. - 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. - 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages. - 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8, 1969, 65 pages. - 3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS-TWRI Book 3, Chapter A9. 1989. 27 pages. - 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10, 1984. 59 pages. - 3-A11. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11, 1969. 22 pages. - 3-A12. Fluorometric procedures for dye tracing, Revised, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS-TWRI Book 3, Chapter A12. 1986. 41 pages. - 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages. - 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages. - 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15, 1984. 48 pages. - 3-A16. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages. - 3-A18. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathburn, Nobuhiro Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages. - 3-A19. Levels of streamflow gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 31 pages. - 3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A20. 1993. 38 pages. - 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages. - 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages. - 3-B4. Regression modeling of ground-water flow, by R. L. Cooley and R. L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages. - 3-B4. Supplement 1. Regression modeling of ground-water flow Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R. L. Cooley. USGS--TWRI Book 3, Chapter B4. 1993. 8 pages. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages. - 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uni- - form flow, by E. J. Wexler: USGS-TWRI Book 3, Chapter B7. 1992. 90 pages. - 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages. - 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. - 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages. - 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages. - 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages. - 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages. - 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages. - 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages. - 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. J. Fishman and L. C. Friedman: USGS-TWRI Book 5, Chapter A1. 1989. 545 pages. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages. - 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages. - 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages. - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS-TWRI Book 5, Chapter A6. 1982. 181 pages. - 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages. - 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter A1, 1988, 586 pages. - 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S. A. Leake and D. E. Prudic: USGS--TWRI Book 6, Chapter A2. 1991. 68 pages. - 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Descriptions and User's Manual, by L. J. Torak: USGS--TWRI Book 6, Chapter A3. 1993. 136 pages. - 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R. L. Cooley: USGS-TWRI Book 6, Chapter A4. 1992. 108 pages. - 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L. J. Torak: USGS--TWRI Book 6, Chapter A5. 1993. 243 pages. - 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages. - 8-A1. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages. - 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages. #### MISSISSIPPI RIVER BASIN #### **UPPER IOWA RIVER BASIN** #### 05388250 UPPER IOWA RIVER NEAR DORCHESTER, IA LOCATION.--Lat 43°25'16", long 91°30'31", in SW1/4 NW1/4 sec.1, T.99 N., R.6 W., Allamakee County, Hydrologic Unit 07060002, on right bank at upstream side of bridge on State Highway 76, 650 ft upstream from Mineral Creek, 0.5 mi upstream from Bear Creek, 3.5 mi south of Dorchester, and 18.1 mi upstream from mouth. DRAINAGE AREA.--770 mi<sup>2</sup>. DRAINAGE AREA.--7/0 mt². PERIOD OF RECORD.--September 1936 to June 1975 (gage heights and discharge measurements only), July 1975 to current year. GAGE.--Water-stage recorder. Datum of gage is 660.00 ft above sea level. Prior to Jan. 6, 1938, nonrecording gage on old bridge at site 0.2 mi upstream at datum 5.91 ft higher. Jan. 6, 1938 to Apr. 26, 1948, nonrecording gage at datum 60.00 ft lower, Apr. 27, 1948 to August 1963, nonrecording gage on old bridge and August 1963 to June 1975 nonrecording gage on new bridge at same datum. REMARKS.--Estimated daily discharges: Dec. 1-3, Dec. 21 to Mar. 3, and Mar. 16, 17. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey gage-height telemeter and U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 30, 1941, reached a stage of 21.8 ft, from flood profile, discharge, 30,400 ft³/s on basis of slope-area determination of peak flow. basis of slope-area determination of peak flow. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | 24 | | ., oobio | | DAILY | MEAN V | VALUES | J | | | | | |-------------------|-------------|------------|--------------|-----------------------|--------------------|----------------|----------------|------------------|---------------|--------------------------|-------------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 872 | 570 | e425 | e360 | e300 | e620 | 631 | 773 | 370 | 367 | 519 | 407 | | 2<br>3 | 845 | 558<br>557 | e430 | e340 | e290 | e640 | 616<br>606 | 752<br>725 | 365<br>355 | 354<br>337 | 491<br>515 | 416<br>425 | | 4 | 823<br>824 | 556 | e431<br>428 | e330<br>e300 | e285<br>e310 | e680<br>699 | 590 | 702 | 345 | 388 | 545 | 425 | | 5 | 804 | 554 | 421 | e290 | e320 | 869 | 583 | 683 | 340 | 370 | 514 | 419 | | 6 | 800 | 547 | 413 | e270 | e300 | 2830 | 572 | 672 | 348 | 344 | 505 | 410 | | 7<br>8 | 796 | 536 | 405 | e250 | e270 | 2910 | 551 | 673 | 353 | 352 | 635 | 407 | | 9 | 777<br>789 | 530<br>527 | 396<br>396 | e220<br>e240 | e240<br>e230 | 2390<br>1690 | 537<br>529 | 668<br>647 | 360<br>357 | 405<br>390 | 568<br>518 | 401<br>392 | | 10 | 797 | 526 | 396 | e270 | e240 | 1400 | 525 | 624 | 422 | 373 | 555 | 383 | | 11 | 781 | 513 | 388 | e250 | e250 | 1190 | 518 | 607 | 449 | 372 | 648 | 373 | | 12 | 777 | 510 | 371 | e270 | e280 | 1080 | 518 | 582 | 424 | 365 | 717 | 393 | | 13<br>14 | 777<br>744 | 517 | 389 | e260 | e290 | 1200 | 545 | 563<br>549 | 448<br>444 | 349 | 1190<br>942 | 414<br>398 | | 15 | 729 | 515<br>515 | 391<br>392 | e230<br>e200 | e310<br>e350 | 1300<br>1550 | 561<br>731 | 549<br>558 | 430 | 348<br>347 | 785 | 401 | | | | | | | | | | | | | | | | 16<br>17 | 755<br>746 | 510<br>495 | 392<br>392 | e210<br>e2 <b>0</b> 0 | e380<br>e410 | e1400<br>e1300 | 822<br>910 | 534<br>517 | 446<br>442 | 344<br>353 | 685<br><b>614</b> | 457<br>411 | | 18 | 711 | 494 | 394 | e180 | e440 | 1140 | 916 | 510 | 431 | 364 | 606 | 407 | | 19 | 696 | 497 | 396 | e170 | e1500 | 1040 | 863 | 503 | 440 | 377 | 681 | 420 | | 20 | 686 | 495 | 401 | e200 | e2500 | 988 | 801 | 498 | 427 | 632 | 625 | 410 | | 21 | 679 | 485 | e370 | e220 | e1900 | 984 | 773 | 480 | 403 | 1530 | 574 | 401 | | 22 | 666 | 473 | e330 | e250 | e1400 | 998 | 730 | 469 | 384 | 1710 | 521 | 427 | | 23 | 648 | 470 | e310 | e280 | e1100 | 990 | 706 | 450 | 405 | 1230 | 490 | 437 | | 24 | 641 | 461 | e300 | e300 | e800 | 954 | 699 | 453 | 479 | 1040 | 465 | 425 | | 25 | 631 | 455 | e290 | e330 | e660 | 884 | 737 | 419 | 477 | 898 | 443 | 476 | | 26 | 615 | 458 | e270 | e300 | e580 | 837 | 866 | 404 | 463 | 786 | 439 | 577 | | 27 | 602 | 461 | e240 | e280 | e520 | 790 | 839 | 393 | 454 | 700 | 428 | 586 | | 28<br>29 | 599<br>593 | 459<br>455 | e280<br>e300 | e300<br>e270 | e580 | 749 | 814<br>836 | 384<br>382 | 423<br>396 | 639<br>589 | 424<br>408 | 624<br>631 | | 30 | 579 | 449 | e320 | e270 | | 712<br>681 | 788 | 382 | 378 | 555 | 409 | 589 | | 31 | 57 <b>6</b> | | e340 | e280 | | 656 | | 377 | | 532 | 430 | | | TOTAL | 22358 | 15148 | 11397 | 8100 | 17035 | 36151 | 20713 | 16933 | 12258 | 17740 | 17889 | 13342 | | MEAN | 721 | 505 | 368 | 261 | 608 | 1166 | 690 | 546 | 409 | 572 | 577 | 445 | | MAX<br>MIN | 872<br>576 | 570<br>449 | 431 | 360<br>170 | 2500<br><b>230</b> | 2910 | 916 | 773<br>377 | 479<br>340 | 1710<br>337 | 1190<br>408 | 631<br>373 | | AC-FT | 44350 | 30050 | 240<br>22610 | 16070 | 33790 | 620<br>71710 | 518<br>41080 | 33590 | 24310 | 35190 | 35480 | 26460 | | CFSM | .94 | .66 | .48 | .34 | .79 | 1.51 | .90 | .71 | .53 | .74 | .75 | .58 | | IN. | 1.08 | .73 | . 55 | .39 | .82 | 1.75 | 1.00 | .82 | .59 | .86 | .86 | .64 | | STATIST | rics of M | ONTHLY ME. | AN DATA I | FOR WATER | YEARS 1975 | - 1994 | BY WATER | YEAR (WY) | | | | | | MEAN | 439 | 472 | 405 | 282 | 413 | 1078 | 1066 | 843 | 736 | 644 | 613 | 507 | | MAX | 2045 | 1476 | 1421 | 836 | 1400 | 1922 | 3973 | 2066 | 27 <b>6</b> 5 | 3318 | 3702 | 1334 | | (WY) | 1987 | 1983 | 1983<br>99.9 | 1983 | 1984 | 1983 | 1993 | 1991 | 1993 | 1993 | 1993 | 1986 | | MIN | 116 | 125 | 99.9 | 96.7 | 112 | 386 | 225 | 175 | 123 | 119 | 112 | 131 | | (WY) | 1990 | 1990 | 1990 | 1977 | 1978 | 1981 | 1977 | 1977 | 1977 | 1989 | 1989 | 1976 | | SUMMAR)<br>ANNUAL | STATIST: | ICS | FOR | 1993 CALE | NDAR YEAR | E | OR 1994 WA | ATER YEAR | | WATER Y | EARS 1975 | - 1994 | | ANNUAL | | | | 626047<br>1715 | | | 209064<br>573 | | | 629 | | | | | ANNUAL N | Æ AN | | 1,12 | | | 373 | | | 1726 | | 1993 | | | ANNUAL ME | | | | | | | | | 178 | | 1977 | | | DAILY ME | | | 15100 | Aug 17<br>Dec 27 | | 2910 | Mar 7 | | 15100 | Aug<br>Dec | 17 1993 | | | DAILY MEA | | | 240<br>284 | Dec 27 | | 170 | Jan 19 | | 79 | Dec | 31 1976 | | | SEVEN-DAY | | | 284 | Dec 23 | | 197 | Jan 15<br>Feb 19 | | | Dec | 28 1976 | | | PANEOUS PE | | | | | | 4200<br>a14.90 | Feb 19 | | 22000 | Aug | 17 1993<br>17 1993 | | ANNIIAI | RUNOFF (A | AC-FTI | | 1242000 | | | 414700 | , ren 19 | | 22000<br>20.00<br>456000 | , Aug | T1 1333 | | ANNUAL | RUNOFF (C | CFSM) | | 2.2 | 3 | | .74 | l | | .82 | 2 | | | ANNUAL | RUNOFF () | INCHES) | | 30.2 | 5 | | 10.10 | ) | | 11.11 | | | | 10 PERC | ENT EXCE | EDS | | 3320 | | | 867 | | | 1400 | | | | 50 PERC | ENT EXCES | EDS | | 1010 | | | 485 | | | 370 | | | | 90 PERC | ENT EXCE | SDS | | 370 | | | 296 | | | 136 | | | e Estimated. a Ice affected. #### 05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA LOCATION.--Lat 43°02'27", long 91°12'23", in Basil Giard Claim #1, sec. 16 T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, on right bank 50 ft downstream from State Highway 18 bridge, 1.5 miles upstream from mouth at Mississippi River, and 1.5 miles west of Marquette. DRAINAGE AREA.--34.1 mi<sup>2</sup>. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1991 to current year. GAGE .-- Water-stage encoder. REMARKS.--Estimated daily discharges: Dec. 23-31, Jan. 7-10, 14-29, Feb. 7-11, Feb. 24 to Mar. 1, Mar. 3-8, and July 27, 28. Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform at station. | | DIS | CHARGE, | CUBIC F | EET PER S | SECOND, W | ATER Y | EAR OCTO | BER 1993 | TO SEPT | EMBER 19 | 94 | | |-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 31<br>30<br>30<br>29<br>29 | 31<br>30<br>30<br>29<br>30 | 27<br>27<br>28<br>28<br>28 | 23<br>24<br>24<br>24<br>25 | 19<br>18<br>18<br>18<br>17 | e24<br>25<br>e27<br>e26<br>e40 | 21<br>22<br>22<br>23<br>24 | 25<br>24<br>24<br>24<br>25 | 20<br>20<br>20<br>20<br>20 | 25<br>26<br>26<br>25<br>23 | 21<br>21<br>21<br>23<br>22 | 24<br>24<br>25<br>27<br>25 | | 6<br>7<br>8<br>9<br>10 | 28<br>28<br>29<br>41<br>35 | 31<br>31<br>29<br>28<br>28 | 27<br>27<br>26<br>26<br>26 | 24<br>e23<br>e22<br>e20<br>e21 | 17<br>e16<br>e15<br>e14<br>e15 | e75<br>e54<br>e33<br>26<br>24 | 24<br>23<br>23<br>22<br>22<br>23 | 24<br>24<br>24<br>22<br>23 | 19<br>23<br>20<br>19<br>20 | 21<br>21<br>27<br>24<br>23 | 22<br>21<br>21<br>22<br>30 | 24<br>24<br>24<br>25<br>24 | | 11<br>12<br>13<br>14<br>15 | 34<br>33<br>33<br>31<br>32 | 28<br>30<br>30<br>29<br>30 | 26<br>26<br>25<br>25<br>24 | 21<br>23<br>25<br>e23<br>e21 | e16<br>15<br>16<br>16<br>15 | 23<br>24<br>29<br>29<br>31 | 23<br>25<br>25<br>23<br>26 | 23<br>23<br>23<br>24<br>23 | 20<br>19<br>35<br>22<br>20 | 22<br>23<br>24<br>26<br>23 | 26<br>24<br>23<br>23<br>23 | 22<br>21<br>20<br>20<br>21 | | 16<br>17<br>18<br>19<br>20 | 32<br>31<br>31<br>29<br>29 | 29<br>28<br>29<br>28<br>29 | 24<br>24<br>25<br>25<br>25 | e19<br>e18<br>e17<br>e16<br>e17 | 15<br>15<br>15<br>302<br>121 | 27<br>25<br>24<br>24<br>24 | 24<br>24<br>23<br>23<br>25 | 23<br>23<br>22<br>23<br>22 | 19<br>19<br>20<br>30<br>29 | 23<br>22<br>22<br>22<br>96 | 23<br>23<br>22<br>30<br>27 | 24<br>20<br>20<br>20<br>22 | | 21<br>22<br>23<br>24<br>25 | 30<br>30<br>30<br>30<br>30 | 28<br>28<br>27<br>27<br>29 | 25<br>25<br>e24<br>e25<br>e22 | e16<br>e17<br>e19<br>e18<br>e20 | 45<br>33<br>29<br>e27<br>e25 | 26<br>25<br>24<br>24<br>24 | 24<br>24<br>23<br>22<br>24 | 22<br>23<br>29<br>29<br>25 | 24<br>28<br>58<br>40<br>29 | 42<br>33<br>26<br>26<br>23 | 22<br>23<br>21<br>21<br>22 | 23<br>30<br>28<br>26<br>35 | | 26<br>27<br>28<br>29<br>30<br>31 | 30<br>30<br>31<br>31<br>31<br>31 | 30<br>30<br>29<br>28<br>28 | e20<br>e18<br>e19<br>e20<br>e22<br>e23 | e21<br>e20<br>e19<br>e19<br>19<br>20 | e23<br>e22<br>e23<br> | 23<br>24<br>24<br>23<br>23<br>22 | 24<br>25<br>26<br>25<br>26 | 25<br>22<br>21<br>21<br>20<br>20 | 27<br>26<br>25<br>26<br>25 | 25<br>e23<br>e23<br>22<br>22<br>22 | 23<br>21<br>22<br>23<br>25<br>25 | 42<br>36<br>31<br>32<br>30 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 959<br>30.9<br>41<br>28<br>1900<br>.91<br>1.05 | 871<br>29.0<br>31<br>27<br>1730<br>.85<br>.95 | 762<br>24.6<br>28<br>18<br>1510<br>.72 | 638<br>20.6<br>25<br>16<br>1270<br>.60 | 940<br>33.6<br>302<br>14<br>1860<br>.98<br>1.02 | 876<br>28.3<br>75<br>22<br>1740<br>.83 | 711<br>23.7<br>26<br>21<br>1410<br>.69<br>.77 | 725<br>23.4<br>29<br>20<br>1440<br>.69 | 742<br>24.7<br>58<br>19<br>1470<br>.72<br>.81 | 830<br>26.8<br>96<br>21<br>1650<br>.78<br>.90 | 716<br>23.1<br>30<br>21<br>1420<br>.68<br>.78 | 769<br>25.6<br>42<br>20<br>1530<br>.75 | | STATIST | rics of MO | NTHLY MEA | N DATA FO | R WATER | YEARS 1992 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 21.6<br>30.9<br>1994<br>16.4<br>1992 | 28.4<br>35.3<br>1992<br>21.0<br>1993 | 24.1<br>26.0<br>1992<br>21.8<br>1993 | 20.6<br>22.3<br>1992<br>19.0<br>1993 | 27.8<br>33.6<br>1994<br>20.6<br>1993 | 47.1<br>87.6<br>1993<br>25.3<br>1992 | 38.7<br>55.3<br>1993<br>23.7<br>1994 | 39.5<br>65.7<br>1993<br>23.4<br>1994 | 34.6<br>55.4<br>1993<br>23.8<br>1992 | 36.9<br>54.2<br>1993<br>26.8<br>1994 | 31.6<br>48.9<br>1993<br>22.7<br>1992 | 27.0<br>36.4<br>1993<br>19.0<br>1992 | | | STATISTI | cs | FOR 1 | 993 CALEN | IDAR YEAR | F | OR 1994 WAS | TER YEAR | | WATER YE | ARS 1992 | - 1994 | | LOWEST<br>HIGHEST<br>LOWEST<br>ANNUAL<br>INSTANT<br>INSTANT<br>ANNUAL<br>ANNUAL<br>ANNUAL<br>10 PERC<br>50 PERC | MEAN ANNUAL ME DAILY MEA SEVEN-DAS ANEOUS PE ANEOUS LO RUNOFF (A | AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS | | 16120<br>44.2<br>550<br>17<br>18<br>31970<br>1.29<br>17.57<br>64<br>35<br>20 | | | 9539<br>26.1<br>302<br>14<br>15<br>566<br>6.54<br>13<br>18920<br>.77<br>10.40<br>31<br>24 | Feb 19<br>Feb 9<br>Feb 7<br>Feb 19<br>Feb 19<br>Feb 17 | | 31.5<br>42.1<br>26.1<br>550<br>13<br>14<br>1540<br>7.57<br>11<br>22830<br>92<br>12.55<br>45<br>24<br>18 | Oct<br>Oct<br>Mar<br>Mar<br>Oct 2 | 1993<br>1994<br>1 1993<br>3 1991<br>1 1991<br>3 1993<br>3 1993<br>3 1991 | e Estimated. ### 05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA -- Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1991 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1991 to current year. WATER TEMPERATURES: October 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1991 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. Sample analyses marked with an asterisk are affected by precipitate which may influence the suspended-sediment percentage finer than .062 mm. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum daily, 670 microsiemens Sept. 27, 1994; minimum daily, 244 microsiemens Mar. 31, 1993. WATER TEMPERATURES: Maximum daily, 20.0°C June 20, 1992; minimum daily, 0.0°C Jan. 7, 18-21, 1994. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,780 mg/L Mar. 31, 1993; minimum daily mean, 2 mg/L Jan. 18, 1992. SEDIMENT LOADS: Maximum daily, 4,500 tons Mar. 31, 1993; minimum daily, 0.09 tons Jan. 18, 1992. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 670 microsiemens Sept. 27; minimum daily, 320 microsiemens Feb. 19. WATER TEMPERATURES: Maximum daily, 19.0°C June 19, 22, 23, July 19, Aug. 22; minimum daily, 0.0°C Jan. 7, 18-21. SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,780 mg/L Feb. 19; minimum daily mean, 4 mg/L Sept. 19. SEDIMENT LOADS: Maximum daily, 1,690 tons Feb. 19; minimum daily, 0.24 tons Sept. 19. ### SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------------|-----|-----|------|-------------|-------------|-----|-----|-------------|-----|-----|------|-----| | 1 | 498 | 412 | 433 | 437 | 465 | 494 | 497 | 479 | 585 | 421 | 466 | 614 | | 2 | 432 | 412 | 445 | 484 | 515 | 492 | 519 | 470 | 571 | 443 | 472 | 431 | | 2<br>3<br>4 | 420 | 428 | 626 | 415 | 554 | 491 | 491 | 541 | 602 | 420 | 427 | 408 | | 4 | 426 | 425 | 449 | 459 | 483 | 518 | 537 | 510 | 586 | 481 | 464 | 412 | | 5 | 423 | 419 | 430 | 445 | 531 | 580 | 545 | 507 | 462 | 465 | 437 | 479 | | 6 | | 416 | 447 | 444 | 477 | 335 | 457 | 504 | 524 | 503 | 531 | 544 | | ž | 437 | 416 | 417 | 433 | 426 | 364 | 452 | 428 | 564 | 457 | 567 | 538 | | 8 | 441 | 418 | 421 | 487 | 508 | 453 | 545 | 528 | 528 | 462 | 401 | 424 | | 9 | 477 | 429 | 470 | 436 | 528 | 508 | 510 | 473 | 471 | 450 | 535 | 440 | | 10 | 486 | 433 | 439 | 442 | 496 | 554 | 483 | 478 | 432 | 519 | 418 | 409 | | 10 | 400 | 433 | 439 | 442 | 4 90 | 334 | 403 | 410 | 432 | 319 | 410 | 409 | | 11 | 456 | 420 | 487 | 53 <b>8</b> | 443 | 536 | 417 | 486 | 468 | 523 | 482 | 451 | | 12 | 436 | 420 | 442 | 418 | 551 | 485 | 493 | 532 | 393 | 425 | 424 | 413 | | 13 | 422 | 462 | 480 | 467 | 490 | 544 | 467 | 507 | 568 | 505 | 413 | 505 | | 14 | 452 | 433 | 430 | 437 | 505 | 550 | 491 | 597 | 507 | 411 | 425 | 562 | | 15 | 425 | 455 | 454 | 426 | 512 | 538 | 494 | 482 | 488 | 540 | 414 | 490 | | 13 | 123 | 433 | 131 | 720 | 312 | 330 | 121 | 102 | 400 | 340 | *** | 430 | | 16 | 432 | 458 | 548 | 533 | 473 | 511 | 459 | 481 | 417 | 521 | 428 | 509 | | 17 | 448 | 431 | 434 | 469 | 561 | 476 | 495 | 436 | 427 | 506 | 408 | 500 | | 18 | 447 | 445 | 447 | 535 | 483 | 554 | 552 | 549 | 388 | 487 | 452 | 511 | | 19 | 409 | 496 | 465 | 459 | 320 | 508 | 477 | 534 | 509 | 461 | 436 | 616 | | 20 | 410 | 435 | 443 | 409 | 346 | 568 | 459 | 548 | 509 | 448 | 512 | 488 | | | 110 | 100 | . 13 | 103 | 310 | 300 | 433 | 3.0 | 303 | | | 100 | | 21 | 424 | 439 | 428 | 408 | 439 | 513 | 440 | 475 | 464 | 489 | 429 | 496 | | 22 | 428 | 419 | 4 98 | 426 | 533 | 490 | 488 | 51 <b>8</b> | 502 | 527 | 524 | 588 | | 23 | 416 | 436 | 420 | 433 | 548 | 496 | 521 | 548 | 473 | 548 | 458 | 519 | | 24 | 457 | 441 | 556 | 583 | 489 | 441 | 522 | 549 | 565 | 548 | 441 | 523 | | 25 | 419 | 439 | 458 | 583 | 486 | 404 | 482 | 573 | 553 | 550 | 462 | 607 | | | | | | | 100 | | | .,. | 020 | | | | | 26 | 432 | 428 | 432 | 483 | 53 <b>8</b> | 483 | 534 | 588 | 495 | 480 | 443 | 642 | | 27 | 440 | 510 | 468 | 497 | 470 | 413 | 523 | 575 | 479 | 468 | 433 | 670 | | 28 | 444 | 424 | 431 | 408 | 448 | 494 | 560 | 605 | 518 | 408 | 446 | 656 | | 29 | 420 | 458 | 435 | 453 | | 486 | 532 | 592 | 505 | 449 | 599 | 662 | | 30 | 415 | 468 | 483 | 552 | | 453 | 529 | 545 | 477 | 490 | 598 | 592 | | 31 | 408 | | 430 | 417 | | 472 | | 554 | | 438 | 475 | | | | | | -50 | | | | | | | | - 70 | | #### 05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA-Continued #### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|---------------------------------| | | осто | BER | NOVEM | BER | DECEM | BER | JANUA | <b>A</b> RY | FEBRU | ARY | MARC | н | | 1<br>2<br>3<br>4<br>5 | 14<br>30<br>41<br>41<br>56 | 1.1<br>2.4<br>3.2<br>3.2<br>4.3 | 68<br>56<br>45<br>35<br>21 | 5.6<br>4.5<br>3.6<br>2.8<br>1.7 | 94<br>85<br>59<br>62<br>97 | 6.9<br>6.3<br>4.5<br>4.7<br>7.3 | 81<br>72<br>93<br>88<br>92 | 5.1<br>4.7<br>6.1<br>5.8<br>6.3 | 71<br>59<br>57<br>86<br>60 | 3.7<br>2.9<br>2.7<br>4.1<br>2.7 | 52<br>49<br>50<br>33<br>45 | 3.4<br>3.6<br>2.3<br>4.9 | | 6<br>7<br>8<br>9<br>10 | 63<br>52<br>28<br>39<br>59 | 4.8<br>3.9<br>2.2<br>4.3<br>5.5 | 18<br>32<br>92<br>107<br>101 | 1.5<br>2.7<br>7.2<br>8.1<br>7.7 | 105<br>117<br>105<br>80<br>90 | 7.7<br>8.4<br>7.5<br>5.7<br>6.3 | 69<br>86<br>73<br>112<br>63 | 4.6<br>5.3<br>4.3<br>6.0<br>3.6 | 73<br>95<br>57<br>60<br>67 | 3.4<br>4.1<br>2.3<br>2.3<br>2.7 | 91<br>86<br>55<br>21<br>12 | 18<br>13<br>4.9<br>1.5 | | 11<br>12<br>13<br>14<br>15 | 63<br>54<br>57<br>45<br>29 | 5.8<br>4.8<br>5.1<br>3.9<br>2.6 | 94<br>77<br>63<br>66<br>61 | 7.1<br>6.2<br>5.0<br>5.2<br>4.9 | 66<br>100<br>49<br>88<br>38 | 4.7<br>7.1<br>3.3<br>6.0<br>2.5 | 60<br>57<br>89<br>95<br>88 | 3.4<br>3.7<br>6.1<br>5.9<br>5.0 | 82<br>56<br>76<br>65<br>56 | 3.5<br>2.3<br>3.3<br>2.7<br>2.3 | 15<br>22<br>22<br>27<br>25 | .93<br>1.5<br>1.8<br>2.1<br>2.1 | | 16<br>17<br>18<br>19<br>20 | 41<br>66<br>67<br>58<br>73 | 3.5<br>5.5<br>5.6<br>4.5<br>5.8 | 71<br>72<br>81<br>58<br>61 | 5.6<br>5.4<br>6.3<br>4.4<br>4.8 | 54<br>105<br>86<br>90<br>117 | 3.5<br>6.9<br>5.7<br>6.0<br>7.9 | 71<br>83<br>66<br>78<br>94 | 3.6<br>4.0<br>3.0<br>3.4<br>4.3 | 51<br>40<br>45<br>1780<br>385 | 2.1<br>1.6<br>1.8<br>1690<br>155 | 28<br>26<br>30<br>16<br>19 | 2.0<br>1.8<br>1.9<br>1.0<br>1.3 | | 21<br>22<br>23<br>24<br>25 | 51<br>33<br>46<br>52<br>69 | 4.2<br>2.7<br>3.7<br>4.2<br>5.6 | 71<br>70<br>68<br>68<br>70 | 5.4<br>5.2<br>4.9<br>4.9<br>5.5 | 118<br>60<br>53<br>29<br>83 | 8.1<br>4.1<br>3.4<br>2.0<br>4.9 | 90<br>75<br>71<br>40<br>54 | 3.9<br>3.4<br>3.6<br>1.9<br>2.9 | 65<br>25<br>27<br>60<br><b>69</b> | 8.4<br>2.2<br>2.1<br>4.4<br>4.7 | 29<br>35<br>22<br>17<br>10 | 2.0<br>2.4<br>1.5<br>1.1<br>.61 | | 26<br>27<br>28<br>29<br>30<br>31 | 32<br>47<br>66<br>75<br>66<br>43 | 2.6<br>3.8<br>5.4<br>6.3<br>5.6<br>3.6 | 65<br>69<br>94<br>86<br>78 | 5.3<br>5.6<br>7.5<br>6.5<br>5.9 | 95<br>84<br>54<br>96<br>74<br>96 | 5.1<br>4.1<br>2.8<br>5.2<br>4.4<br>6.0 | 74<br>62<br>97<br>79<br>51<br>45 | 4.2<br>3.3<br>5.0<br>4.1<br>2.6<br>2.5 | 44<br>51<br>57 | 2.7<br>3.0<br>3.5 | 14<br>5<br>13<br>12<br>13<br>11 | .92<br>.35<br>.82<br>.78<br>.79 | | TOTAL | | 129.7 | | 157.0 | | 169.0 | | 131.6 | | 1926.5 | | 84.15 | | | | | | | | | | | | | | | | | APR | I.L. | MAY | | JUNE | : | JUL | Y | <b>A</b> UGU S | ST | SEPTEM | BER | | 1<br>2<br>3<br>4<br>5 | 12<br>14<br>14<br>17<br>13 | .69<br>.83<br>.87<br>1.0 | 20<br>16<br>7<br>13<br>16 | 1.3<br>1.1<br>.46<br>.87 | 16<br>22<br>12<br>9<br>17 | .84<br>1.2<br>.62<br>.50<br>.92 | 27<br>28<br>24<br>23<br>20 | 1.8<br>1.9<br>1.7<br>1.5 | 24<br>20<br>17<br>8<br>11 | 1.3<br>1.1<br>.94<br>.49 | 9<br>16<br>12<br>17<br>21 | .56<br>1.1<br>.84<br>1.3<br>1.4 | | 6<br>7<br>8<br>9<br>10 | 12<br>24<br>12<br>13<br>13 | .79<br>1.5<br>.71<br>.79<br>.78 | 10<br>15<br>14<br>17<br>20 | .66<br>1.0<br>.92<br>1.0<br>1.3 | 14<br>16<br>16<br>17<br>16 | .72<br>.97<br>.87<br>.91<br>.87 | 15<br>18<br>19<br>15<br>11 | .84<br>1.0<br>1.4<br>.96<br>.70 | 10<br>12<br>13<br>11<br>35 | .62<br>.71<br>.72<br>.68<br>3.0 | 13<br>17<br>21<br>15<br>14 | .83<br>1.1<br>1.4<br>1.1<br>.88 | | 11<br>12<br>13<br>14<br>15 | 16<br>24<br>28<br>23<br>34 | .97<br>1.6<br>1.9<br>1.5<br>2.4 | 16<br>13<br>17<br>16<br>13 | 1.0<br>.83<br>1.0<br>1.1<br>.83 | 25<br>26<br>153<br>74<br>43 | 1.4<br>1.3<br>17<br>4.4<br>2.3 | 9<br>13<br>12<br>20<br>14 | .52<br>.81<br>.80<br>1.4<br>.92 | 22<br>30<br>21<br>12<br>12 | 1.5<br>1.9<br>1.3<br>.75 | 7<br>18<br>14<br>6<br>16 | .43<br>1.0<br>.74<br>.31<br>.97 | | 16<br>17<br>18<br>19<br>20 | 25<br>8<br>12<br>25<br>29 | 1.6<br>.53<br>.76<br>1.5 | 15<br>23<br>15<br>17<br>17 | .97<br>1.4<br>.93<br>1.0 | 45<br>28<br>18<br>67<br>84 | 2.4<br>1.5<br>.97<br>6.1<br>6.7 | 11<br>8<br>11<br>27<br>527 | .66<br>.45<br>.65<br>2.0 | 12<br>29<br>29<br>92<br>47 | .75<br>1.8<br>1.7<br>11<br>3.8 | 39<br>21<br>6<br>4<br>25 | 2.5<br>1.1<br>.36<br>.24<br>1.5 | | 21<br>22<br>23<br>24<br>25 | 20<br>18<br>10<br>15<br>25 | 1.3<br>1.2<br>.64<br>.91<br>1.6 | 18<br>17<br>54<br>51<br>37 | 1.1<br>1.1<br>6.6<br>4.5<br>2.5 | 63<br>48<br>237<br>103<br>41 | 4.1<br>3.6<br>51<br>13<br>3.2 | 180<br>59<br>40<br>30<br>29 | 21<br>5.3<br>2.9<br>2.1<br>1.9 | 16<br>13<br>13<br>27<br>19 | .97<br>.80<br>.75<br>1.5 | 13<br>11<br>27<br>13<br>6 | .86<br>.92<br>2.0<br>.91<br>.59 | | 26<br>27<br>28<br>29<br>30<br>31 | 18<br>19<br>15<br>9<br>15 | 1.2<br>1.2<br>1.0<br>.62<br>1.1 | 31<br>23<br>18<br>16<br>21<br>19 | 2.1<br>1.4<br>1.0<br>.88<br>1.2<br>1.0 | 34<br>26<br>23<br>20<br>18 | 2.5<br>1.8<br>1.6<br>1.4 | 50<br>41<br>33<br>31<br>23<br>32 | 3.3<br>2.5<br>2.0<br>1.8<br>1.3 | 17<br>15<br>11<br>9<br>13 | 1.0<br>.84<br>.68<br>.54<br>.87 | 19<br>17<br>18<br>11<br>8 | 2.2<br>1.6<br>1.5<br>.99<br>.62 | | TOTAL | | | | | | | | | | | | | #### 05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA-Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|-------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | 1<br>2<br>3<br>4<br>5 | 12.0<br>9.0<br>9.0<br>11.0<br>10.0 | 4.0<br>6.0<br>6.0<br>5.0<br>4.0 | 4.0<br>4.0<br>4.0<br>4.0 | 4.0<br>3.0<br>2.0<br>2.0<br>2.0 | 1.0<br>1.0<br>1.0<br>1.0 | 4.0<br>4.0<br>4.0<br>4.0 | 8.0<br>9.0<br>8.0<br>9.0<br>7.0 | 8.0<br>8.0<br>8.0<br>8.0 | 14.0<br>13.0<br>14.0<br>12.0<br>15.0 | 16.0<br>15.0<br>16.0<br>16.0<br>16.0 | 16.0<br>16.0<br>16.0<br>16.0 | 12.0<br>14.0<br>13.0<br>14.0<br>14.0 | | 6<br>7<br>8<br>9<br>10 | 10.0<br>14.0<br>10.0<br>11.0 | 4.0<br>4.0<br>5.0<br>5.0<br>4.0 | 4.0<br>4.0<br>4.0<br>5.0 | 2.0<br>.0<br>1.0<br>1.0<br>2.0 | 1.0<br>1.0<br>1.0<br>1.0 | 4.5<br>4.0<br>5.0<br>5.0<br>4.0 | 7.0<br>6.0<br>7.0<br>8.0<br>8.0 | 8.0<br>10.0<br>8.0<br>8.0<br>8.0 | 14.0<br>14.0<br>14.0<br> | 16.0<br>17.0<br>16.0<br>16.0<br>17.0 | 14.0<br>15.0<br>14.0<br>14.0 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0 | | 11<br>12<br>13<br>14<br>15 | 6.0<br>8.0<br>8.0<br>6.0<br>7.0 | 6.0<br>5.0<br>5.0<br>4.0<br>4.0 | 3.0<br>4.0<br>4.0<br>4.0 | 1.0<br>2.0<br>3.0<br>1.0 | 1.0<br>1.0<br>1.0<br>1.0 | 4.0<br>4.0<br>4.0<br>4.0 | 8.0<br>8.0<br>8.0<br>8.0 | 11.0<br>11.0<br>12.0<br>14.0<br>12.0 | 15.0<br>15.0<br>18.0<br>19.0<br>18.0 | 16.0<br>16.0<br>17.0<br>16.0<br>15.0 | 14.0<br>14.0<br>14.0<br>14.0<br>14.0 | 12.0<br>12.0<br>12.0<br>13.0<br>18.0 | | 16<br>17<br>18<br>19<br>20 | 10.0<br>11.0<br>9.0<br>10.0<br>10.0 | 4.0<br>6.0<br>4.0<br>5.0 | 5.0<br>6.0<br>6.0<br>5.0<br>4.0 | 1.0<br>.0<br>.0 | 1.0<br>2.0<br>2.0<br>4.0<br>4.0 | 5.0<br>5.0<br>6.0<br>5.0<br>8.0 | 8.0<br>9.0<br>10.0<br>9.0<br>9.0 | 11.0<br>13.0<br>12.0<br>11.0<br>12.0 | 17.0<br>16.0<br>16.0<br>19.0<br>18.0 | 16.0<br>16.0<br>17.0<br>19.0<br>16.0 | 15.0<br>14.0<br>14.0<br>14.0<br>15.0 | 16.0<br>15.0<br>14.0<br>14.0<br>13.0 | | 21<br>22<br>23<br>24<br>25 | 9.0<br>7.0<br>8.0<br>9.0<br>8.0 | 5.0<br>4.0<br>4.0<br>5.0 | 4.0<br>5.0<br>2.0<br>3.0<br>2.0 | .0<br>1.0<br>1.0<br>1.0 | 4.0<br>4.0<br>3.0<br>2.0 | 8.0<br>8.0<br>8.0<br>6.0 | 9.0<br>10.0<br>9.0<br>14.0<br>15.0 | 13.0<br>12.0<br>15.0<br>16.0<br>12.0 | 18.0<br>19.0<br>19.0<br>16.0<br>16.0 | 16.0<br>16.0<br>16.0<br>16.0 | 14.0<br>19.0<br>14.0<br>14.0 | 14.0<br>14.0<br>15.0<br>13.0<br>12.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 8.0<br>7.0<br>5.0<br>6.0 | 4.0<br>4.0<br>4.0<br>5.0 | 2.0<br>2.0<br>2.0<br>3.0<br>2.0<br>3.0 | 1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 2.0<br>3.0<br>4.0<br> | 6.0<br>8.0<br>6.0<br>8.0<br>9.0 | 15.0<br>12.0<br>10.0<br>7.0<br>7.0 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 16.0<br>15.0<br>16.0<br>16.0 | 16.0<br>16.0<br>14.0<br>14.0<br>16.0 | 14.0<br>13.0<br>14.0<br>13.0<br>14.0 | 14.0<br>10.0<br>12.0<br>10.0 | #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA LOCATION.—Lat 43°01'29", long 91°10'21", in SE1/4 SE1/4 sec.22, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, on right bank in city park at east end of Main Street in McGregor, 2.6 mi upstream from Wisconsin River, 4.3 mi downstream from Yellow River, and at mile 633.4 upstream from Ohio River. DRAINAGE AREA.--67,500 mi<sup>2</sup>, approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1936 to current year. REVISED RECORDS .-- WDR IA-75-1: 1974. GAGE.--Water-stage recorder. Datum of gage is 604.84 ft above sea level. Prior to June 1, 1937, and since June 2, 1939, auxiliary water-stage recorder; June 1, 1937 to June 1, 1939, auxiliary nonrecording gage 14.1 mi upstream in tailwater of dam 9, at datum 5.30 ft lower. REMARKS.--Estimated daily discharges: Dec. 11 to Mar. 8. Records good except those for estimated daily discharges, which are poor. Minor flow regulation caused by navigation dams. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD .-- Maximum stage since at least 1828, that of Apr. 24, 1965. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | | | JUN | | AUG | | |--------|----------------------------------|----------------------------------|------------------|-----------------------------------------------------------|-----------|-------------------------------------------|----------------------------------|------------------------------------------------|-------------------------------------------|-------------------------|----------------------------------|----------------| | 1 | 44000 | 35200 | 31500 | e26000 | e27000 | e54000 | 65500 | 100000 | 43000 | 43200 | 41600 | 29400 | | 2 | 44100 | 35100 | 28500 | e29000 | e26500 | e52000 | 64900 | 105000 | 42400 | 43500 | 37400 | 30600<br>31600 | | 3 | 43600 | 33000 | 26500 | | e26500 | e49000 | 63500 | 108000 | 42500 | 43800 | 34200 | 31600 | | 4 | 42900 | 30700 | 27300 | | e26000 | e48000 | 62400 | 111000 | 43300 | 43800 | 33400 | 31900 | | 5 | 42200 | 31400 | 29600 | e32500 | e26000 | e47000 | 62000 | 100000<br>105000<br>108000<br>111000<br>113000 | 43200 | 44100 | 32200 | 32200 | | 6 | 41300 | 33100 | 34100 | e33000 | e26000 | e49000 | | | | | | | | ž | 40300 | 33000 | 37600 | e33000 | e26000 | e58000 | | 114000 | 3 9 9 0 0 | 45900 | 31400<br>31000<br>30500<br>30400 | 30900 | | á | 39800 | 32800 | 37600<br>38800 | e32500 | e26000 | e 64000 | 59600 | 113000 | 39100 | 49400 | 30500 | 29100 | | و | 39700 | 32800 | 38900 | e31500 | e26000 | 70000 | 59900 | 111000 | 39300 | 50900 | 30400 | 26700 | | 10 | 39300 | 32800 | 38800 | | e26000 | 69000 | | 108000 | 40000 | 54100 | 31900 | 25500 | | | | | | | | | | | | | | | | 11 | 38700 | 32800 | e35000 | | e26000 | 68000 | 58600 | 106000 | 40700 | | 37800 | 25 60 0 | | 12 | 38400 | | e33000 | e29000 | e26000 | 64000 | 58300 | 102000 | 41400 | 57600 | 40000<br>41900 | 25600 | | 13 | 38500 | 34700 | e31000 | e28500 | e26000 | 61200 | 59400 | 99000 | 42400 | 58700 | 41900 | 25800 | | 14 | 37700 | 36000 | e30500 | e28000 | e26000 | 57300 | 59900 | 99000<br>96700<br>94400 | 41800 | 60400 | 43400 | 26900 | | 15 | 37400 | 3730 <b>0</b> | e3050 <b>0</b> | e28000 | e26000 | | 58300<br>59400<br>59900<br>61800 | 94400 | | | 43500 | 29900 | | 16 | 38000 | 36900 | e31000 | e28000 | e26000 | 53900<br>53300<br>53100<br>55400<br>58200 | 63900<br>65900<br>68800<br>70400 | 90800<br>86500<br>82600<br>79000 | 40700<br>40100<br>40000<br>40100<br>40600 | 5730 <b>0</b> | 42400 | 35400 | | 17 | 38200 | 36900 | e31500<br>e34000 | e28000 | e26000 | 53300 | 65900 | 86500 | 40100 | 51700<br>46400<br>43700 | 40100 | 43000 | | 18 | 38400 | 38000 | e34000 | e27500 | e26000 | 53100 | 68800 | 82600 | 40000 | 46400 | 38200 | 48900 | | 19 | 38400 | 39100 | e36000 | e27000 | e28000 | 55400 | 70400 | 79000 | 40100 | 43700 | 37800 | 55100 | | 20 | 37600 | 40200 | e37000 | | e35000 | 58200 | 71600 | 75400 | 40600 | 42900 | 37900 | 60700 | | •• | 2.5000 | 40000 | 22222 | | **** | | | 70000 | | | 20100 | 65.000 | | 21 | 36800 | 42900 | e37000 | | e40000 | 60200 | 75400 | | 40500 | | | 65200 | | 22 | 36300 | 45500 | e37000 | | e48000 | 60000 | 78400 | 67600 | 40100 | 42900 | | 73600 | | 23 | 36300 | 45700 | e34000 | | e56000 | 59700 | 80400 | | 39300 | | | 80200 | | 24 | 36500 | 44200 | e31500 | | e59000 | 60600 | 81700 | 63800 | 40800 | | | 82400 | | 25 | 36900 | 41200 | e26500 | e24000 | e60000 | 60 <b>0</b> 00 | 82900 | 61300 | 41800 | 42500 | 32600 | 83200 | | 26 | 36400 | 39500 | e23000 | e25000 | e59000 | 60700 | 85100 | 58600 | 42300 | 43200 | 30700 | 82800 | | 27 | 35800 | 36400<br>36200<br>35400<br>34100 | e21500 | e26000 | e58000 | 63100 | 89000 | 54100 | 42400 | 43900 | 29500 | 78300 | | 28 | 35200 | 36200 | e21000 | e27500 | e58000 | 65700 | 20000 | 51600 | 42400 | 44700 | | 73400 | | 29 | 34800 | 35400 | e21000 | 628000 | | 65700<br>67400<br>67800 | 92000 | 48700 | 42900 | 45000 | 27600 | 65400 | | 30 | 34700 | 34100 | 621500 | e28000 | | 67800 | 94700 | 46300 | 42900 | 45100 | 27000 | 60100 | | 31 | 35200<br>34800<br>34700<br>34900 | | e23000 | e27500<br>e28000<br>e28000<br>e27500 | | 66900 | | 48700<br>46300<br>44900 | | 44300 | 27700 | | | | | | | | | | | | | | | | | TOTAL | 1193100 | 1096500 | 958100 | 869000<br>28030<br>33000<br>23000<br>1724000 | 971000 | 1831500 | 2106900 | 2643400 | 1239000 | 1476300 | 1088700 | 1421600 | | MEAN | 38490 | 36550 | 30910 | 28030 | 34680 | 59080 | 70230 | 85270 | 41300 | 47620 | 35120 | 47390 | | MAX | 44100 | 45700 | 38900 | 33000 | 60000 | 70000 | 94700 | 114000 | 43300 | 60400 | 43500 | 83200 | | MIN | 34700 | 30700 | 21000 | 23000 | 26000 | 47000 | 58300 | 44900 | 39100 | 42200 | 27000 | 25500 | | AC-FT | 2367000 | 2175000 | 1900000 | 1724000 | 1926000 | 3633000 | 4179000 | 5243000 | 2458000 | 2928000 | 2159000 | 2820000 | | CLSM | .5/ | .54 | .46 | .42 | •21 | .88 | 1.04 | 1.26 | .01 | ./1 | .32 | . / 0 | | IN. | .66 | .60 | .53 | .48 | .54 | 1.01 | 1.16 | 1.46 | .68 | .81 | . 60 | .78 | | STATES | STICS OF | MONTHILY M | EAN DATA | FOR WATER | YEARS 19 | 36 - 1994 | . BY WATE | R YEAR (W | Y) | | | | | MEAN | 28190 | 28440 | 21740 | 18790 | 19340 | 38790 | 73440 | 60320 | 48750 | 40140 | 27120 | 28810 | | MAX | 114600 | 64840 | 59200 | 35700 | 48540 | 103800 | 164800 | 119200 | 112600 | 142200 | 84430 | 72890 | | (WY) | 1987 | 1003 | 1992 | 1983 | 1984 | 10000 | 1965 | 1975 | 1993 | 1993 | 1993 | 1986 | | MIN | 9874 | 10970 | 9506 | 2665 | 1204 | 13100 | 27780 | 19240 | 13420 | 11220 | 10330 | 10650 | | (WY) | 1937 | 1938 | 1937 | 18790<br>35700<br>1983<br>7665<br>1940 | 1940 | 1940 | 1990 | 1977 | 1988 | 1988 | 1964 | 1940 | | ,, | 2201 | 2334 | | R 1993 CAL<br>23834100<br>65300 | | | | | | | | | | SUMMAR | RY STATIS | TICS | FOR | R 1993 CAL | ENDAR YEA | R | FOR 1994 | WATER YEA | R | WATER | YEARS 193 | 6 - 1994 | | ANNUAI | TOTAL | | | 23834100 | | | 16895100 | | | | | | | ANNUAL | MEAN | | | 65300 | | | 46290 | | | 36210 | | | | HIGHES | T ANNUAL | MEAN | | | - | | | | | 64720 | | 1993 | | LOWEST | ANNUAL | MEAN | | | | | | | | 17400 | | 1977 | | HIGHES | T DAILY | MEAN | | 187000 | Jul | 1 | 114000 | May | 6 | 276000 | Apr | 24 1965 | | LOWEST | DAILY M | EAN | | 17000 | Jan 2 | 1 | 21000 | Dec 2 | 8a | 6200 | Dec | 9 1936 | | ANNUAL | SEVEN-D | AY MINIMU | 4 | 18200 | Feb 2 | 4 | 22400 | Dec 2 | 6 | 6490 | Dec | 7 1936 | | INSTAN | ITANEOUS | PEAK FLOW | | | | | 115000 | May | 7 | | | | | INSTAN | TANEOUS | PEAK STAGI | £ | | | | 15. | 59 May | 5 | 25. | .se Apr | 24 1965 | | ANNUAL | RUNOFF | (AC-FT) | | 23834100<br>65300<br>187000<br>17000<br>18200<br>47270000 | | | 33510000 | | | 26230000 | | | | ANNUAL | RUNOFF | (CFSM) | | • | 97 | | | 69 | | _ • | 54 | | | ANNUAL | RUNOFF | (INCHES) | | 13. | 14 | | _ 9. | 31 | | 7. | 29 | | | 10 PER | CENT EXC | EEDS | | 125000 | | | 73500 | | | 74800 | | | | 50 PER | CENT EXC | EEDS | | 48300 | | | 40200 | | | 26300 | | | | 90 PER | CENT EXC | EEDS | | 47270000<br>13.<br>125000<br>48300<br>20000 | | | 26500 | .69<br>31 | | 13000 | | | | e Esti | | | | | | | | | | | | | | e Esti | | | | | | | | | | | | | a Also Dec. 29. #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued #### WATER-QUALITY RECORDS LOCATION. --Samples collected from right bank dock 0.3 mi downstream from discharge station. Prior to April 1981, at bridge on U.S. Highway 18, 1.2 mi upstream from gage. PERIOD OF RECORD .-- July 1975 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: July 1975 to current year. WATER TEMPERATURES: July 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: July 1975 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,350 mg/L Mar. 19, 1986; minimum daily mean, 1 mg/L on many days in 1977-92. SEDIMENT LOADS: Maximum daily, 363,000 tons Mar. 19, 1986; minimum daily, 31 tons Dec. 25, 1976. #### EXTREMES FOR CURRENT YEAR.-- SEDIMENT CONCENTRATIONS: Maximum daily mean, 118 mg/L Feb. 20; minimum daily mean, 3 mg/L Jan. 17-19. SEDIMENT LOADS: Maximum daily, 11,200 tons Feb. 20; minimum daily, 219 tons Jan 19. ### SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----| | 1 | | 500 | 483 | | 527 | 454 | | | 488 | | 450 | | | 2 | | | | | | | | 402 | | | | | | 3 | | | | 534 | | | | | | 512 | | 472 | | 4 | 494 | | 490 | | 530 | 451 | 451 | | 488 | | | | | 5 | | 513 | | | | | | | | | | 452 | | 6 | | | 487 | 536 | 554 | | | 407 | 490 | | 448 | | | 7 | 492 | | | | | 442 | 4 62 | | | | | | | 8 | | 493 | | | | | | | | 495 | 456 | | | 9 | | | 482 | | | | | 408 | | | 430 | 457 | | 10 | 496 | | | 530 | | | | | 484 | | | | | 11 | | 509 | | | 528 | 412 | 451 | | | 492 | | | | 12 | | | 467 | | | | | 396 | | | ' | 461 | | 13 | | | | | | | | | 490 | | | | | 14 | | | | 522 | 520 | 442 | 454 | | | | 444 | | | 15 | 496 | 502 | | | | | | | | 428 | | 469 | | 16 | | | | | | | | 423 | | | 434 | | | 17 | | | 482 | | | | | | | | | | | 18 | | 499 | | 542 | 530 | 426 | 432 | | 490 | 440 | | 462 | | 19 | 510 | | | | | | | 476 | | | 438 | | | 20 | 486 | | 510 | | 398 | | | | 484 | 429 | | 454 | | 21 | | | | | | 459 | 390 | | | | | | | 22 | 510 | 486 | | 530 | 448 | | 418 | | | | 455 | 432 | | 23 | | | | | | | | 478 | 476 | 454 | | | | 24 | | | 516 | | | 442 | | | 502 | | | | | 25 | 494 | | | 544 | | | 384 | | | 450 | 462 | 326 | | 26 | | 469 | | | 446 | | | | 506 | | | | | 27 | | | | | | 438 | | | | | | 363 | | 28 | | | 550 | | | | | | | | 476 | | | 29 | 499 | | | | | | 414 | 490 | | 447 | | | | 30 | | | 518 | 536 | | | | | 518 | | | 408 | | 31 | | | | | | 434 | | | | | 474 | | #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued #### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU | ARY | MARC | CH | | 1<br>2<br>3<br>4<br>5 | 24<br>27<br>27<br>26<br>24 | 2880<br>3260<br>3140<br>2980<br>2780 | 40<br>40<br>35<br>27<br>22 | 3840<br>3770<br>3160<br>2270<br>1880 | 23<br>19<br>16<br>14<br>15 | 1960<br>1470<br>1120<br>1000<br>1210 | 10<br>10<br>10<br>8<br>6 | 702<br>783<br>823<br>680<br>526 | 6<br>5<br>5<br>4<br>4 | 437<br>358<br>358<br>281<br>281 | 11<br>9<br>7<br>6<br>7 | 1600<br>1260<br>926<br>778<br>888 | | 6<br>7<br>8<br>9<br>10 | 23<br>22<br>24<br>26<br>28 | 2580<br>2440<br>2590<br>2800<br>2950 | 21<br>21<br>21<br>26<br>32 | 1890<br>1830<br>1860<br>2260<br>2800 | 16<br>13<br>11<br>9<br>7 | 1490<br>1360<br>1130<br>912<br>697 | 5<br>4<br>4<br>4 | 445<br>445<br>351<br>340<br>329 | 4<br>4<br>4<br>4 | 281<br>281<br>281<br>281<br>281 | 13<br>36<br>34<br>30<br>26 | 1720<br>5640<br>5880<br>5640<br>4840 | | 11<br>12<br>13<br>14<br>15 | 28<br>28<br>28<br>28<br>28 | 2930<br>2900<br>2910<br>2850<br>2850 | 38<br>39<br>40<br>40<br>39 | 3330<br>3520<br>3710<br>3920<br>3890 | 5<br>4<br>4<br>4 | 472<br>356<br>335<br>329<br>329 | 4<br>5<br>5<br>6<br>4 | 324<br>391<br>385<br>454<br>302 | 4<br>5<br>7<br>8<br>9 | 281<br>351<br>491<br>562<br>632 | 22<br>19<br>15<br>13<br>15 | 4130<br>3260<br>2500<br>2080<br>2260 | | 16<br>17<br>18<br>19<br>20 | 29<br>31<br>32<br>33<br>32 | 3010<br>3150<br>3300<br>3370<br>3230 | 30<br>22<br>17<br>17<br>16 | 2940<br>2190<br>1770<br>1760<br>1790 | 4<br>4<br>4<br>5<br>5 | 335<br>340<br>367<br>486<br>499 | 4<br>3<br>3<br>3<br>4 | 302<br>227<br>223<br>219<br>270 | 10<br>11<br>19<br>75<br>118 | 702<br>772<br>1330<br>5670<br>11200 | 19<br>24<br>29<br>26<br>23 | 2790<br>3510<br>4120<br>3850<br>3530 | | 21<br>22<br>23<br>24<br>25 | 37<br>43<br>44<br>45<br>46 | 3660<br>4180<br>4300<br>4420<br>4540 | 16<br>16<br>18<br>19<br>21 | 1880<br>2000<br>2190<br>2310<br>2360 | 5<br>6<br>6<br>6 | 499<br>599<br>551<br>510<br>429 | 5<br>7<br>6<br>6<br>5 | 324<br>435<br>381<br>381<br>324 | 56<br>40<br>38<br>37<br>37 | 6050<br>5180<br>5750<br>5890<br>5990 | 20<br>21<br>22<br>23<br>21 | 3310<br>3420<br>3560<br>3690<br>3400 | | 26<br>27<br>28<br>29<br>30<br>31 | 40<br>33<br>30<br>29<br>32<br>37 | 3950<br>3230<br>2870<br>2710<br>3030<br>3470 | 23<br>23<br>23<br>24<br>24 | 2440<br>2280<br>2290<br>2250<br>2190 | 7<br>7<br>7<br>9<br>10 | 435<br>406<br>397<br>510<br>580<br>621 | 5<br>6<br>7<br>7<br>6 | 337<br>421<br>445<br>529<br>529<br>445 | 33<br>23<br>16<br> | 5260<br>3600<br>2510<br> | 19<br>18<br>18<br>19<br>19 | 3170<br>3090<br>3240<br>3370<br>3440<br>3390 | | TOTAL | | 99260 | | 76570 | | 21734 | | 13072 | | 65341 | | 9828 <b>2</b> | | | APR: | Ι <b>L</b> | MAY | | JUNI | E | JUL | Y . | AUGUS | ST | SEPTEM | BER | | 1<br>2<br>3<br>4<br>5 | 18<br>17<br>16<br>16<br>18 | 3140<br>2930<br>2710<br>2620<br>3000 | 18<br>14<br>12<br>11 | 4990<br>3960<br>3600<br>3310<br>3030 | 42<br>46<br>51<br>55<br>51 | 4870<br>5270<br>5880<br>6390<br>5920 | 41<br>37<br>34<br>32<br>31 | 4760<br>4300<br>4010<br>3810<br>3670 | 42<br>33<br>30<br>27<br>26 | 4660<br>3360<br>2730<br>2480<br>2220 | 19<br>20<br>20<br>19<br>17 | 1520<br>1660<br>1750<br>1610<br>1500 | | 6<br>7<br>8<br>9<br>10 | 21<br>24<br>24<br>23<br>23 | 3450<br>3880<br>3820<br>3790<br>3720 | 10<br>13<br>18<br>24<br>28 | 2990<br>4040<br>5530<br>7240<br>8080 | 48<br>49<br>51<br>53<br>55 | 5390<br>5290<br>5400<br>5650<br>5880 | 29<br>28<br>27<br>29<br>32 | 3540<br>3480<br>3600<br>4050<br>4650 | 24<br>23<br>23<br>23<br>24 | 2040<br>1960<br>1900<br>1890<br>2110 | 18<br>19<br>20<br>21<br>21 | 1570<br>1590<br>1570<br>1510<br>1440 | | 11<br>12<br>13<br>14<br>15 | 22<br>18<br>15<br>13<br>16 | 3490<br>2840<br>2330<br>2060<br>2600 | 31<br>34<br>32<br>30<br>28 | 8960<br>9440<br>8610<br>7800<br>7070 | 53<br>51<br>50<br>51<br>52 | 5830<br>5740<br>5760<br>5760<br>5790 | 33<br>32<br>29<br>28<br>26 | 5040<br>4900<br>4670<br>4500<br>4290 | 32<br>27<br>22<br>20<br>21 | 3310<br>2870<br>2470<br>2370<br>2410 | 21<br>21<br>22<br>33<br>77 | 1450<br>1470<br>1550<br>2450<br>6210 | | 16<br>17<br>18<br>19<br>20 | 20<br>25<br>30<br>33<br>36 | 3380<br>4390<br>5600<br>6320<br>7040 | 26<br>24<br>23<br>22<br>23 | 6340<br>5700<br>5150<br>4740<br>4640 | 53<br>54<br>55<br>53<br>50 | 5830<br>5860<br>5890<br>5710<br>5530 | 27<br>29<br>30<br>35<br>83 | 4240<br>4010<br>3800<br>4090<br>9610 | 21<br>21<br>22<br>24<br>21 | 2400<br>2270<br>2220<br>2430<br>2160 | 72<br>62<br>50<br>34<br>24 | 6830<br>7150<br>6620<br>4970<br>3930 | | 21<br>22<br>23<br>24<br>25 | 40<br>41<br>40<br>38<br>37 | 8090<br>8780<br>8690<br>8470<br>8290 | 24<br>24<br>25<br>28<br>31 | 4590<br>4430<br>4450<br>4850<br>5170 | 47<br>44<br>42<br>44<br>46 | 5180<br>4810<br>4440<br>4860<br>5220 | 50<br>34<br>31<br>29<br>27 | 5830<br>3980<br>3530<br>3270<br>3110 | 20<br>20<br>20<br>19<br>19 | 2100<br>2060<br>1950<br>1850<br>1700 | 25<br>26<br>26<br>27<br>27 | 4340<br>5170<br>5710<br>5940<br>6080 | | 26<br>27<br>28<br>29<br>30<br>31 | 37<br>36<br>36<br>34<br>25 | 8440<br>8770<br>8790<br>8430<br>6460 | 35<br>39<br>43<br>46<br>45<br>43 | 5490<br>5630<br>5970<br>6080<br>5580<br>5170 | 48<br>49<br>49<br>50 | 5490<br>5580<br>5650<br>5830<br>5820 | 27<br>27<br>27<br>27<br>28<br>31 | 3150<br>3200<br>3260<br>3300<br>3410<br>3710 | 20<br>22<br>23<br>21<br>19<br>18 | 1690<br>1730<br>1690<br>1570<br>1410<br>1370 | 28<br>28<br>26<br>24<br>23 | 6160<br>5840<br>5150<br>4300<br>3900 | | TOTAL | <br>1178819 | 156320 | | 172630 | | 166520 | | 128770 | | 69380 | | 110940 | #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|------|-----|-----|-----|-----|-----|-----|------|-----|------|------| | 1 | | 10 | 6.5 | | .0 | .0 | | | 17 | | 22 | | | 2 | | | | | | | | 6 | | | | | | 3 | | | | .0 | | | | | | 19 | | 17 | | 4 | 15 | | 7 | | .0 | 2 | 8 | | 18 | | | | | 5 | | 11.5 | | | | | | | | | | 16.5 | | 6 | | | 8 | .0 | .0 | | | 8 | 18 | | 21 | | | 7 | 15 | | | | | 1 | 8 | | | | | | | 8 | | 14 | | | | | | | | 19 | 21 | | | 9 | | | 6 | | | | | 10 | | | 23.5 | 18 | | 10 | 16 | | | .0 | | | | | 18 | | | | | 11 | | 8 | | | .0 | 3 | 9 | | | 19 | | | | 12 | | | 7 | | | | | 12 | ~ | | | 18 | | 13 | | | | | | | | | 18 | | | | | 14 | | | | .0 | .0 | 2 | 9 | | | | 19 | | | 15 | 16 | 8 | | | | | | | | 19 | | 18 | | 16 | | | | | | | | 13 | | | 16 | | | 17 | | | 4 | | | | | | | | | | | 18 | | 8 | | | .0 | 3 | 11 | | 20 | 20 | | 17.5 | | 19 | 14.5 | | | | | | | 14 | | | 19 | | | 20 | 13 | | 4 | | .0 | | | | 19 | 19 | | 19 | | 21 | | | | | | 1 | 11 | | | | | | | 22 | 11 | 7 | | | .0 | | 11 | | | | 19 | 19 | | 23 | | | | | | | | 14 | 21.5 | 18 | | | | 24 | | | 4 | | | 2 | | | 19 | | | | | 25 | 11 | | | .0 | | | 17 | | | 19 | 16.5 | 16 | | 26 | | 6 | | | .0 | | | | 19.0 | | | | | 27 | | | | | | 2 | | | | | | 15.0 | | 28 | | | .0 | | | | | | | | 18 | | | 29 | 11 | | | | | | 8.5 | 17 | | 18 | ~ | | | 30 | | | .0 | .0 | | | | | 20 | | | 14 | | 31 | | | | | | 10 | | | | | 18 | | #### 05411400 SNY MAGILL CREEK NEAR CLAYTON, IA LOCATION.--Lat 42°56'55", long 91°11'10", in SW1/4 NE1/4 NW1/4 sec. 22, T.94 N., R.3 W. Clayton County, Hydrologic Unit 07060003, on right bank 130 ft downstream from bridge on county highway, 4.9 mi northwest of Clayton, and 0.9 mi upstream of county highway X56. DRAINAGE AREA.--27.6 mi<sup>2</sup>. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1, 1991 to current year. GAGE.--Water-stage encoder. REMARKS.--Estimated daily discharge: Dec. 23-30, Jan. 6-10, 14-24, Jan. 29 to Feb. 12, and Feb. 24 to Mar. 1. Records good except those for estimated daily discharges and discharges greater than 600 ft<sup>3</sup>/s, which are poor. U.S. Geological Survey data collection platform at station. | | DIS | CHARGE, | CUBIC F | EET PER S | SECOND, W | ATER Y | EAR OCTO | BER 1993 | TO SEP | TEMBER 199 | 4 | | |-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 29<br>28<br>28<br>27<br>27 | 30<br>30<br>31<br>31<br>30 | 22<br>22<br>22<br>22<br>22<br>22 | 18<br>18<br>17<br>17<br>16 | e19<br>e17<br>e15<br>e14<br>e13 | e20<br>20<br>20<br>32<br>90 | 21<br>21<br>21<br>22<br>23 | 23<br>21<br>21<br>20<br>21 | 17<br>17<br>17<br>16<br>17 | 22<br>21<br>21<br>34<br>24 | 19<br>19<br>20<br>21<br>19 | 15<br>15<br>17<br>16<br>16 | | 6<br>7<br>8<br>9 | 27<br>26<br>26<br>33<br>28 | 29<br>29<br>28<br>27<br>27 | 23<br>22<br>22<br>20<br>18 | e16<br>e15<br>e15<br>e16<br>e16 | e12<br>e12<br>e12<br>e13<br>e14 | 61<br>41<br>32<br>26<br>24 | 21<br>21<br>20<br>21<br>20 | 20<br>20<br>20<br>19<br>18 | 17<br>24<br>20<br>18<br>18 | 19<br>19<br>27<br>26<br>22 | 18<br>18<br>17<br>18<br>27 | -16<br>15<br>15<br>16<br>16 | | 11<br>12<br>13<br>14<br>15 | 27<br>26<br>26<br>26<br>27 | 29<br>30<br>34<br>30<br>31 | 17<br>17<br>18<br>18 | 17<br>17<br>16<br>e15<br>e14 | e14<br>e14<br>14<br>15<br>15 | 23<br>24<br>26<br>28<br>30 | 20<br>24<br>25<br>23<br>30 | 18<br>18<br>18<br>19 | 20<br>18<br>32<br>21<br>19 | 20<br>18<br>19<br>25<br>21 | 21<br>18<br>16<br>16<br>15 | 17<br>17<br>16<br>16<br>32 | | 16<br>17<br>18<br>19<br>20 | 28<br>27<br>2 <b>6</b><br>25<br>25 | 28<br>24<br>24<br>24<br>24 | 18<br>18<br>19<br>18<br>18 | e13<br>e14<br>e13<br>e13<br>e12 | 15<br>16<br>18<br>268<br>102 | 27<br>25<br>24<br>24<br>27 | 26<br>24<br>24<br>23<br>22 | 18<br>17<br>16<br>16<br>16 | 18<br>18<br>18<br>63<br>51 | 19<br>18<br>17<br>18<br>88 | 15<br>15<br>15<br>22<br>22 | 32<br>20<br>17<br>17<br>18 | | 21<br>22<br>23<br>24<br>25 | 26<br>25<br>24<br>24<br>25 | 24<br>24<br>23<br>23<br>27 | 18<br>18<br>e16<br>e15<br>e13 | e13<br>e14<br>e15<br>e15 | 41<br>31<br>21<br>e19<br>e18 | 30<br>28<br>27<br>25<br>24 | 21<br>20<br>20<br>20<br>21 | 16<br>16<br>20<br>22<br>21 | 28<br>26<br>162<br>94<br>53 | 33<br>27<br>22<br>21<br>20 | 16<br>15<br>15<br>13<br>15 | 17<br>19<br>21<br>21<br>42 | | 26<br>27<br>28<br>29<br>30<br>31 | 25<br>27<br>31<br>31<br>30<br>30 | 26<br>25<br>23<br>23<br>22 | e12<br>e13<br>e14<br>e15<br>e16<br>18 | 15<br>16<br>15<br>e15<br>e15<br>e16 | e17<br>e18<br>e19<br> | 23<br>23<br>23<br>22<br>21<br>21 | 22<br>21<br>21<br>21<br>22 | 22<br>19<br>18<br>18<br>18 | 38<br>32<br>29<br>27<br>23 | 21<br>18<br>19<br>21<br>21<br>20 | 15<br>14<br>15<br>15<br>16<br>16 | 51<br>38<br>28<br>23<br>19 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 840<br>27.1<br>33<br>24<br>1670<br>.98<br>1.13 | 810<br>27.0<br>34<br>22<br>1610<br>.98<br>1.09 | 562<br>18.1<br>23<br>12<br>1110<br>.66 | 473<br>15.3<br>18<br>12<br>938<br>.55 | 816<br>29.1<br>268<br>12<br>1620<br>1.06 | 891<br>28.7<br>90<br>20<br>1770<br>1.04<br>1.20 | 661<br>22.0<br>30<br>20<br>1310<br>.80 | 584<br>18.8<br>23<br>16<br>1160<br>.68 | 971<br>32.4<br>162<br>16<br>1930<br>1.17<br>1.31 | 741<br>23.9<br>88<br>17<br>1470<br>.87<br>1.00 | 536<br>17.3<br>27<br>13<br>1060<br>.63 | 638<br>21.3<br>51<br>15<br>1270<br>.77<br>.86 | | - | | | | | YEARS 1991 | | | | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 16.8<br>27.1<br>1994<br>11.5<br>1993 | 22.0<br>27.0<br>1994<br>18.2<br>1993 | 17.7<br>18.1<br>1994<br>17.2<br>1993 | 14.0<br>15.3<br>1994<br>13.1<br>1993 | 19.2<br>29.1<br>1994<br>10.4<br>1993 | 33.9<br>54.7<br>1993<br>18.4<br>1992 | 36.7<br>61.2<br>1993<br>22.0<br>1994 | 35.3<br>68.3<br>1993<br>18.8<br>1992 | 32.5<br>51.3<br>1993<br>13.8<br>1992 | 30.8<br>52.4<br>1993<br>16.3<br>1992 | 25.2<br>46.5<br>1993<br>12.0<br>1992 | 23.6<br>32.4<br>1993<br>17.2<br>1992 | | SUMMARY | STATISTI | c <b>s</b> | FOR 1 | 993 CALEN | IDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | ARS 1991 | - 1994 | | LOWEST<br>HIGHEST<br>LOWEST<br>ANNUAL<br>INSTANT<br>INSTANT<br>ANNUAL<br>ANNUAL<br>ANNUAL<br>10 PERC<br>50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS | | 14132.8<br>38.7<br>313<br>8.8<br>9.3<br>28030<br>1.40<br>19.05<br>68<br>31 | | | 268<br>12<br>13<br>524<br>6.34<br>8.6<br>16910<br>11.49<br>30<br>20 | Jan 13 | | 25.7<br>36.6<br>17.1<br>313<br>8.5<br>9.3<br>al,300<br>8.5<br>18600<br>9.3<br>12.64<br>47<br>18<br>12 | Oct<br>Feb 2<br>Aug 2<br>Aug 2 | 1993<br>1992<br>31 1993<br>1 1991<br>22 1993<br>23 1993<br>23 1993<br>1 1991 | e Estimated. a From rating curve extended above 600 ft3/s. #### 05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1991 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1991 to current year. WATER TEMPERATURES: April 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1991 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. Sample analyses marked with an asterisk are affected by precipitate which may influence the suspended-sediment percentage finer than .062 mm. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 650 microsiemens Apr. 18, 1992; minimum daily, 266 microsiemens Mar. 16, 1993. WATER TEMPERATURES: Maximum daily, 25.5°C June 22, 1993; minimum daily, 1.0°C Jan. 11, Feb. 1, 1994. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,390 mg/L Apr. 20, 1992; minimum daily mean, 0 mg/L Mar. 21, 22, 1993. SEDIMENT LOADS: Maximum daily, 1,850 tons Aug. 23, 1993; minimum daily, 0.01 tons Mar. 22, 1993. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 634 microsiemens June 22; minimum daily, 281 microsiemens Feb. 19. WATER TEMPERATURES: Maximum daily, 19.0°C June 6; minimum daily, 1.0°C Jan. 11, Feb. 1. SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,470 mg/L Feb. 19; minimum daily mean, 4 mg/L May 5. SEDIMENT LOADS: Maximum daily, 1,290 tons Feb. 19; minimum daily, 0.24 tons May 5. #### SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-----|-------------|-----|-----|-----|------|-----|-------------| | 1 | 438 | 429 | | | 497 | 467 | 430 | 504 | 383 | | 393 | | | 2 | 439 | | | 465 | | 585 | 471 | | | | 437 | | | 3 | | 419 | | 454 | | 461 | | | 398 | | 380 | | | 4 | 420 | | | | | 470 | 486 | | | | | 410 | | 5 | | | | | | 295 | 423 | 439 | | | 401 | | | 6 | 418 | | | 432 | | 424 | 440 | | 482 | | 389 | | | 7 | | | | | | 50 <b>6</b> | 527 | | | | 402 | | | 8 | 425 | | | | | 507 | 504 | | | | 393 | | | 9 | 462 | | 408 | | | 498 | 435 | 420 | | | 476 | 582 | | 10 | 412 | | | | | 425 | 403 | 386 | | | 487 | | | 11 | 415 | | | 427 | | 469 | 439 | 385 | | | | | | 12 | 430 | | | 534 | | 452 | 418 | | | | | | | 13 | 391 | | | | | 482 | 589 | | 493 | | 414 | | | 14 | | | | | 508 | 469 | | | | | 397 | | | 15 | | | | | 523 | 439 | 535 | 409 | 439 | | 470 | | | 16 | | 416 | | | | | 405 | 396 | | | 390 | | | 17 | | | | | 567 | | 442 | | | | 430 | | | 18 | | | | | 468 | 508 | | | | | | | | 19 | 412 | | | | 281 | | | | | | 491 | 442 | | 20 | 411 | 425 | | 427 | 423 | | 482 | 399 | 490 | 327 | 451 | | | 21 | 412 | | | | | 425 | 484 | | 443 | | | 478 | | 22 | 407 | | | | | 448 | 440 | 414 | 634 | | 406 | 51 <b>8</b> | | 23 | | | | | | 420 | 487 | 520 | 479 | | | | | 24 | 430 | | | | | 546 | | 382 | 454 | | | 426 | | 25 | | | | 464 | | 444 | 476 | 588 | | 415 | | 475 | | 26 | | | | | | 603 | | 466 | 547 | | | 568 | | 27 | | | | | 413 | | 424 | | 394 | | | 619 | | 28 | | | | | 619 | 523 | | 393 | | 40.4 | | | | 29 | 532 | | | | | 496 | 449 | | 406 | | | | | 30 | | | 400 | | | 450 | | | | | | | | 31 | | | 407 | | | 521 | | 426 | | | | | MISSISSIPPI RIVER BASIN 61 05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued #### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------| | | осто | BER | NOVEM | BER . | DECEM | BER | JANUA | RY | FEBRU | ARY | MARC | Н | | 1<br>2<br>3<br>4<br>5 | 10<br>8<br>8<br>8<br>9 | .77<br>.58<br>.60<br>.62 | 13<br>12<br>10<br>10 | 1.1<br>.97<br>.81<br>.84 | 11<br>12<br>13<br>13 | .65<br>.73<br>.75<br>.79 | 26<br>22<br>13<br>12<br>12 | 1.2<br>1.0<br>.61<br>.55 | 71<br>63<br>54<br>49<br>18 | 3.6<br>2.9<br>2.2<br>1.9<br>.63 | 29<br>47<br>33<br>84<br>1020 | 1.6<br>2.5<br>1.8<br>12<br>497 | | 6<br>7<br>8<br>9<br>10 | 17<br>33<br>45<br>43<br>53 | 1.3<br>2.3<br>3.2<br>3.9<br>4.0 | 11<br>11<br>10<br>10<br>11 | .90<br>.83<br>.75<br>.71<br>.83 | 16<br>20<br>27<br>32<br>29 | .99<br>1.2<br>1.6<br>1.7<br>1.4 | 19<br>22<br>25<br>26<br>26 | .82<br>.89<br>1.0<br>1.1<br>1.1 | 17<br>19<br>19<br>21<br>20 | .55<br>.62<br>.62<br>.74<br>.76 | 451<br>37<br>24<br>18<br>14 | 89<br>4.1<br>2.1<br>1.3<br>.92 | | 11<br>12<br>13<br>14<br>15 | 66<br>34<br>36<br>25<br>19 | 4.8<br>2.4<br>2.5<br>1.8<br>1.4 | 12<br>13<br>32<br>29<br>32 | .95<br>1.1<br>3.0<br>2.4<br>2.7 | 28<br>27<br>24<br>21<br>20 | 1.2<br>1.3<br>1.1<br>.98 | 31<br>29<br>27<br>29<br>20 | 1.4<br>1.3<br>1.2<br>1.2 | 22<br>20<br>21<br>22<br>32 | .83<br>.76<br>.79<br>.87<br>1.3 | 15<br>33<br>28<br>11<br>12 | .92<br>2.1<br>2.0<br>.82<br>.99 | | 16<br>17<br>18<br>19<br>20 | 18<br>17<br>20<br>14<br>17 | 1.3<br>1.3<br>1.4<br>.93 | 33<br>30<br>23<br>12<br>5 | 2.5<br>1.9<br>1.5<br>.79<br>.35 | 18<br>23<br>22<br>23<br>24 | .88<br>1.2<br>1.1<br>1.1<br>1.2 | 16<br>17<br>17<br>16<br>15 | .56<br>.64<br>.60<br>.56<br>.49 | 27<br>23<br>45<br>1470<br>175 | 1.1<br>1.0<br>2.4<br>1290<br>61 | 12<br>14<br>17<br>16<br>14 | .86<br>.95<br>1.1<br>1.1 | | 21<br>22<br>23<br>24<br>25 | 11<br>35<br>22<br>7<br>7 | .74<br>2.3<br>1.4<br>.48<br>.45 | 7<br>6<br>8<br>11<br>14 | .44<br>.40<br>.52<br>.67 | 24<br>23<br>22<br>20<br>18 | 1.2<br>1.1<br>.95<br>.81<br>.63 | 17<br>16<br>17<br>20<br>39 | .60<br>.69<br>.81 | 27<br>23<br>22<br>22<br>18 | 3.1<br>1.9<br>1.2<br>1.1<br>.87 | 14<br>19<br>27<br>20<br>16 | 1.1<br>1.4<br>2.0<br>1.4<br>1.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 8<br>9<br>9<br>10<br>11<br>12 | .55<br>.67<br>.75<br>.84<br>.87 | 9<br>7<br>7<br>9<br>7 | .64<br>.48<br>.45<br>.55<br>.41 | 20<br>19<br>20<br>11<br>9<br>28 | .65<br>.67<br>.76<br>.45<br>.39 | 48<br>46<br>49<br>54<br>59<br>73 | 2.0<br>2.0<br>2.0<br>2.2<br>2.4<br>3.2 | 23<br>27<br>17<br> | 1.1<br>1.3<br>.87<br> | 25<br>24<br>18<br>20<br>16<br>43 | 1.6<br>1.5<br>1.1<br>1.2<br>.90<br>2.4 | | TOTAL | | 47.01 | | 31.51 | | 30.54 | | 35.60 | 1 | 386.01 | | 639.76 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <b>AP</b> R1 | ı. | MAY | | JUNE | 3 | JULY | : | AUGU S | ST. | SEPTEME | BER | | 1<br>2<br>3<br>4<br>5 | APR1<br>20<br>28<br>17<br>13<br>11 | 1.1<br>1.6<br>.98<br>.80 | MAY<br>15<br>15<br>11<br>12<br>4 | .96<br>.86<br>.60<br>.66 | JUNE<br>32<br>19<br>26<br>27<br>29 | 1.5<br>.86<br>1.1<br>1.2<br>1.3 | JULY<br>40<br>31<br>33<br>63<br>29 | 2.4<br>1.8<br>1.9<br>7.2<br>1.9 | AUGUS<br>24<br>45<br>39<br>44<br>34 | 1.2<br>2.3<br>2.1<br>2.5<br>1.7 | SEPTEME<br>22<br>20<br>23<br>26<br>25 | .92<br>.84<br>1.0<br>1.1 | | 2<br>3<br>4 | 20<br>28<br>17<br>13 | 1.1<br>1.6<br>.98 | 15<br>15<br>11<br>12 | .86<br>.60<br>.66 | 32<br>19<br>26<br>27 | 1.5<br>.86<br>1.1<br>1.2 | 40<br>31<br>33<br>63 | 2.4<br>1.8<br>1.9<br>7.2 | 24<br>45<br>39<br>44 | 1.2<br>2.3<br>2.1<br>2.5 | 22<br>20<br>23<br>26 | .92<br>.84<br>1.0<br>1.1 | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 20<br>28<br>17<br>13<br>11<br>21<br>16<br>21<br>22 | 1.1<br>1.6<br>.98<br>.80<br>.68<br>1.2<br>.90<br>1.1 | 15<br>15<br>11<br>12<br>4<br>7<br>9 | .86<br>.60<br>.66<br>.24<br>.37<br>.49 | 32<br>19<br>26<br>27<br>29<br>38<br>43<br>32<br>29 | 1.5<br>.86<br>1.1<br>1.2<br>1.3<br>1.7<br>2.8<br>1.7 | 40<br>31<br>33<br>63<br>29<br>25<br>23<br>29<br>26 | 2.4<br>1.8<br>1.9<br>7.2<br>1.9<br>1.3<br>1.2<br>2.1 | 24<br>45<br>39<br>44<br>34<br>28<br>51<br>52<br>53 | 1.2<br>2.3<br>2.1<br>2.5<br>1.7<br>1.3<br>2.4<br>2.4<br>2.5 | 22<br>20<br>23<br>26<br>25<br>23<br>25<br>23<br>21 | .92<br>.84<br>1.0<br>1.1<br>1.1<br>1.0<br>1.0 | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 20<br>28<br>17<br>13<br>11<br>21<br>26<br>21<br>22<br>9 | 1.1<br>1.6<br>.98<br>.80<br>.68<br>1.2<br>.90<br>1.1<br>1.2<br>.51 | 15<br>15<br>11<br>12<br>4<br>7<br>9<br>10<br>9<br>17 | .86<br>.60<br>.66<br>.24<br>.37<br>.49<br>.51<br>.49<br>.83 | 32<br>19<br>26<br>27<br>29<br>38<br>43<br>32<br>29<br>27<br>30<br>13<br>75<br>15<br>21<br>19<br>21<br>23<br>746 | 1.5<br>.86<br>1.1<br>1.2<br>1.3<br>1.7<br>2.8<br>1.7<br>1.4<br>1.3 | 40<br>31<br>33<br>63<br>29<br>25<br>23<br>29<br>26<br>24<br>23<br>22<br>22<br>22<br>28 | 2.4<br>1.8<br>1.9<br>7.2<br>1.9<br>1.3<br>1.2<br>2.1<br>1.8<br>1.4 | 24<br>45<br>39<br>44<br>34<br>28<br>51<br>52<br>53<br>45<br>41<br>39<br>31<br>23 | 1.2<br>2.3<br>2.1<br>2.5<br>1.7<br>1.3<br>2.4<br>2.5<br>3.2<br>2.4<br>2.5<br>3.2 | 22<br>20<br>23<br>26<br>25<br>23<br>25<br>23<br>21<br>23<br>22<br>24<br>25 | .92<br>.84<br>1.0<br>1.1<br>1.1<br>1.0<br>.93<br>.91<br>1.0 | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 20<br>28<br>17<br>13<br>11<br>21<br>16<br>21<br>22<br>9<br>16<br>23<br>13<br>11<br>27 | 1.1<br>1.6<br>.98<br>.80<br>.68<br>1.2<br>.90<br>1.1<br>1.2<br>.51<br>.87<br>1.5<br>.88<br>.68<br>2.1<br>2.76<br>.98 | 15<br>15<br>11<br>12<br>4<br>7<br>9<br>10<br>9<br>17<br>16<br>19<br>15<br>15<br>15<br>15<br>29<br>28<br>27<br>25 | .86<br>.666<br>.24<br>.37<br>.49<br>.519<br>.49<br>.519<br>.71<br>.78<br>.74 | 32<br>19<br>26<br>27<br>29<br>38<br>43<br>32<br>29<br>27<br>30<br>13<br>75<br>15<br>21<br>19<br>21<br>23<br>746 | 1.5<br>.86<br>1.1<br>1.2<br>1.3<br>1.7<br>2.8<br>1.7<br>1.4<br>1.3<br>1.6<br>.63<br>8.4<br>.83<br>1.1<br>.91<br>1.0<br>1.1<br>498<br>177 | 40<br>31<br>33<br>63<br>29<br>25<br>23<br>29<br>26<br>24<br>22<br>22<br>22<br>22<br>27<br>25<br>34<br>51<br>72 | 2.4<br>1.8<br>1.9<br>7.9<br>1.3<br>1.2<br>2.1<br>1.4<br>1.1<br>1.1<br>1.9<br>1.5<br>1.7<br>4.5 | 24<br>45<br>39<br>44<br>34<br>28<br>51<br>52<br>53<br>45<br>41<br>39<br>31<br>23<br>13<br>38<br>14<br>8<br>78 | 1.2<br>2.3<br>2.1<br>2.5<br>1.7<br>1.3<br>2.4<br>2.5<br>3.2<br>2.4<br>1.8<br>1.95<br>5.51<br>1.5<br>8.3<br>6.7 | 22<br>20<br>23<br>26<br>25<br>23<br>25<br>23<br>21<br>23<br>22<br>24<br>25<br>24<br>25<br>33<br>33<br>33<br>33 | .92<br>.84<br>1.0<br>1.1<br>1.0<br>1.0<br>.93<br>.91<br>1.0<br>.98<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1 | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 20<br>28<br>17<br>13<br>11<br>21<br>16<br>21<br>22<br>9<br>16<br>23<br>13<br>11<br>27<br>31<br>112<br>15<br>17<br>24 | 1.1<br>1.6<br>.98<br>.80<br>.68<br>1.2<br>.90<br>1.1<br>1.2<br>.51<br>.87<br>1.5<br>.88<br>2.1<br>2.7<br>68<br>2.1<br>2.7<br>68<br>2.1<br>2.7<br>68<br>3.3<br>1.5<br>3.3<br>3.3<br>3.3<br>3.3<br>3.3<br>3.3<br>3.3<br>3.3<br>3.3<br>3 | 15<br>15<br>11<br>12<br>4<br>7<br>9<br>10<br>9<br>17<br>16<br>19<br>15<br>15<br>15<br>15<br>15<br>29<br>28<br>27<br>22<br>22<br>23<br>19<br>99<br>50 | .86<br>.666<br>.24<br>.37<br>.49<br>.83<br>.75<br>.71<br>.78<br>.74<br>1.3<br>1.2<br>1.9<br>7<br>.80<br>7.4 | 32<br>19<br>26<br>27<br>29<br>38<br>43<br>32<br>29<br>27<br>30<br>13<br>75<br>15<br>21<br>23<br>746<br>798<br>43<br>34<br>1040 1 | 1.5<br>.86<br>1.1<br>1.2<br>1.3<br>1.7<br>2.8<br>1.7<br>1.4<br>1.3<br>1.6<br>.63<br>8.4<br>.83<br>1.1<br>1.0<br>1.1<br>498<br>177<br>3.2<br>2.4 | 40<br>31<br>33<br>63<br>29<br>25<br>23<br>29<br>26<br>24<br>23<br>22<br>22<br>28<br>27<br>25<br>34<br>51<br>72<br>1000 | 2.4<br>1.8<br>1.9<br>1.9<br>1.3<br>1.2<br>2.1<br>1.4<br>1.1<br>1.1<br>1.5<br>1.7<br>2.4.5<br>478<br>5.0<br>3.3<br>2.1 | 24<br>45<br>39<br>44<br>34<br>28<br>51<br>52<br>53<br>45<br>41<br>39<br>31<br>31<br>38<br>14<br>8<br>78<br>78<br>78<br>12<br>12<br>13 | 1.2<br>2.3<br>2.1<br>2.5<br>1.7<br>1.3<br>2.4<br>2.4<br>2.5<br>3.2<br>2.4<br>1.8<br>4.95<br>5.51<br>1.5<br>8.37<br>3.7<br>1.3<br>6.7<br>3.7 | 22<br>20<br>23<br>26<br>25<br>23<br>25<br>23<br>21<br>23<br>22<br>24<br>25<br>24<br>25<br>35<br>33<br>37<br>77 | .92<br>.84<br>1.0<br>1.1<br>1.0<br>1.0<br>.93<br>.91<br>1.0<br>.98<br>1.1<br>1.1<br>1.1<br>1.5<br>4.0<br>1.9<br>1.6<br>3.8<br>3.8<br>4.9<br>6.7 | #### 05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | |----------|------|------|-----|------|-----|-------------|-------------|------|------|------|--------------|------| | 1 2 | 13.0 | 12.0 | | 4.0 | 1.0 | 6.0<br>5.0 | 15.0<br>5.0 | 5.0 | 10.0 | | 10.0<br>15.0 | | | 3 | | 13.0 | | 4.0 | | 4.0 | | | 15.0 | | 10.0 | | | 5 | | | | | | 3.0<br>5.0 | 5.0<br>4.0 | 8.0 | | | 15.0 | | | 6 | | | | | | 5.0 | 3.0 | | 19.0 | | 10.0 | | | 7 | | | | | | 5.0 | 7.0 | | | | 13.0 | | | 8<br>9 | | | 4.0 | | | 5.0 | 7.0 | 8.0 | | | 15.0<br>10.0 | 17.5 | | 10 | | | | | | 6.0<br>3.0 | 5.0<br>7.0 | 8.0 | | | 10.0 | 17.5 | | 11 | | | | 1.0 | | 6.0 | 5.0 | 15.0 | | | | | | 12 | | | | | | 8.0 | 5.0 | | | | | | | 13 | | | | | | 5.0 | 5.0 | | 15.0 | | 15.0 | | | 14 | | | | | 3.0 | 8.0 | | | | | 16.0 | | | 15 | | | | | 3.0 | 7.0 | 5.0 | 15.0 | 15.0 | | 14.0 | | | 16 | | 6.0 | | | 5.0 | | 5.0 | 15.0 | | | 15.0 | | | 17 | | | | | | | 6.0 | | | | 15.0 | | | 18 | | | | | 5.0 | 5.0 | | | | | | | | 19 | 12.5 | 10.0 | | | 4.0 | | | 15.0 | 15.0 | | 10.0 | 17.0 | | 20 | 13.0 | 12.0 | | | 3.0 | | 5.0 | 15.0 | 15.0 | 15.0 | 10.0 | | | 21 | 13.0 | | | | | 7.0 | 7.0 | | 15.0 | | | 10.0 | | 22 | 12.0 | | | | | 15.0 | 8.0 | | 15.0 | | 14.0 | 10.0 | | 23 | | | | | | 15.0 | 8.0 | 15.0 | 10.0 | | | | | 24 | 12.0 | | | | | 4.0 | | 15.0 | 10.0 | | | 15.0 | | 25 | | | | | | 6.0 | 5.0 | 15.0 | | 18.5 | | 15.0 | | 26 | | | | | | 5.0 | | 10.0 | 15.0 | | | 15.0 | | 27 | | | | **** | 5.0 | | 5.0 | | 15.0 | | | 13.0 | | 28 | | | | | 5.0 | 8.0 | | 15.0 | | 17.0 | | | | 29<br>30 | 13.0 | | 4.0 | | | 5.0 | 5.0 | | 12.0 | | | | | 31 | | | 4.0 | | | 9.0<br>10.0 | | 15.0 | | | | | | | | | | | | | | | | | | | #### 05411950 BIG SPRING NEAR ELKADER, IA LOCATION.--Lat 42°54'33", long 91°28'01", in SE1/4 NE1/4 SE1/4 sec.31, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, at base of bluff 300 ft from left bank of Turkey River at Big Springs Fish Hatchery, and 6 mi northwest of Elkader. DRAINAGE AREA.--103 mi<sup>2</sup>, determined by the Iowa Department of Natural Resources, Geological Survey Bureau. PERIOD OF RECORD.—April and May 1938, March to October 1982, April to September 1983, March, May to August, 1988, (discharge measurements only), October 1989 to September 30, 1991 (gage heights and discharge measurements only), and October 1991 to current year. Prior to October 1991, daily mean discharges published in open-file reports of the U.S. Geological Survey. REVISED RECORDS.--WDR IA-75-1: 1974. GAGE.--Water-stage recorder. Datum of gage is 1,034.92 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 15, 18, Jan. 14, 28, 29, Feb. 1, 2, 19-23, Apr. 1-5, 24, and July 19 to Sept. 12. Records fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. Total flow of spring is not accounted for due to diversion to trout ponds from back spring. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 EXTREMES OUTSIDE PERIOD OF RECORD.-Maximum discharge, 586 ft<sup>3</sup>/s June 15, 1991, gage height 24.74 ft. | | DE | CHARGE, | CORICE | EET PEK | | MEAN V | | DBEK 1993 | OSEPI | EMBEK 199 | 4 | | |--------------|--------------|--------------|--------------|--------------|------------------|----------------------|----------------------------|------------------|--------------|--------------|--------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 55 | 44 | 32 | 24 | e27 | 40 | e44 | 35 | 26 | 48 | e41 | e21 | | 2 | 53 | 43 | 31 | 24 | e26 | 40 | e42 | 34 | 25 | 46 | e40 | e21 | | 3 | 53 | 43 | 33 | 23 | 26 | 40 | e42 | 34 | 25 | 42 | e38 | e21 | | 4 | 52 | 42 | 32 | 25 | 26 | 47 | e41 | 35 | 25 | 44 | e37 | e23 | | 5 | 52 | 42 | 31 | 28 | 26 | 131 | e40 | 34 | 26 | 43 | e34 | e21 | | 6<br>7 | 52<br>52 | 41<br>41 | 30<br>30 | 29<br>27 | 25<br>24 | 158<br>105 | 40<br>38 | 34<br>34 | 26<br>29 | 41<br>41 | `e32<br>e32 | e21<br>e21 | | é | 51 | 40 | 30 | 27 | 25 | 80 | 38 | 34 | 27 | 41 | e30 | e22 | | ğ | 55 | 39 | 30 | 27 | 24 | 64 | 37 | 33 | 26 | 41 | e30 | e19 | | 10 | 52 | 39 | 28 | 27 | 23 | 58 | 35 | 31 | 26 | 38 | e35 | e21 | | 11 | 52 | 39 | 28 | 27 | 24 | 55 | 34 | 31 | 27 | 38 | e47 | e20 | | 12 | 53 | 39 | 29 | 29 | 24 | 60 | 35 | 30 | 26 | 37<br>37 | e44 | e20<br>20 | | 13<br>14 | 52<br>51 | 40<br>38 | 29<br>29 | 28<br>e27 | 23<br>25 | 61 | 3/ | 30<br>30 | 44<br>37 | 37 | e39<br>e36 | 20 | | 15 | 51 | e38 | 28 | 27 | 23 | 60<br>67<br>64<br>68 | 34<br>35<br>37<br>35<br>42 | 30 | 33 | 35 | e35 | 19 | | 16 | 52 | 37 | 29 | 27 | 23 | | | 27 | 33 | 34 | e32 | 19 | | 17 | 50 | 37 | 29 | 28 | 23 | 56 | 41 | 27 | 33 | 35 | e30 | 19 | | 18 | 50 | e37 | 29 | 28 | 26 | 52 | 41 | 27 | 33 | 33 | e28<br>e30 | 19<br>19 | | 19<br>20 | 49<br>50 | 35<br>35 | 29<br>29 | 28<br>28 | e228<br>e261 | 51<br>53 | 40<br>40 | 27<br>27 | 34<br>33 | e35<br>e115 | e29 | 19 | | 21 | 50 | 35 | 27 | 28 | e102 | 57 | 40 | 26 | 31 | e89 | e27 | 19 | | 22 | 50 | 35 | 27 | 28 | e74 | 56 | 39 | 25 | 31 | e65 | e25 | 19 | | 23 | 49 | 35 | 27 | 28 | | 55 | 39 | 25 | 45 | e54 | e23 | 20 | | 24 | 49 | 35 | 28 | 28 | 49<br>46 | 52 | e40 | 31 | 69 | e48 | e22 | 19<br>22 | | 25 | 49 | 35 | 28 | 28 | 46 | 49 | 40 | 27 | 60 | e46 | e21 | | | 26 | 48 | 35 | 28 | 28 | 43 | 48 | 42 | 32 | 56 | e43 | e21 | 27 | | 27 | 48 | 34 | 25 | 28 | 41 | 46 | 38 | 28 | 53 | e41 | e22 | 23 | | 28<br>29 | 47<br>45 | 34<br>32 | 23<br>23 | e27<br>e27 | 41 | 43<br>41 | 36<br>36 | 28<br>27 | 52<br>50 | e37<br>e35 | e22<br>e22 | 21<br>21 | | 30 | 43 | 32<br>31 | 23 | e2 /<br>28 | | 41 | 34 | 27 | 48 | e38 | e22 | 21 | | 31 | 43 | | 24 | 28 | | 42 | | 28 | | e40 | e21 | | | TOTAL | 1558 | 1130 | 878 | 844 | 1382 | 1880 | 1169 | 928 | 1089 | 1397 | 947 | 617 | | MEAN | 50.3 | 37.7 | 28.3 | 27.2 | 49.4 | 60.6 | 39.0 | 29.9 | 36.3 | 45.1 | 30.5 | 20.6 | | MAX | 55 | 44 | 33 | 29 | 261 | 158 | 44 | 35 | 69 | 115 | 47 | 27 | | MIN<br>AC-FT | 43<br>3090 | 31<br>2240 | 23<br>1740 | 23<br>1670 | 23 | 40<br>3730 | 34<br>2320 | 25<br>1840 | 25<br>2160 | 33<br>2770 | 21<br>1880 | 19<br>1220 | | | | | | | 2740 | | | | 2160 | 2110 | 1000 | 1220 | | STATIST | ICS OF MK | NTHLY MEAN | DATA F | OR WATER | YEARS 1989 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 25.5 | 30.5 | 30.0 | 26.6 | 28.1 | 53.0 | 60.0 | 47.4 | 51.8 | 49.7 | 38.4 | 34.6 | | MAX | 50.3 | 66.9 | 66.6 | 47.1 | 49.4 | 97.7 | 118 | 87.7 | 124 | 120 | 81.6 | 67.6 | | (WY) | 1994 | 1992 | 1992 | 1992 | 1994 | 1993 | 1993 | 1993 | 1991 | 1993 | 1993<br>11.4 | 1993<br>12.3 | | MIN<br>(WY) | 11.1<br>1990 | 11.1<br>1990 | 9.74<br>1990 | 11.8<br>1990 | 12.6<br>1989 | 20.9<br>1989 | 13.2<br>1989 | 12.2<br>1989 | 11.6<br>1989 | 10.2<br>1989 | 1989 | 1989 | | SUMMARY | STATIST | cs | FOR | 1993 CALEI | NDAR YEAR | F | OR 1994 W | ATER YEAR | | WATER YE | RS 1989 | - 1994 | | ANNUAL | TOTAL | | | 25619 | | | 13819 | | | | | | | ANNUAL | MEAN | | | 70.2 | | | 37.9 | | | 39.7 | | | | | ANNUAL M | | | | | | | | | 70.5 | | 1993 | | | ANNUAL ME | | | | | | | D-1-00 | | 13.2 | W " | 1989 | | | DAILY MEA | | | 416<br>23 | Mar 31<br>Dec 28 | | 261 | Feb 20<br>Sep 9a | | 416<br>9.4 | mar 3 | 1 1993<br>26 1989 | | | | MINIMUM | | 23<br>25 | Dec 25 | | 19<br>19 | Sep 15 | | 9.5 | | 1 1989 | | | ANEOUS PE | | | | 200 23 | | 261 | Feb 20 | | 416 | | 1 1993 | | ANNUAL | RUNOFF (A | C-FT) | | 50820 | | | 27410 | | | 28740 | | | | 10 PERC | ENT EXCEE | DS | | 125 | | | 52 | | | 80 | | | | | ENT EXCEE | | | 55 | | | 34 | | | 31 | | | | 90 PERC | ENT EXCEE | ມຣ | | 31 | | | 23 | | | 11 | | | e Estimated. a Also Sept. 15-22. #### 05412060 SILVER CREEK NEAR LUANA, IA LOCATION.--Lat 43°01'19", long 91°29'21", in NE1/4 sec.25, T.95 N., R.6 W., Clayton County, Hydrologic Unit 07060004, on right upstream bank at bridge on county road W70, 2.3 miles south of Highway 52 and 18, and 3.2 miles south of Luana. DRAINAGE AREA.--4.39 mi<sup>2</sup>. PERIOD OF RECORD .-- May 1986 to current year. GAGE .-- Water-stage recorder. REMARKS.--Estimated daily discharges: Oct. 1-14, Dec. 4-8, Dec. 11 to Jan. 25, Jan. 28-30, and Feb. 4 to Mar. 2. Records good except those for estimated daily discharges, which are poor. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1<br>2<br>3<br>4<br>5 | e2.9<br>e2.8<br>e2.7<br>e2.7<br>e2.6 | 3.0<br>3.0<br>3.0<br>3.0<br>2.9 | 2.0<br>2.0<br>2.0<br>e1.6<br>e1.5 | el.8<br>el.8<br>el.7<br>el.6<br>el.6 | 1.3<br>1.3<br>1.3<br>e1.2<br>e1.1 | el.0<br>el.1<br>1.2<br>4.6<br>52 | 1.2<br>1.2<br>1.2<br>1.3 | 1.9<br>1.6<br>1.5<br>1.6 | 1.0<br>1.1<br>1.1<br>1.1 | 2.5<br>1.9<br>1.6<br>1.9<br>1.8 | 2.0<br>2.0<br>1.9<br>1.5 | .90<br>.92<br>1.1<br>.91<br>.88 | | | | 6<br>7<br>8<br>9 | e2.6<br>e2.5<br>e2.9<br>e3.4<br>e2.9 | 2.4<br>2.4<br>2.4<br>2.4<br>2.4 | e1.2<br>e1.3<br>e2.0<br>2.0 | e1.5<br>e1.5<br>e1.4<br>e1.5<br>e1.6 | e1.1<br>e1.1<br>e1.0<br>e.97<br>e.90 | 17<br>8.8<br>3.6<br>1.8<br>1.7 | 1.3<br>1.3<br>1.4<br>1.4 | 1.5<br>1.4<br>1.4<br>1.4 | 1.1<br>1.3<br>1.2<br>1.4<br>2.1 | 1.7<br>2.0<br>3.0<br>2.3<br>1.7 | 1.4<br>1.2<br>1.2<br>1.3<br>4.5 | .81<br>.80<br>.82<br>.83 | | | | 11<br>12<br>13<br>14<br>15 | e2.7<br>e2.6<br>e2.9<br>e3.1<br>2.8 | 2.4<br>2.5<br>2.8<br>2.2<br>2.0 | e1.7<br>e1.7<br>e1.6<br>e1.6<br>e1.6 | e1.6<br>e1.5<br>e1.4<br>e1.2<br>e1.1 | e1.0<br>e1.1<br>e1.2<br>e1.3<br>e1.4 | 2.0<br>3.7<br>3.0<br>3.7<br>3.6 | 1.4<br>2.4<br>2.0<br>1.6<br>4.4 | 1.3<br>1.4<br>1.3 | 2.1<br>1.7<br>7.7<br>3.9<br>3.2 | 1.7<br>1.6<br>1.3<br>1.4 | 3.0<br>2.3<br>2.0<br>2.2<br>2.0 | .80<br>.80<br>.81<br>.84 | | | | 16<br>17<br>18<br>19<br>20 | 3.4<br>3.1<br>2.5<br>2.4<br>2.4 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0 | el.7<br>el.8<br>el.9<br>el.8<br>el.8 | e1.2<br>e1.1<br>e1.0<br>e1.0<br>e1.1 | e1.5<br>e2.0<br>e4.0<br>e28<br>e4.0 | 1.8<br>1.5<br>1.5<br>1.5<br>2.3 | 3.2<br>2.5<br>2.4<br>1.9<br>1.6 | 1.3<br>1.3<br>1.2<br>1.2 | 3.0<br>3.0<br>3.4<br>3.2<br>2.2 | 1.2<br>1.1<br>1.1<br>1.6<br>12 | 2.1<br>2.0<br>1.7<br>1.8<br>2.4 | 1.1<br>.80<br>.80<br>.80 | | | | 21<br>22<br>23<br>24<br>25 | 2.4<br>2.6<br>3.0<br>3.0 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0 | e1.7<br>e1.7<br>e1.7<br>e1.6<br>e1.5 | e1.2<br>e1.3<br>e1.4<br>e1.5<br>e1.5 | e2.0<br>e1.3<br>e1.0<br>e.96<br>e.92 | 2.8<br>2.2<br>2.1<br>1.8<br>1.6 | 1.6<br>1.6<br>1.9<br>2.2<br>2.1 | 1.3<br>1.3<br>2.0<br>1.5<br>2.9 | 2.4<br>2.4<br>7.5<br>6.2<br>5.3 | 5.2<br>4.1<br>2.9<br>1.8<br>1.9 | 2.0<br>1.7<br>1.6<br>1.3<br>1.2 | .80<br>.91<br>.97<br>1.0<br>3.8 | | | | 26<br>27<br>28<br>29<br>30<br>31 | 3.0<br>3.2<br>3.0<br>2.4<br>2.4<br>2.8 | 2.4<br>2.4<br>2.4<br>1.9<br>2.0 | e1.4<br>e1.3<br>e1.4<br>e1.5<br>e1.6<br>e1.7 | 1.4<br>1.3<br>e1.4<br>e1.5<br>e1.2<br>1.4 | e.88<br>e.84<br>e.90 | 1.6<br>1.5<br>1.2<br>1.2<br>1.2 | 3.5<br>2.3<br>1.7<br>1.6<br>1.7 | 2.4<br>1.4<br>1.3<br>1.3<br>1.2 | 4.5<br>4.1<br>3.5<br>3.2<br>2.7 | 2.1<br>1.7<br>1.6<br>1.7<br>1.8<br>2.4 | 1.2<br>1.1<br>1.1<br>1.1<br>1.1<br>.96 | 3.2<br>1.1<br>.91<br>.75<br>.75 | | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 86.7<br>2.80<br>3.4<br>2.4<br>172<br>.64 | 69.9<br>2.33<br>3.0<br>1.9<br>139<br>.53 | 51.7<br>1.67<br>2.0<br>1.2<br>103<br>.38 | 43.3<br>1.40<br>1.8<br>1.0<br>86<br>.32 | 65.57<br>2.34<br>28<br>.84<br>130<br>.53 | 136.2<br>4.39<br>52<br>1.0<br>270<br>1.00 | 56.5<br>1.88<br>4.4<br>1.2<br>112<br>.43 | 45.8<br>1.48<br>2.9<br>1.1<br>91<br>.34 | 87.7<br>2.92<br>7.7<br>1.0<br>174<br>.67 | 71.8<br>2.32<br>12<br>1.1<br>142<br>.53<br>.61 | 54.46<br>1.76<br>4.5<br>.96<br>108<br>.40 | 31.34<br>1.04<br>3.8<br>.71<br>62<br>.24 | | | | STATIST MEAN MAX (WY) MIN (WY) | 1.33<br>2.80<br>1994<br>.12 | 2.68<br>11.1<br>1992<br>.11 | 2.34<br>9.34<br>1992<br>.023 | 1.69<br>5.21<br>1992<br>.006 | 1.70<br>5.64<br>1992<br>.18 | 6.05<br>17.7<br>1993<br>2.44<br>1987 | 4.50<br>12.1<br>1993<br>.12<br>1989 | YEAR (WY) 3.08 8.17 1993 .20 1989 | 6.42<br>32.3<br>1991<br>.16<br>1989 | 2.79<br>14.0<br>1993<br>.14<br>1989 | 2.54<br>6.74<br>1993<br>.18<br>1988 | 2.56<br>8.65<br>1992<br>.24 | | | | | 1990<br>STATISTI | 1990<br>cs | 1990<br>FOR 1 | 1990<br>993 CALE | 1990<br>MDAR YEAR | | 1909<br>OR 1994 WAS | | | WATER YE | | 1989 | | | | LOWEST : HIGHEST LOWEST : ANNUAL : INSTANT: INSTANT: | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY ANEOUS PE ANEOUS PE | EAN<br>AN<br>AN<br>N<br>MINIMUM<br>AK FLOW<br>AK STAGE | | 2697.66<br>7.39<br>86<br>1.1 | )<br>9<br>Mar 31 | | 800.97<br>2.19<br>52<br>.71<br>.81<br>200<br>7.77 | Mar 5<br>Sep 20<br>Sep 6<br>Mar 5 | | 3.24<br>7.90<br>.76<br>431<br>.00<br>.00<br>3300<br>11.58<br>2350 | Jun 1<br>Aug 2<br>Dec 1<br>Jun 1 | 1993<br>1989<br>15 1991<br>21 1989<br>12 1989<br>15 1991 | | | | ANNUAL I<br>ANNUAL I<br>10 PERCI<br>50 PERCI | RUNOFF (A<br>RUNOFF (C<br>RUNOFF (I<br>ENT EXCEE<br>ENT EXCEE<br>ENT EXCEE | FSM)<br>NCHES)<br>DS<br>DS | | 1.68<br>22.86<br>13<br>4.0<br>1.8 | | | .50<br>6.79<br>3.1<br>1.6<br>1.0 | | | .74<br>10.03<br>6.2<br>1.3 | | | | | e Estimated. #### 05412100 ROBERTS CREEK ABOVE SAINT OLAF, IA LOCATION.--Lat 42°55'49", long 91°23'03", in SW1/4 NW1/4 sec.25, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, on left downstream bank at bridge on road X28, 0.1 mi north of county road B65, on north edge of Saint Olaf. DRAINAGE AREA.--70.7 mi<sup>2</sup>. PERIOD OF RECORD. -- September 1957 to July 1977 (operated as a low-flow station only), March 1986 to current year. GAGE.--Water-stage recorder. Datum of gage is 826.73 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 22 to Mar. 8. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. | | DIS | CHARGE, | CUBIC 1 | FEET PER | SECOND, V<br>DAILY | WATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEPT | EMBER 19 | 94 | | |-----------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 29<br>27<br>26<br>26<br>25 | 21<br>21<br>21<br>21<br>21 | 21<br>21<br>19<br>19 | e11<br>e10<br>e9.8<br>e9.8 | e8.4<br>e8.6<br>e8.6<br>e8.6<br>e8.6 | e8.8<br>e9.4<br>e10<br>e11<br>e150 | 21<br>21<br>20<br>20<br>20 | 16<br>16<br>14<br>13 | 6.6<br>6.6<br>6.5<br>6.5 | 9.5<br>8.8<br>8.2<br>8.3<br>9.6 | 12<br>11<br>11<br>11<br>10 | 8.2<br>8.0<br>8.9<br>9.4<br>8.4 | | 6<br>7<br>8<br>9<br>10 | 25<br>26<br>25<br>34<br>33 | 20<br>19<br>20<br>20<br>19 | 19<br>18<br>18<br>18<br>20 | e9.4<br>e9.2<br>e8.8<br>e9.0<br>e9.6 | e8.5<br>e8.4<br>e8.3<br>e8.2<br>e8.0 | e320<br>e110<br>e80<br>55<br>43 | 19<br>19<br>18<br>18 | 13<br>14<br>14<br>13<br>12 | 6.4<br>6.3<br>6.7<br>6.5<br>6.0 | 8.2<br>8.9<br>9.6<br>11<br>9.1 | 9.9<br>9.7<br>9.5<br>9.1 | 8.1<br>7.6<br>8.3<br>8.0<br>7.2 | | 11<br>12<br>13<br>14<br>15 | 29<br>28<br>27<br>26<br>25 | 18<br>18<br>20<br>22<br>21 | 16<br>19<br>20<br>19 | e10<br>e11<br>e11<br>e10<br>e10 | e7.9<br>e7.8<br>e7.6<br>e7.3<br>e7.0 | 36<br>38<br>50<br>41<br>52 | 17<br>17<br>22<br>20<br>26 | 11<br>11<br>11<br>10<br>10 | 6.8<br>6.7<br>22<br>19<br>11 | 8.1<br>7.7<br>7.4<br>7.5<br>7.3 | 22<br>14<br>13<br>11 | | | 16<br>17<br>18<br>19<br>20 | 28<br>28<br>26<br>26<br>25 | 20<br>20<br>20<br>20<br>20 | 18<br>18<br>19<br>19 | e8.6<br>e9.0<br>e8.8<br>e8.8 | e6.9<br>e7.0<br>e7.4<br>e140<br>e88 | 39<br>33<br>31<br>31<br>30 | | 10<br>9.5<br>9.2<br>9.2<br>9.0 | 9.2<br>8.3<br>7.8<br>9.9<br>8.7 | 6.9<br>6.8<br>6.6<br>6.2<br>65 | 11<br>11<br>11<br>12<br>10 | 8.3<br>11<br>7.9<br>7.4<br>7.1 | | 21<br>22<br>23<br>24<br>25 | 25<br>25<br>25<br>24<br>24 | 20<br>21<br>21<br>22<br>22 | 17<br>e15<br>e14<br>e13<br>e13 | e8.8<br>e9.4<br>e9.8<br>e9.6<br>e9.2 | e52<br>e30<br>e17<br>e11<br>e9.5 | 34<br>33<br>30<br>29<br>27 | 16<br>16<br>15<br>15<br>15 | 8.8<br>8.2<br>8.5<br>12 | 8.0<br>7.1<br>12<br>47<br>19 | 32<br>22<br>18<br>16<br>15 | 9.9<br>8.8<br>8.6<br>8.2<br>8.1 | 7.4<br>7.9<br>8.4<br>8.7 | | 26<br>27<br>28<br>29<br>30<br>31 | 24<br>23<br>22<br>22<br>22<br>22 | 24<br>22<br>23<br>21<br>20 | e12<br>e11<br>e10<br>e11<br>e11<br>e12 | e9.4<br>e9.6<br>e9.2<br>e8.8<br>e8.4<br>e8.0 | e8.6<br>e9.0<br>e9.2<br> | 25<br>25<br>24<br>23<br>22<br>22 | 17<br>19<br>15<br>15<br>16 | 10<br>9.8<br>8.7<br>8.2<br>7.9<br>7.5 | 15<br>13<br>11<br>10<br>9.7 | 13<br>13<br>12<br>12<br>12<br>11 | 8.2<br>9.2<br>8.2<br>7.6<br>7.7<br>8.3 | 17<br>11<br>8.0<br>7.0<br>6.4 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 801<br>25.8<br>34<br>21<br>1590<br>.37 | 618<br>20.6<br>24<br>18<br>1230<br>.29 | 517<br>16.7<br>21<br>10<br>1030<br>.24<br>.27 | 293.2<br>9.46<br>11<br>8.0<br>582<br>.13 | | 1472.2<br>47.5<br>320<br>8.8<br>2920<br>.67 | 556<br>18.5<br>27<br>15<br>1100<br>.26<br>.29 | 338.5<br>10.9<br>16<br>7.5<br>671<br>.15 | 325.9<br>10.9<br>47<br>6.0<br>646<br>.15 | 65 | 323.0<br>10.4<br>22<br>7.6<br>641<br>.15<br>.17 | 249.4<br>8.31<br>17<br>6.3<br>495<br>.12 | | STATIST | ICS OF MO | | N DATA F | OR WATER | | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 10.4<br>25.8<br>1994<br>.075<br>1990 | 21.7<br>82.5<br>1992<br>.003<br>1990 | 18.8<br>65.7<br>1992<br>.000<br>1990 | 10.3<br>38.9<br>1992<br>.11<br>1991 | 14.0<br>48.4<br>1992<br>.15<br>1991 | 61.0<br>198<br>1993<br>25.7<br>1990 | 50.3<br>167<br>1993<br>1.63<br>1989 | 27.9<br>88.5<br>1993<br>.86<br>1989 | 54.1<br>313<br>1991<br>.29<br>1989 | 29.2<br>192<br>1993<br>.098<br>1989 | 19.6<br>87.4<br>1993<br>.86<br>1988 | 18.3<br>49.9<br>1993<br>.53<br>1989 | | SUMMARY | STATISTI | CS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1986 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 50 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS | | 29933.6<br>82.0<br>1490<br>7.4<br>8.3<br>59370<br>1.1<br>15.7:<br>176<br>42<br>13 | | | 320<br>6.0<br>6.4<br>1280<br>a15.78<br>12710<br>.25<br>3.37<br>27<br>12<br>7.5 | Mar 6<br>Jun 10<br>Jun 4<br>Mar 5<br>Mar 5<br>Jun 10 | | 28.9<br>85.6<br>4.36<br>7090<br>.00<br>19600<br>27.88<br>20950<br>.41<br>5.56<br>59<br>10 | Jun :<br>Jul :<br>Jul :<br>Jun : | 1993<br>1989<br>15 1991<br>25 1989<br>25 1989<br>15 1991<br>15 1991 | e Estimated. a Ice affected. #### 05412500 TURKEY RIVER AT GARBER, IA LOCATION.--Lat 42°44'24", long 91°15'42", in SE1/4 NW1/4 sec.36, T.92 N., R.4 W., Clayton County, Hydrologic Unit 07060004, on right bank 10 ft upstream from bridge on county highway C43, 800 ft upstream from Wayman Creek, 1,000 ft southeast of Garber, 2,000 ft downstream from Elk Creek, 1 mi downstream from Volga River, and 19.8 mi upstream from mouth. DRAINAGE AREA.--1,545 mi<sup>2</sup>. PERIOD OF RECORD.--August 1913 to November 1916, May 1919 to September 1927, April 1929 to September 1930, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1922-25 (M), 1927 (M). WSP 1438: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 634.46 ft above sea level. Prior to Feb. 7, 1935, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 23 to Mar. 3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1890, that of June 15, 1991. | | 171 | JCIIANGI | , cobic | I LLI I LIK | DAILY | MEAN V | ALUES | DIAC 1773 | TO DEL | 144111111111111111111111111111111111111 | • | | |--------------|----------------------------------------------------|-------------------|-----------------------------------------------|----------------------|----------------|-------------------------|------------------------------------------------|---------------------------------|--------------------|---------------------------------------------------------------------|-------------|---------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1450 | 937 | 715 | e590 | e470 | e2200 | 1010 | 929 | 528 | 1090 | 904 | 540 | | 2<br>3 | 1400<br>1350 | 923<br>926 | 737<br>723 | e580 | e490<br>e465 | e2000<br>e1900 | 994 | 908 | 507 | 992<br>904 | 861<br>816 | 538<br>578 | | 4 | 1320 | 920 | 670 | e540<br>e520 | e480 | 1690 | 948 | 854 | 496<br>483 | 2370 | 812 | 588 | | 5 | 1270 | 914 | 646 | e500 | e530 | 2780 | 1010<br>994<br>962<br>948<br>964 | 837 | 465 | 1400 | 760 | 571 | | 6 | 1250 | 886 | 618 | e460 | e500 | 5920 | 945 | 831<br>835<br>838<br>810<br>779 | 461 | 1110 | 785 | 570 | | 7 | 1230 | 870 | 588 | e440 | e460 | 5580 | 914 | 835 | 466 | 1060 | 691 | 578 | | 8<br>9 | 1210<br>1320 | 862<br>861 | 574<br>583 | e380<br>e390 | e430<br>e400 | 4350<br>2930 | 893<br>987 | 838<br>810 | 484<br>487 | 2020<br>1450 | 674<br>653 | 585<br>577 | | 10 | 1430 | 850 | 571 | e405 | | 2320 | 945<br>914<br>895<br>887<br>889 | 779 | 479 | 1260 | 690 | 559 | | 11 | 1400 | 843 | 583<br>571<br>532<br>543<br>534<br>593<br>579 | e430<br>e410 | e440 | 1950<br>1740 | 875 | 762 | 509 | 1070 | 824 | 530 | | 12 | 1360 | 840 | 543 | e410 | e480 | 1740 | 896 | 737 | 493 | 1080 | 791 | 531 | | 13<br>14 | 1310<br>1270 | 886<br>886 | 534 | e430<br>e395 | e520<br>e540 | 1790<br>1790 | 961<br>959 | 717<br>702 | 540<br><b>6</b> 47 | 1040<br>1240 | 827<br>821 | 581<br>566 | | 15 | 1240 | 880 | 579 | e360 | e600 | 1960 | 875<br>896<br>961<br>958<br>1070 | 698 | 614 | 1020 | 766 | 537 | | 16 | 1270 | 858 | 550 | | e640 | | | 688 | 577 | 941 | 725 | 587 | | 17 | 1310 | 838 | 551 | e320<br>e340<br>e280 | e720 | 1820 | 1380 | 662 | 546 | 909 | 689 | 579 | | 18<br>19 | 1270<br>1230 | 817<br>829 | 566<br>570 | e280<br>e290 | e850<br>e1400 | 1650<br>1530 | 1370 | 640 | 551<br>853 | 854<br>815 | 778<br>709 | 542<br>557 | | 20 | 1190 | 010 | | - 224 | e4000 | 1480 | 1340<br>1380<br>1370<br>1290<br>1190 | 688<br>662<br>640<br>622<br>606 | 1350 | 1710 | 778 | 560 | | 21 | 1170 | 810 | 559<br>560<br>e520<br>e500<br>e490 | e370 | e2250 | 1520 | 1130 | 583 | 858 | 3280 | 882 | 538 | | 22 | 1150 | 806 | 560 | e440 | e1900 | 1560 | 1070 | 573 | 713 | 4100 | 786 | 535 | | 23<br>24 | 1120<br>1100 | 797<br>785 | e520 | e540<br>e530 | e1700<br>e1600 | 1540<br>1470 | 1030<br>995 | 571<br><b>635</b> | 3180<br>4720 | 3150<br>2140 | 734<br>686 | 543<br>570 | | 25 | 1090 | 795 | e490 | e500 | e2000 | 1360 | 974 | 649 | 2890 | 1770 | 645 | 819 | | 26 | 1070 | 823 | e480 | e470 | e2800 | 1290 | 1000 | 641 | 2210 | 1530 | 634 | 1380 | | 27 | 1030 | 799 | e440 | e460 | e2500 | 1240 | 1020 | 622 | 1800 | 1350 | 612 | 1050<br>851<br>792 | | 28<br>29 | 1020<br>1010 | 782<br>765 | e465<br>e500 | e485<br>e500 | e2600<br> | 1190<br>1130 | 941<br>930 | 596<br>579 | 1540<br>1350 | 1220<br>1110 | 592<br>568 | 851<br>792 | | 30 | 983 | 736 | e540 | e420 | | 1080 | 910 | 567 | 1200 | 1030 | 557 | 753 | | 31 | 948 | | e600 | e430 | | 1040 | | 548 | | 954 | 559 | | | TOTAL | 37771 | 25343 | 17652 | 13525 | 32145 | 63770 | 30738 | 21896 | 31997 | 45969 | 22609 | 19085 | | MEAN | 1218 | 845<br>937<br>736 | 569 | 436 | 1148 | 2057 | 1025 | 706<br>929<br>548 | 1067 | 1483 | 729 | 636 | | MAX | 1450 | 937 | 737<br>440 | 590<br>280 | 4000 | 5920 | 1380 | 929 | 4720 | 4100<br>815 | 904 | 1380 | | MIN<br>AC-FT | 948<br>74920 | 50270 | 35010 | 280<br>26830 | 380<br>63760 | 1040<br>12 <b>6</b> 500 | 875<br>60970 | 43430 | 461<br>63470 | 815 | 77840 | 530 | | CFSM | .79 | .55 | .37 | .28 | .74 | 1.33 | .66 | .46 | .69 | 96 | . 47 | -41 | | IN. | .91 | .61 | .43 | .33 | .77 | 1.54 | .74 | .53 | .77 | 91180<br>.96<br>1.11 | .54 | 37860<br>.41<br>.46 | | STATIS | TICS OF M | ONTHLY ME | AN DATA I | FOR WATER | YEARS 191 | 3 - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 562 | 610 | 482 | 523 | 829 | 2059 | 1686 | 1282 | 1321 | 933<br>5772<br>1993 | 851 | 647 | | MAX | 2527 | 2834 | 2889 | 3306 | 4265 | 4832 | 6382 | 3896 | 5316 | 5772 | 5119 | 3011 | | (WY) | 1987 | 1962 | 1983 | 1916 | 1922 | 1979 | 1951 | 1983 | 1947 | 1993 | 1993 | 1938 | | MIN<br>(WY) | 88.2<br>1950 | 92.2<br>1950 | 2889<br>1983<br>78.5<br>1959 | 62.0<br>1940 | 60.9<br>1959 | 188<br>1934 | 288<br>1957 | 95.7<br>1934 | 103<br>1934 | 121<br>1936 | 140<br>1964 | 108<br>1958 | | | | | | _ | | | | | | | | | | | Y STATIST | ics | | | NDAR YEAR | | OR 1994 WA | TER YEAR | | WATER YE | ARS 1913 | - 1994 | | ANNUAL | | | | 1038296 | | | 362500 | | | | | | | ANNUAL | MEAN<br>FANNUAL 1 | ME AN | | 2845 | | | 993 | | | 986<br>2005 | | 1003 | | | ANNUAL M | 7 2 17 | | | | | | | | 249 | | 1934 | | | T DAILY ME | EAN | | 18600 | Mar 31 | | 5920<br>280<br>326<br>9700<br>a18.48<br>719000 | Mar 6 | | 986<br>2905<br>249<br>33700<br>49<br>51<br>49900<br>30.10<br>714000 | Jun : | 15 1991 | | LOWEST | DAILY ME | AN | | 420<br>474 | Feb 24 | | 280 | Jan 18 | | 49 | Jan 2 | 28 1940 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 474 | Feb 21 | | 326 | Jan 15 | | 51 | Jan 2 | 25 1940 | | TNSTANT | TAMEOUS PI | EWY BTOM | | | | | 2100<br>210 40 | Feb 20 | | 30 10 | Jun . | 15 1001 | | ANNUAL | TANEOUS PI<br>TANEOUS PI<br>RUNOFF (A<br>RUNOFF (A | AC-FT) | | 2059000 | | | 719000 | 100 20 | | 714000 | Juli . | | | ANNUAL | RUNOFF ( | CFSM) | | 1.8<br>25.0 | 4 | | .64 | | | .64 | | | | ANNUAL | RUNOFF ( | INCHES) | | 25.0 | 0 | | .64<br>8.73 | | | 8.67 | | | | 10 PERC | CENT EXCER | ΣD¢<br>ZD¢ | | 6610<br>1740 | | | 1700<br>817 | | | 2070<br>508 | | | | | CENT EXCE | | | 580 | | | 480 | | | 164 | | | | | | | | | | | | | | | | | e Estimated. a Ice affected. #### 05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IA LOCATION.--Lat 42°05'05", long 90°38'04", in SW1/4 NE1/4 sec. 17, T.84 N., R.3 E., Jackson County, Hydrologic Unit 07060006, on right bank 300 ft upstream from bridge on State Highway 62, 1,200 ft upstream from Prairie Creek, 2.0 mi northeast of Maquoketa, 2.2 mi downstream from North Fork, and 26.7 mi upstream from mouth. DRAINAGE AREA.--1,553 mi<sup>2</sup>. PERIOD OF RECORD.--September 1913 to current year. Prior to October 1939, published as "below North Fork near Maquoketa". Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 405: 1914. WSP 1438: Drainage area. WSP 1508: 1914-17, 1919-25, 1926 (M), 1929, 1933-34 (M), 1943. GAGE.--Water-stage encoder. Datum of gage is 625.96 ft above sea level. Prior to July 14, 1924, nonrecording gage, and July 15, 1924 to Sept. 30, 1972, recording gage at same site at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Dec. 12-15, and Dec. 25 to Mar. 2. Records fair except those estimated daily discharges, which are poor. Diurnal fluctuation caused by powerplant 4 mi upstream of station. Periodic observations of water temperature and specific conductance are Diurnal fluctuation caused by powerplant 4 mi upstream of station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.—A flood, probably in 1903, reached a stage of 23.5 ft, discharge, 43,000 ft<sup>3</sup>/s, at datum in use prior to Oct. 1, 1972. | | DI | SCHARGE | E, CUBIC | FEET PER | | WATER Y | YEAR OCTO | BER 1993 | TO SEP | TEMBER 19 | 994 | | |-------------|-------------------------|---------------------|--------------|---------------|-----------------|--------------|------------------|------------------|--------------------|-----------------|--------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2040 | 1140 | 1020 | e950 | e720 | e1500 | 1090 | 1010 | 743 | 1690 | 995 | 879 | | 2 | 1970 | 1310 | 1020 | e860 | e740 | e1400 | 1110 | 1060 | 694 | 1430 | 1030 | 906 | | 3<br>4 | 1870<br>1770 | 1250<br>1250 | 982<br>1030 | e760<br>e700 | e740<br>e720 | 1470<br>1830 | 1150<br>1130 | 994<br>969 | 737<br>681 | 1440<br>1530 | 939<br>967 | 854<br>934 | | 5 | 1690 | 1200 | 1010 | e660 | e740 | 4070 | 1190 | 984 | 668 | 2460 | 1000 | 896 | | 6 | 1620 | 1190 | 1020 | e720 | e820 | 4550 | 760 | 953 | 673 | 3300 | 1100 | 936 | | 7<br>8 | 1580<br>1550 | 1190<br>1140 | 993<br>981 | e640<br>e600 | e800<br>e760 | 3730 | 874<br>907 | 1020<br>979 | 710<br><b>698</b> | 2590<br>2160 | 966<br>983 | 867<br>829 | | 9 | 1680 | 1100 | 983 | e640 | e700 | 2710<br>2160 | 952 | 983 | 671 | 2440 | 890 | 868 | | 10 | 1960 | 1050 | 978 | e680 | e700 | 1920 | 920 | 934 | 666 | 2820 | 917 | 787 | | 11 | 2190 | 1040 | 933 | e720 | e700 | 1730 | 939 | 907 | 676 | 2170 | 968 | 807 | | 12 | 2210 | 1050 | e920 | e700 | e680 | 1590 | 944 | 920 | 678 | 1890 | 1040<br>989 | 792<br>784 | | 13<br>14 | 2080<br>2010 | 1130<br>1160 | e940<br>e960 | e640<br>e620 | e680<br>e780 | 1560<br>1500 | 946<br>1010 | 854<br>881 | 844<br>777 | 1740<br>1920 | 1640 | 777 | | 15 | 2020 | 1130 | e1040 | e600 | e900 | 1490 | 1040 | 871 | 799 | 1930 | 2150 | 802 | | 16 | 1890 | 1110 | 998 | e620 | e920 | 1490 | 1010 | 863 | 696 | 1760 | 1560 | 772 | | 17 | 1840 | 1070 | 1010 | e640 | e1000 | 1400 | 996 | 835 | 714 | 1670 | 1420 | 739 | | 18<br>19 | 1730 | 1070 | 1010 | e580 | e1300 | 1420 | 945 | 815 | 671 | 1620<br>1550 | 1270<br>1590 | 733<br>721 | | 20 | 1690<br>1320 | 1030<br>1030 | 989<br>1010 | e580<br>e610 | e4000<br>e12000 | 1350<br>1320 | 986<br>974 | 724<br>792 | 65 <b>4</b><br>731 | 2030 | 1660 | 734 | | 21 | 1490 | 1020 | 1000 | e680 | e8000 | 1390 | 897 | 798 | 2150 | 3000 | 1480 | 707 | | 22 | 1520 | 1020 | 980 | e730 | e3100 | 1390 | 919 | 723 | 1700 | 2310 | 1250 | 750 | | 23 | 1470 | 998 | 914 | e680 | e2200 | 1410 | 852 | 752 | 1670 | 1940 | 1190 | 765 | | 24<br>25 | 1430<br>1450 | 970<br>1020 | 791<br>e520 | e1000<br>e900 | e1800<br>e1600 | 1310<br>1300 | 914<br>923 | 810<br>767 | 3650<br>6270 | 1750<br>1560 | 1120<br>1060 | 870<br>1110 | | 26 | 1420 | 1040 | e520 | e800 | e1500 | 1280 | 1310 | 861 | 5550 | 1420 | 1130 | 1760 | | 27 | 1420 | 993 | e540 | e780 | e1500 | 1290 | 1540 | 709 | 3000 | 1300 | 998 | 2050 | | 28<br>29 | 1340 | 982<br>1040 | e500 | e740 | e1400 | 1250 | 1200<br>982 | 823<br>690 | 2360<br>2070 | 1230<br>1160 | 991<br>1020 | 2250<br>1830 | | 30 | 1280<br>1410 | 1020 | e520<br>e560 | e720<br>e700 | | 1230<br>1130 | 1020 | 717 | 1830 | 1100 | 940 | 1610 | | 31 | 1200 | | e600 | e660 | | 1170 | | 827 | | 1060 | 989 | | | TOTAL | 52140 | 32743 | 27272 | 21910 | 51520 | 54340 | 30430 | 26825 | 44431 | 57970 | 36242 | 30119 | | MEAN | 1682 | 1091<br>1310 | 880<br>1040 | 707<br>1000 | 1840 | 1753<br>4550 | 1014<br>1540 | 865 | 1481<br>6270 | 1870<br>3300 | 1169<br>2150 | 1004<br>2250 | | MAX<br>MIN | 2210<br>1200 | 970 | 500 | 580 | 12000<br>680 | 1130 | 760 | 1060<br>690 | 654 | 1060 | 890 | 707 | | AC-FT | 103400 | 64950 | 54090 | 43460 | 102200 | 107800 | 60360 | 53210 | 88130 | 115000 | 71890 | 59740 | | CFSM | 1.08 | .70 | .57 | .46 | 1.18 | 1.13 | . 65 | .56 | .95 | 1.20 | .75 | .65 | | IN. | 1.25 | .78 | . 65 | .52 | 1.23 | 1.30 | . 73 | .64 | 1.06 | 1.39 | .87 | .72 | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 191 | L4 - 1994 | , BY WATER | YEAR (WY) | | | | | | MEAN | 725 | 792 | 661 | 700 | 1094 | 1894 | 1343 | 1196 | 1412 | 1059 | 832 | 898 | | MAX | 2486 | 4983 | 2397 | 2851 | 4161 | 4798 | 4843 | 4267 | 6670 | 8835 | 3340 | 3074 | | (WY) | 1987 | 1962 | 1983 | 1960 | 1971 | 1993 | 1973 | 1974 | 1947 | 1993 | 1924 | 1981 | | MIN<br>(WY) | 210<br>1957 | 198<br>1959 | 177<br>1959 | 150<br>1940 | 196<br>1936 | 241<br>1934 | 305<br>1934 | 198<br>1934 | 170<br>1934 | 177<br>1936 | 227<br>1958 | 182<br>1958 | | SUMMAR | Y STATIST | ics | FOR | 1993 CAL | ENDAR YEAR | ι . | FOR 1994 WA | TER YEAR | | WATER Y | EARS 1914 | - 1994 | | ANNUAL | | | | 1045968 | | | 465942 | | | | | | | ANNUAL | MEAN | MESN | | 2866 | | | 1277 | | | 1050<br>2874 | | 1993 | | | T ANNUAL M<br>ANNUAL M | | | | | | | | | 306 | | 1958 | | | T DAILY MI | | | 29200 | Jul 6 | i | 12000 | Feb 20 | | 34800 | Jun | 27 1944 | | | DAILY ME | | | 460 | Feb 24 | | 500 | Dec 28 | | 105 | | 11 1936 | | | SEVEN-DA | | | 526 | Feb 23 | 1 | 537 | Dec 25 | | 105 | | 11 1936 | | | TANEOUS PE | | | | | | b15000 | Feb 20<br>Feb 20 | | 48000<br>a24.70 | | 27 1944<br>27 1944 | | | TANEOUS PE<br>RUNOFF () | EAK STAGE<br>AC-FT) | | 2075000 | | | b28.65<br>924200 | reD 20 | | 760400 | , Jun | C / 1344 | | | | CFSM) | | 1.8 | 35 | | .82 | | | .68 | 3 | | | ANNUAL | RUNOFF ( | INCHES) | | 25.0 | | | 11.16 | | | 9.18 | | | | | CENT EXCE | | | 6010 | | | 1990 | | | 1970 | | | | | CENT EXCE | | | 1850 | | | 1010 | | | 646 | | | | 30 PER | CENT EXCE | รบจ | | 848 | | | 695 | | | 293 | | | Estimated. Datum in use prior to Oct. 1, 1972. Ice affected. #### 05420500 MISSISSIPPI RIVER AT CLINTON, IA LOCATION.--Lat 41°46'50", long 90°15'07", in NW1/4 sec.34, T.81 N., R.6 E., Clinton County, Hydrologic Unit 07080101, on right bank at foot of Eighth Avenue in Camanche, 5.0 mi upstream from Wapsipinicon River, 6.4 mi downstream from Clinton, 10.6 mi downstream from Lock and Dam 13, and at mile 511.8 upstream from Ohio River. DRAINAGE AREA.--85,600 mi<sup>2</sup>, approximately, at Fulton-Lyons Bridge at Clinton. PERIOD OF RECORD.--June to August 1873 (fragmentary), October 1873 to current year (October 1932 to September 1939, published as "at Le Claire' REVISED RECORDS .-- WDR IA-75-1: 1974. GAGE.-Water-stage encoder. Datum of gage is 562.68 ft above sea level. June 6, 1969 to Sept. 16 1988, water-stage recorder at site 400 ft upstream at same datum. Auxiliary water-stage recorder at Lock and Dam 13 since Oct. 1, 1958. See WSP 1728 for history of changes prior to Oct. 1, REMARKS.--Estimated daily discharges: Dec. 26 to Mar. 7, Mar. 17, and Sept. 25, 26. Records good except those for estimated daily discharges, which are poor. Minor flow regulation caused by navigation dams. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage known since at least 1828, that of Apr. 28, 1965. ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | | | | | | DAIL | I WEAN | VALUES | | | | | | |-------------|------------------|--------------------------|-------------------------|--------------------------------------------------------------|------------------|------------------|------------------------------------|-------------------|------------------|-------------------------------------------------------------|------------------|-------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 62200 | 49200 | 47200 | -22000 | -26000 | - 70000 | 80000 | 107000 | 56800 | 57400 | 56300 | 40000 | | 2 | 62100 | 47400 | 46400 | | e36000<br>e36000 | e70000<br>e70000 | | | 54400 | | | 42800 | | 3 | 62300 | 47400 | 45600 | | e36000 | e66000 | | 116000 | 53800 | | | 43600 | | 4 | 61600 | 47100 | 43100 | e39000 | e36000 | e64000 | 81600 | 134000 | 53500 | 57700 | 49400 | 41600 | | 5 | 60400 | 45600 | 43600 | e40000 | e35000 | e68000 | | 142000 | 53700 | 63000 | 48200 | 43100 | | 6 | 60100 | 46000 | 44100 | -40000 | -24000 | . 70000 | 01500 | 144000 | E 3 6 0 0 | 65600 | 47000 | 45600 | | 7 | 60100<br>58500 | 46000<br>45800 | 44100<br>45100 | e40000<br>e41000 | e34000<br>e34000 | e70000<br>e70000 | | | 53600<br>53000 | | | 44700 | | 8 | 58000 | 45900 | 47400 | e42000 | e33000 | 69300 | | 147000 | 52900 | 63400 | | 43600 | | ğ | 58100 | 45900 | 49800 | e42000 | e33000 | 71600 | 81500 | 146000 | 52400 | 69500 | 45200 | 42500 | | 10 | 59300 | 45900 | 49700 | | e33000 | 72600 | | | 50900 | 68900 | | 41600 | | • • | | | | | | | | | 50500 | 67000 | 42222 | 20000 | | 11<br>12 | 57800<br>55300 | 48200<br>48500 | 49600<br>48100 | e42000<br>e41000 | e35000<br>e37000 | 75100<br>75800 | | | 50500<br>50000 | 67800<br>72600 | | 38900<br>37100 | | 13 | 53500 | 51000 | 45200 | e41000 | e36000 | 77800 | 80600 | | 49800 | 73500 | | 37100 | | 14 | 52400 | 49600 | 49100 | e40000 | e35000 | 85800 | | 125000 | 44900 | 74800 | | 36600 | | 15 | 51700 | 50300 | 51000 | e40000 | e35000 | 92300 | | | 44500 | 76200 | | 38000 | | | | | | | | | | | | | | | | 16<br>17 | 53500<br>56100 | 50500<br>48300 | 48800<br>49400 | e39000<br>e39000 | e36000<br>e36000 | 92000<br>e80000 | 81300<br>81900 | | 44600<br>54200 | 76200<br>74300 | | 41500<br>45100 | | 18 | 57500 | 47700 | 49400 | e39000<br>e38000 | e36000 | 71600 | 81800 | 108000 | 53700 | 73000 | 49600 | 51500 | | 19 | 57400 | 48100 | 50000 | e37000 | e37000 | 70200 | 78700 | | 53000 | 66900 | 50400 | 57200 | | 20 | 56900 | 51800 | 50700 | e35000 | e64000 | 67000 | 76000 | | 53100 | 62300 | 56800 | 61300 | | | | | | | | | | | | | | | | 21 | 56300 | 55900 | 50800 | e35000 | e82000 | 71200 | 80300 | | 55700 | 61600 | 57000 | 67300 | | 22<br>23 | 54600<br>54300 | 55400<br>58100 | 51200<br>51 <b>8</b> 00 | e35000<br>e34000 | e90000<br>e82000 | 75400<br>73400 | 86800<br>84100 | | 54800<br>55700 | 64300<br>65400 | 51200<br>49200 | 73100<br>7 <b>89</b> 00 | | 24 | 54200 | 57400 | 50200 | e34000 | e76000 | 74100 | 86600 | | 58900 | 62900 | 47300 | 87700 | | 25 | 53900 | 56500 | 43700 | e33000 | e70000 | 73600 | 89500 | 71700 | 66700 | 59700 | 45900 | e96000 | | | | | | | | | | | | | | | | 26 | 53500 | 58900 | e26000 | e34000 | e72000 | 73600 | 94800 | | 70000 | 58500 | 45800 | 99000 | | 27<br>28 | 53000<br>52000 | 54900<br>52700 | e26000<br>e27000 | e35000<br>e35000 | e70000<br>e70000 | 74400<br>76800 | 98700<br>98900 | 65000<br>63300 | 64300<br>58600 | 57100<br>5 <b>69</b> 00 | 43100<br>41400 | 98500<br>92600 | | 29 | 50100 | 52100 | e29000 | e36000 | | 78000 | 100000 | 57900 | 57200 | 57200 | 39900 | 89900 | | 30 | 49500 | 50200 | e30000 | e37000 | | 80300 | 103000 | 54100 | 57700 | 57400 | 37800 | 90400 | | 31 | 49200 | | e31000 | e38000 | | 80500 | | 55100 | | 57700 | 36800 | | | Momar | 1325200 | 1510200 | 1260000 | 11.0000 | 1245000 | 2212122 | 0507000 | 2224122 | 1622000 | 1000100 | 1406400 | 1746000 | | | 1735300<br>55980 | 1512300<br>50410 | 1369900<br>44190 | 1168000 | 1345000<br>48040 | 2310400<br>74530 | 2537300<br>84580 | 3284100<br>105900 | 1632900<br>54430 | 1998100<br>64450 | 1496400<br>48270 | 1746800<br>58230 | | MEAN<br>MAX | 62300 | 58900 | 51800 | 37680<br>43000 | 90000 | 92300 | 103000 | 147000 | 70000 | 76200 | 57000 | 99000 | | MIN | 49200 | 45600 | 26000 | 32000 | 33000 | 64000 | 76000 | 54100 | 44500 | 56700 | 36800 | 36600 | | | 3442000 | 3000000 | 2717000 | 2317000 | 2668000 | 4583000 | 5033000 | 6514000 | 3239000 | 3963000 | 2968000 | 3465000 | | CFSM | .65 | .59 | .52 | .44 | .56 | .87 | .99 | 1.24 | .64 | .75 | .56 | .68 | | IN. | .75 | <b>.6</b> 6 | .60 | .51 | .58 | 1.00 | 1.10 | 1.43 | .71 | .87 | . 65 | .76 | | статт | ያጥፐሮያ ሰፍ | момтиту м | במא המידא | FOR WATER | VEARS 18 | 74 - 1004 | I BY WATE | ER YEAR (W | ٧١ | | | | | JIMII. | , 1105 OF | MONTHEL M | EAN DAIN | TON MATER | TEARS IS | 13 133 | , 51 " | in indian (n | -, | | | | | MEAN | 40820 | 38770 | 27450 | 25380 | 27520 | 50260 | 88840 | 81180 | 68130 | 55480 | 37530 | 38080 | | MAX | 203600 | 146800 | 73590 | 54100 | 65680 | 127500 | 169900 | 212400 | 182100 | 198900 | 113400 | 92340 | | (WY) | 1882 | 1882 | 1882 | 1973 | 1966 | 1973 | 1965 | 1888 | 1892 | 1993<br>14690 | 1993 | 1938 | | MIN<br>(WY) | 13490<br>1934 | 13760<br>1934 | 11120<br>1934 | 11390<br>1890 | 14000<br>1893 | 17600<br>1934 | 26040<br>1931 | 23190<br>1977 | 15420<br>1988 | 1988 | 12460<br>1936 | 13 <b>8</b> 70<br>1933 | | ( 11 ) | 1937 | 1934 | 1934 | 1890 | 1033 | 1937 | 1931 | 1311 | 1900 | 1960 | 1930 | 1933 | | SUMMAR | RY STATIS | TICS | FOR | 1993 CAL | ENDAR YEAI | | | WATER YEA | R | WATER | YEARS 187 | 4 - 1994 | | ANNUAI | TOTAL | | | 33762400 | | | 22136500 | | | | | | | ANNUAI | | | | 92500 | | | 60650 | | | 48330 | | | | | T ANNUAL | | | | | | | | | 94690 | | 1882 | | LOWES | ANNUAL | MEAN | | | | | | | _ | 18870 | 4 | 1934 | | HIGHES | T DAILY | MEAN<br>EAN<br>AY MINIMU | | 238000 | Jul ' | 7 | 147000 | May | 7 | 307000 | Apr | 28 1965 | | LOWEST | DAILY M | EAN | | 26000 | Dec 20<br>Feb 24 | 9 | 26000 | Dec 2 | oa<br>c | 2430 | Dec | 25 1933<br>24 1933 | | INSTAN | TANEOUS 1 | DEAK ETUM | -1 | 20000 | Len Z | • | 147000<br>26000<br>28700<br>148000 | Mav | B | 7430 | Dec | 24 1300 | | INSTAN | TANEOUS | PEAK STAG | Ε | 28000<br>66970000<br>1.1<br>14.1<br>172000<br>72900<br>35100 | | | 15. | 96 May | 3 | 94690<br>18870<br>307000<br>6500<br>7430<br>24.<br>35020000 | 65 Apr | 28 1965 | | ANNUAL | RUNOFF | (AC-FT) | | 66970000 | | | 43910000 | - | | 35020000 | • - | | | ANNUAL | RUNOFF | (CFSM) | | 1.0 | 08 | | | | | | | | | ANNUAL | RUNOFF | (INCHES) | | 14. | 67 | | 9. | 62 | | 7. | 67 | | | TO PER | CENT EXC | EED6<br>EEDS | | 1/2000 | | | 88400<br>54600 | | | 93900<br>37000 | | | | OU DED | CENT EXC | EEDS | | 35100 | | | 36700 | | | 18800 | | | | 30 LEP | CERT EVC | | | 22100 | | | 30,00 | | | 10000 | | | e Estimated. a Also Dec. 27. #### 05421000 WAPSIPINICON RIVER AT INDEPENDENCE, IA LOCATION.—Lat 42°27'49", long 91°53'42", in SE1/4 sec.4, T.88 N., R.9 W., Buchanan County, Hydrologic Unit 07080102, on right bank at Sixth Street in Independence, 1,800 ft downstream from dam at abandoned hydroelectric plant, 4.9 mi downstream from Otter Creek, 9.7 mi upstream from Pine Creek, and at mile 142.5. DRAINAGE AREA.--1,048 mi<sup>2</sup>. PERIOD OF RECORD .-- July 1933 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1938-39, 1940 (M), 1947. GAGE.--Water-stage encoder and concrete control. Datum of gage is 882.85 ft above sea level. Prior to May 24, 1941 nonrecording gage in tailrace of powerplant 1,800 ft upstream at datum 80.00 ft lower. REMARKS.--Estmated daily discharges: Dec. 23 to Jan. 22, Jan. 29 to Feb 5, and Feb. 7-11. Records good except those for estimated daily dishcarges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1901, that of July 18, 1968. | | DI | SCHARGE | , CUBIC | FEET PER | | VATER Y<br>MEAN V | | BER 1993 | TO SEP | TEMBER 19 | 94 | | |-------------|-------------------------|--------------|--------------|--------------|--------------|-----------------------|-------------|------------------|--------------|--------------|--------------|-----------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 934 | 520 | 411 | e170 | e140 | 697 | 570 | 477 | 280 | 1050 | 515 | 221 | | 2 | 858 | 507 | 495 | e160 | e145 | 603 | 552 | 479 | 257 | 809 | 451 | 214 | | 3 | 790 | 494 | 504 | e160 | e150 | 554 | 515 | 464 | 240 | 641 | 439 | 221 | | 4<br>5 | 748<br>697 | 494<br>493 | 524<br>503 | e160<br>e150 | e145<br>e150 | 571<br>1370 | 501<br>502 | 450<br>439 | 223<br>214 | 941<br>1090 | 466<br>457 | 219<br>240 | | 6 | 664 | 474 | 477 | e160 | 161 | 2370 | 490 | 449 | 140 | 674 | 492 | 237 | | 7 | 641 | 460 | 427 | e150 | e160 | 2310 | 471 | 465 | 109 | 568 | 453 | 228 | | 8 | 641 | 451 | 404 | e150 | e160 | 2370 | 464 | 470 | 172 | 1010 | 395 | 226 | | 9 | 1240 | 444 | 400 | e160 | e150 | 2380 | 475 | 472 | 175 | 1310 | 358 | 215 | | 10 | 1600 | 425 | 400 | e180 | e140 | 2310 | 463 | 446 | 189 | 1010 | 348 | 204 | | 11 | 1440 | 425 | 328 | e170 | e150 | 2290 | 449 | 418 | 204 | 773 | 334 | 188 | | 12 | 1300<br>1140 | 421<br>467 | 284 | e190 | 159 | 2660 | 459<br>480 | 383<br>355 | 193<br>280 | 598<br>515 | 348<br>1130 | 172<br>165 | | 13<br>14 | 1020 | 484 | 378<br>417 | e170<br>e150 | 151<br>146 | 2550<br>2190 | 494 | 335<br>346 | 280<br>271 | 496 | 1460 | 173 | | 15 | 954 | 491 | 428 | e130 | 146 | 1790 | 593 | 345 | 284 | 498 | 1300 | 181 | | 16 | 937 | 490 | 439 | e130 | 146 | 1670 | 918 | 319 | 354 | 658 | 1110 | 179 | | 17 | 958 | 487 | 448 | e150 | 149 | 1610 | 988 | 297 | 371 | 653 | 785 | 164 | | 18 | 967 | 470 | 459 | e130 | 161 | 1500 | 1010 | 280 | 330 | 542 | 640 | 161 | | 19 | 940 | 478 | 471 | e120 | 382 | 1350 | 966 | 265 | 285 | 525 | 572 | 157 | | 20 | 889 | 451 | 492 | e130 | 1910 | 1210 | 864 | 249 | 417 | 625 | 476 | 165 | | 21 | 828 | 447 | 480 | e140 | 2070 | 1120 | 771 | 235 | 576 | 878 | 404 | 174 | | 22 | 781 | 434 | 450 | e180 | 1430 | 1100 | 683 | 223 | 656 | 1220 | 365 | 210 | | 23<br>24 | 746<br>716 | 427<br>413 | e260<br>e170 | 165 | 1130 | 1090<br>1050 | 607<br>572 | 225<br>251 | 1640<br>3080 | 1400<br>1660 | 329<br>301 | 213<br>269 | | 25 | 686 | 433 | e130 | 162<br>164 | 1010<br>1050 | 977 | 557 | 272 | 2950 | 2230 | 317 | 708 | | 26 | 663 | 442 | e120 | 163 | 1120 | 896 | 572 | 358 | 3010 | 2660 | 460 | 1660 | | 27 | 627 | 433 | e130 | 161 | 1060 | 830 | 529 | 390 | 3110 | 2380 | 438 | 1490 | | 28 | 613 | 454 | e120 | 157 | 833 | 760 | 492 | 389 | 2890 | 1530 | 346 | 1230 | | 29 | 603 | 394 | e130 | e160 | | 702 | 479 | 370 | 2220 | 935 | 281 | 968 | | 30<br>31 | 572<br>543 | 343 | e140<br>e160 | e150<br>e130 | | 642<br>597 | 460 | 343<br>315 | 1290 | 712<br>593 | 267<br>247 | 757<br> | | TOTAL | 26736 | 13646 | 10979 | 4802 | 14704 | 44119 | 17946 | 11239 | 26410 | 31184 | 16284 | 11609 | | MEAN | 862 | 455 | 354 | 155 | 525 | 1423 | 598 | 363 | 880 | 1006 | 525 | 387 | | MAX | 1600 | 520 | 524 | 190 | 2070 | 2660 | 1010 | 479 | 3110 | 2660 | 1460 | 1660 | | MIN | 543 | 343 | 120 | 120 | 140 | 554 | 449 | 223 | 109 | 496 | 247 | 157 | | AC-FT | 53030 | 27070 | 21780 | 9520 | 29170 | 87510 | 35600 | 22290 | 52380 | 61850 | 32300 | 23030 | | CFSM<br>IN. | .82<br>.95 | .43<br>.48 | .34 | .15 | .50 | 1.36<br>1.57 | .57<br>.64 | .35<br>.40 | .84 | .96<br>1.11 | .50<br>.58 | .37<br>.41 | | | | | .39 | .17 | .52 | | | | - | 1.11 | . 30 | .71 | | STATIS | TICS OF M | ONTHLY ME | AN DATA E | OR WATER | YEARS 1934 | - 1994, | , BY WATER | YEAR (WY) | | | | | | MEAN | 383 | 444 | 300 | 227 | 344 | 1442 | 1345 | 897 | 887 | 688 | 567 | 388 | | MAX | 2306 | 2280 | 1962 | 1411 | 1698 | 3201 | 5578 | 3860 | 4721 | 4836 | 5443 | 1939 | | (WY)<br>Min | 1973<br>29.3 | 1992<br>42.2 | 1992 | 1946 | 1984 | 19 <b>8</b> 6<br>68.4 | 1993<br>198 | 1991 | 1947<br>12.4 | 1993<br>18.9 | 1993<br>21.5 | 19 <b>8</b> 1<br>20.5 | | (WY) | 1989 | 1977 | 26.9<br>1977 | 12.6<br>1977 | 19.0<br>1956 | 1934 | 1957 | 45.3<br>1934 | 1934 | 1936 | 1934 | 1976 | | | Y STATIST | | | | NDAR YEAR | | FOR 1994 W | | | WATER YE | ARS 1934 | - 1994 | | | | | | | MOIN IOIN | _ | | | | | | | | ANNUAL | | | | 824057 | | | 229658 | | | 661 | | | | ANNUAL | rean<br>FANNUAL M | AE AN | | 2258 | | • | 629 | | | 2304 | | 1993 | | | ANNUAL ME | | | | | | | | | 74.5 | | 1934 | | HIGHES | r DAILY ME | EAN | | 13100 | Apr 3 | | 3110 | Jun 27 | | 23500 | | 18 1968 | | | DAILY MEA | | | 120 | Dec 26 | | 109 | Jun 7 | | 7.0 | 0ct | 1 1933 | | ANNUAL | SEVEN-DAY<br>TANEOUS PE | SAK BIOM | | 133 | Dec 25 | | 133<br>3440 | Dec 25<br>Jun 24 | | 7.1<br>26800 | Jan | 24 1977<br>18 1968 | | TNSTAN | TANEOUS PE | EAK STAGE | | | | | 7.64 | | | 21.11 | | 18 1968 | | INSTANT | TANEOUS LO | OW FLOW | | | | | 34 | Jun 6 | | | | | | | RUNOFF ( | | | 1635000 | _ | | 455500 | | | 478500 | | | | | RUNOFF ( | CFSM) | | 2.1<br>29.2 | | | .60<br>8.15 | | | .63<br>8.56 | | | | | CENT EXCE | | | 5940 | • | | 1330 | • | | 1620 | | | | 50 PERC | CENT EXCER | EDS | | 1180 | | | 463 | | | 260 | | | | | CENT EXCE | | | 255 | | | 158 | | | 49 | | | e Estimated. #### 05422000 WAPSIPINICON RIVER NEAR DE WITT, IA LOCATION.--Lat 41°46'01", long 90°32'05", in SW1/4 NE1/4 sec.6, T.80 N., R.4 E., Clinton County, Hydrologic Unit 07080103, on left bank 5 ft upstream from bridge on old U.S. Highway 61, 0.9 mi downstream from Silver Creek, 4.0 mi south of water tower in De Witt, 6.2 mi upstream from Brophy Creek, and 18.2 mi upstream from mouth. DRAINAGE AREA.--2,330 mi<sup>2</sup>. PERIOD OF RECORD .-- June 1934 to current year. REVISED RECORDS.--WSP 1308: 1937 (M). WSP 1438: Drainage area. WSP 1708: 1951. GAGE.--Water-stage encoder. Datum of gage is 598.81 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 26 to Feb. 27, and Apr. 28 to May 3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U. S. Army Corps of Engineers gage-height telemeter and data collection platform at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1<br>2<br>3<br>4<br>5 | 3680<br>3370<br>3110<br>2940<br>2760 | 1650<br>1600<br>1580<br>1550<br>1500 | 1130<br>1120<br>1170<br>1180<br>1180 | e410<br>e410<br>e430<br>e420<br>e400 | e450<br>e460<br>e450<br>e460<br>e470 | 7430<br>7410<br>6890<br>4100<br>3750 | 1640<br>1570<br>1510<br>1460<br>1430 | e1170<br>e1200<br>e1170<br>1140<br>1130 | 810<br>797<br>761<br>722<br>695 | 3890<br>3470<br>2750<br>2310<br>2030 | 1740<br>1510<br>1320<br>1270<br>1180 | 827<br>781<br>736<br>713<br>726 | | | | 6<br>7<br>8<br>9 | 2590<br>2460<br>2360<br>2320<br>2340 | 1470<br>1430<br>1410<br>1370<br>1350 | 1170<br>1160<br>1150<br>1130<br>1100 | e420<br>e400<br>e400<br>e450<br>e470 | e460<br>e470<br>e480<br>e500<br>e540 | 4670<br>4670<br>3910<br>3990<br>3850 | 1380<br>1330<br>1290<br>1280<br>1240 | 1140<br>1130<br>1120<br>1110<br>1090 | 671<br>652<br>708<br>702<br>644 | 1990<br>2430<br>2700<br>2220<br>2040 | 1160<br>1210<br>1120<br>1070<br>1050 | 728<br>706<br>686<br>673<br>662 | | | | 11<br>12<br>13<br>14<br>15 | 2450<br>2920<br>3160<br>3080<br>2930 | 1330<br>1320<br>1380<br>1370<br>1360 | 1060<br>1020<br>1020<br>1080<br>1160 | e460<br>e560<br>e500<br>e450<br>e420 | e600<br>e630<br>e660<br>e680<br>e740 | 3600<br>3450<br>3280<br>3230<br>3360 | 1250<br>1270<br>1340<br>1310<br>1410 | 1080<br>1070<br>1040<br>1020<br>999 | 594<br>593<br>695<br>833<br>781 | 2470<br>2470<br>2160<br>1940<br>1810 | 1030<br>1000<br>939<br>914<br>886 | 642<br>620<br>604<br>588<br>571 | | | | 16<br>17<br>18<br>19<br>20 | 2790<br>2640<br>2480<br>2390<br>2340 | 1340<br>1340<br>1330<br>1320<br>1300 | 1150<br>1150<br>1200<br>1270<br>1260 | e420<br>e480<br>e430<br>e410<br>e450 | e800<br>e1000<br>e1200<br>e2000<br>e3200 | 3370<br>3110<br>2840<br>2670<br>2570 | 1460<br>1350<br>1340<br>1440<br>1530 | 958<br>928<br>891<br>866<br>834 | 749<br>754<br>717<br>690<br>763 | 1740<br>1610<br>1540<br>1560<br>1580 | 1600<br>1950<br>1840<br>1720<br>1560 | 566<br>553<br>543<br>532<br>523 | | | | 21<br>22<br>23<br>24<br>25 | 2300<br>2230<br>2170<br>2130<br>2050 | 1280<br>1270<br>1250<br>1230<br>1250 | 1230<br>1210<br>1170<br>1190<br>767 | e480<br>e630<br>e600<br>e600<br>e580 | e4500<br>e4300<br>e6000<br>e9600<br>e8800 | 2600<br>2610<br>2460<br>2310<br>2170 | 1580<br>1570<br>1510<br>1440<br>1390 | 807<br>782<br>762<br>763<br>753 | 825<br>823<br>857<br>2730<br>3040 | 1520<br>1590<br>1690<br>1680<br>1740 | 1360<br>1220<br>1120<br>1020<br>953 | 516<br>517<br>536<br>550<br>569 | | | | 26<br>27<br>28<br>29<br>30<br>31 | 1990<br>1910<br>1860<br>1810<br>1740<br>1690 | 1280<br>1250<br>1230<br>1200<br>1170 | e460<br>e410<br>e380<br>e410<br>e410<br>e430 | e620<br>e570<br>e580<br>e560<br>e540<br>e510 | e8000<br>e7400<br>7530<br> | 2100<br>2090<br>2010<br>1890<br>1790<br>1700 | 1330<br>1310<br>e1260<br>e1210<br>e1180 | 747<br>731<br>722<br>726<br>765<br>780 | 3620<br>4350<br>4660<br>4390<br>4070 | 1790<br>1880<br>2120<br>2450<br>2540<br>2200 | 918<br>876<br>834<br>873<br>913<br>902 | 598<br>648<br>1300<br>2510<br>2410 | | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 76990<br>2484<br>3680<br>1690<br>152700<br>1.07<br>1.23 | 40710<br>1357<br>1650<br>1170<br>80750<br>.58<br>.65 | 30927<br>998<br>1270<br>380<br>61340<br>.43<br>.49 | 15060<br>486<br>630<br>400<br>29870<br>.21<br>.24 | 72380<br>2585<br>9600<br>450<br>143600<br>1.11<br>1.16 | 105880<br>3415<br>7430<br>1700<br>210000<br>1.47<br>1.69 | 41610<br>1387<br>1640<br>1180<br>82530<br>.60 | 29424<br>949<br>1200<br>722<br>58360<br>.41<br>.47 | 43696<br>1457<br>4660<br>593<br>86670<br>.63<br>.70 | 65910<br>2126<br>3890<br>1520<br>130700<br>.91<br>1.05 | 37058<br>1195<br>1950<br>834<br>73500<br>.51<br>.59 | 23134<br>771<br>2510<br>516<br>45890<br>.33<br>.37 | | | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 193 | 4 - 1994 | , BY WATER | YEAR (WY) | | | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 911<br>3549<br>1973<br>137<br>1977 | 1130<br>6435<br>1962<br>159<br>1965 | 930<br>4945<br>1983<br>104<br>1977 | 847<br>4086<br>1946<br>59.4<br>1977 | 1222<br>3798<br>1984<br>104<br>1940 | 3036<br>7137<br>1986<br>301<br>1954 | 2989<br>9768<br>1993<br>453<br>1977 | 2218<br>6351<br>1974<br>323<br>1977 | 2256<br>10950<br>1947<br>234<br>1977 | 1714<br>14280<br>1993<br>165<br>1936 | 1142<br>8550<br>1993<br>103<br>1936 | 1060<br>5647<br>1993<br>133<br>1976 | | | | | Y STATIST | ics | | | ENDAR YEAR | I | FOR 1994 W | ATER YEAR | | WATER YE | ARS 1934 | - 1994 | | | | LOWEST HIGHES LOWEST ANNUAL INSTAN ANNUAL ANNUAL ANNUAL ANNUAL 50 PER | MEAN T ANNUAL MANUAL MA | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS | | 1921717<br>5265<br>21500<br>380<br>467<br>3812000<br>2.2<br>30.6<br>11800<br>3340<br>1160 | Jul 15<br>Dec 28<br>Dec 25<br>26 | | 582779<br>1597<br>9600<br>380<br>409<br>al2000<br>al2.4<br>1156000<br>.6<br>9.3<br>3110<br>1220<br>514 | Feb 24<br>Dec 28<br>Dec 27<br>Feb 24<br>9 Feb 23 | | 1624<br>5461<br>374<br>25400<br>46<br>47<br>31100<br>14.19<br>1176000<br>.70<br>9.47<br>3840<br>900<br>222 | | 1993<br>1989<br>22 1973<br>22 1977<br>18 1977<br>17 1990<br>17 1990 | | | e Estimated. a Ice affected. #### **CROW CREEK BASIN** #### 05422470 CROW CREEK AT BETTENDORF, IA LOCATION.--Lat 41°33'03", long 90°27'15", in NW1/4 NW1/4 sec.24, T.78 N., R.4 E., Scott County, Hydrologic Unit 07080101, on left bank 200 ft upstream from bridge on Valley Road (old U.S. Highway 67), 3.5 mi east of U.S. Highway 6, and 0.7 mi upstream from mouth. DRAINAGE AREA.--17.8 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1977 to current year. GAGE.--Water-stage recorder. Datum of gage is 576.23 ft above sea level. REMARKS.--Estimated daily discharges: Oct. 1-26, and Dec. 22 to Mar. 3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. | poo 1 c | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | | | | | | | | | | | | | | |-------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|--------------|----------------|-------------------|----------------------|-----------------|--------------------|---------------------|--------------|--------------|--------------------|--|--| | DAY | ОСТ | NOV | DEC | JAN | DAILY | MEAN V.<br>MAR | ALUES<br>APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | e20 | 8.5 | 8.9 | e8.2 | e4.0 | e14 | 12 | 12 | 4.8 | 6.2 | 2.3 | 1.9 | | | | 2<br>3 | e19<br>e19 | 8.3<br>8.6 | 10<br>8.5 | e7.2<br>e6.6 | e4.1<br>e3.8 | e13<br>e12 | 11<br>10 | 9.6<br>9.2 | 5.6<br>5.4 | 7.6<br>5.7 | 2.2 | 1.8 | | | | 4 5 | e18<br>e17 | 8.3<br>8.0 | 8.1<br>8.2 | e5.8<br>e5.2 | e3.6<br>e3.5 | 32<br>54 | 9.6<br>9.0 | 8.4 | 4.6<br>4.3 | 5.3<br>4.8 | 6.4<br>2.7 | 2.2<br>3.0 | | | | 6 | e17 | 7.6 | 8.0 | e6.0 | e3.8 | 52 | 8.5 | 11 | 4.3 | 4.6 | 2.5 | 2.0 | | | | 7<br>8 | e17<br>e16 | 7.7<br>7.8 | 7.7<br>7.6 | e5.2<br>e4.8 | e3.7<br>e3.7 | 38<br>28 | 8.2<br>8.2 | 9.4<br>8.1 | 4.3<br>28 | 4.0 | 2.1<br>2.1 | 1.8 | | | | 9<br>10 | e19<br>e18 | 7.6<br>10 | 7.1<br>6.7 | e5.2<br>e6.0 | e3.6<br>e3.5 | 2 <b>4</b><br>20 | 8.6<br>8.2 | 8.6<br>8.1 | 6.6<br>5.8 | 4.2<br>3.8 | 2.1 | 1.6<br>1.6 | | | | 11<br>12 | e17<br>e16 | 11<br>18 | 6.3<br>6.2 | e7.0<br>e6.0 | e4.5<br>e5.6 | 17<br>17 | 7.7<br>30 | 8.1<br>7.7 | 6.1<br>5.4 | 3.6<br>3.5 | 2.5 | 1.7<br>1.7 | | | | 13<br>14 | e15<br>e15 | 13<br>16 | 7.0<br>18 | e5.0<br>e4.0 | e5.4<br>e7.0 | 16<br>16 | 17<br>13 | 7.9<br>10 | 13<br>6.2 | 3.4<br>29 | 2.3 | 1.7 | | | | 15 | e15 | 10 | 13 | e3.6 | e7.0 | 15 | 53 | 12 | 4.4 | 6.1 | 2.1 | 1.7 | | | | 16<br>17 | e16<br>e15 | 8.1<br>7.5 | 10<br>11 | e4.3<br>e5.6 | e7.4<br>e15 | 14<br>13<br>13<br>12 | 22<br>18 | 8.5<br>7.8 | 3.8<br>3.8 | 4.9<br>4.6 | 1.8 | 2.0 | | | | 18<br>19 | e14<br>e13 | 6.8<br>6.8 | 16<br>14 | e4.7<br>e3.5 | e25<br>e50 | 13<br>12 | 17<br>15 | 7.4<br>7.1 | 3.6<br>7.1 | 3.8<br>13 | 22<br>4.7 | 2.0 | | | | 21 e11 6.8 11 e4.3 e37 13 16 7.1 3.8 3.8 2.0 1. | | | | | | | | | | | | | | | | 22<br>23 | e10<br>e10 | 6.2<br>6.3 | e10<br>e7.0 | e5.0<br>e6.4 | e24<br>e19 | 9.5<br>9.9 | 12<br>11 | 6.7<br>7.0 | 3.6<br>19 | 3.7<br>3.4 | 1.9<br>1.8 | 2.0 | | | | 24<br>25 | e9.8<br>e9.6 | 6.7 | e5.0<br>e3.3 | e12<br>e10 | el0<br>el1 | 9.9 | 10<br>11 | 11<br>7.3 | 50<br>13 | 3.0 | 1.8<br>1.7 | 1.7 | | | | 26<br>27 | e9.5<br>9.3 | 9.2<br>8.3 | e3.2<br>e3.4 | e7.4<br>e6.2 | e10<br>e10<br>e13 | 10<br>12 | 10<br>9.0 | 7.1<br>5.9 | 19<br>11 | 2.7<br>2.7 | 2.1<br>1.9 | .94<br>.85 | | | | 28<br>29 | 9.0 | 7.8<br>7.8 | e3.0<br>e3.4 | e5.6<br>e5.4 | e13 | 11<br>10 | 9.2 | 5.8<br>5.8 | 8.8<br>7.6 | 2.6 | 1.7<br>1.6 | .81<br>.76 | | | | 30<br>31 | 8.5<br>8.6 | 7.3 | e4.0<br>e6.0 | e4.5<br>e3.7 | | 11<br>11 | 12 | 5.4<br>5.1 | 6.9 | 2.4 | 2.4 | -74 | | | | TOTAL | | 268.5 | 253.6 | 178.4 | 398.2 | 548.5 | | 250.6 | 276.0 | 158.7 | 92.0 | 49.70 | | | | MEAN<br>MAX | 13.9<br>20 | 8.95<br>18 | 8.18 | 5.75<br>12 | 14.2<br>100 | 54 | 13.6<br>_53 | 8.08<br>12 | 9.20<br>50 | 5.12 | 2.97 | 1.66<br>3.0 | | | | MIN<br>AC-FT | 8.5<br>857 | 6.2<br>533 | 3.0<br>503 | 3.5<br>354 | 3.5<br>790 | 9.2<br>1090 | 7.7<br>811 | 5.1<br><b>49</b> 7 | 3.6<br>5 <b>4</b> 7 | 2.3<br>315 | 1.6<br>182 | .74<br>99 | | | | CFSM<br>IN. | .78<br>.90 | .50<br>.56 | .46<br>.53 | .32<br>.37 | .80<br>.83 | .99<br>1.15 | .77<br>.85 | .45<br>.52 | .52<br>.58 | .29<br>.33 | .17<br>.19 | .09<br>.10 | | | | STATIS | rics of M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1977 | - 1994, | BY WATER | YEAR (WY) | | | | | | | | MEAN<br>MAX | 12.1<br>50.9 | 13.5<br>45.4 | 14.9<br>44.1 | 8.48<br>25.0 | 12.2<br>42.1 | 23.7<br>54.6 | 19.4<br>61.3 | 17.0<br>32.5 | 26.8<br>157 | 16.1<br>65.4 | 18.3<br>99.8 | 8.37<br>34.7 | | | | (WY) | 1982 | 1993 | 1983 | 1988 | 1985 | 1979 | 1983 | 1986 | 1990 | 1992 | 1990 | 1992 | | | | MIN<br>(WY) | .67<br>1989 | 1.19<br>1990 | .77<br>1990 | 1.18<br>1979 | .76<br>1989 | 3.45<br>1989 | 2.33<br>1989 | 1.68<br>1989 | 3.17<br>1988 | .74<br>1988 | .85<br>1978 | .49<br>1988 | | | | SUMMARY | STATIST: | ics | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | ATER YEAR | | WATER YE | ARS 1977 | - 1994 | | | | ANNUAL<br>ANNUAL | MEAN | | | 9130.6<br>25.0 | | | 3315.20<br>9.08 | | | 15.9 | | | | | | LOWEST | I ANNUAL 1<br>ANNUAL MI | EAN | | | | | | | | 31.7<br>3.35 | | 1990<br>1989 | | | | | DAILY ME | | | 300<br>3.0 | Mar 22<br>Dec 28 | | 100<br>.74 | Feb 20<br>Sep 30 | | 1660<br>.13 | Aug : | 16 1990<br>16 1988 | | | | ANNUAL | | MUMINIM Y | | 3.6 | Dec 24 | | 1.0<br>unknown | Sep 24 | | 7700 | Aug : | 13 1988<br>16 1990 | | | | INSTANT | | EAK STAGE | | | | | unknown | 1 | | 11.03<br>.06 | Jun : | 16 1990<br>18 1988 | | | | ANNUAL | RUNOFF (A | AC-FT) | | 18110<br>1.41 | 1 | | 6580<br>.51 | = | | 11530 | · <b>y</b> | | | | | ANNUAL | RUNOFF (1 | INCHES) | | 19.08 | | | 6.93 | | | 12.15 | | | | | | 50 PERC | ENT EXCES | EDS | | 47<br>16 | | | 17<br>7.2 | | | 33<br>7.7 | | | | | | 90 PERC | ENT EXCE | ED S | | 7.8 | | | 2.0 | | | 1.3 | | | | | e Estimated. 72 IOWA RIVER BASIN #### 05449000 EAST BRANCH IOWA RIVER NEAR KLEMME, IA LOCATION.--Lat 43°00'31", long 93°37'42", in NE1/4 NW1/4 sec.36, T.95 N., R.24 W., Hancock County, Hydrologic Unit 07080207, on left bank 15 ft upstream from bridge on county highway B55, 1.2 mi west of Chicago, Rock Island and Pacific Railroad crossing in Klemme, 1.5 mi upstream from Drainage ditch 9, 18.2 mi upstream from confluence with West Branch Iowa River, and at mile 341.0. DRAINAGE AREA -- 133 mi<sup>2</sup> PERIOD OF RECORD.--April 1948 to September 1976, June 1977 to current year. Prior to October 1958, published as East Fork Iowa River near Klemme. REVISED RECORDS.--WSP 1438: Drainage area. WDR IA-80-1: 1978. GAGE.--Water-stage recorder. Datum of gage is 1,179.33 ft above sea level. Apr. 1, 1948 to Sept. 30, 1955, nonrecording gage at site 0.6 mi upstream at datum 0.80 ft higher. Oct. 1, 1955 to Sept. 30, 1969, at present site at datum 0.31 ft lower. REMARKS.--Estimated daily discharges: Nov. 26 to Dec. 2, Dec. 6-12, Dec. 21 to Mar. 9, and June 13, 14. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1944 reached a stage of about 10 ft, from information by local residents, former site and datum. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1<br>2<br>3<br>4<br>5 | 65<br>60<br>59<br>58<br>55 | 44<br>45<br>44<br>45<br>40 | e32<br>e31<br>32<br>32<br>32 | e28<br>e25<br>e23<br>e20<br>e22 | e15<br>e17<br>e19<br>e17<br>e18 | e44<br>e56<br>e100<br>e180<br>e300 | 38<br>37<br>32<br>35<br>31 | 79<br>72<br>67<br>67<br>67 | 27<br>25<br>19<br>17<br>42 | 133<br>115<br>90<br>189<br>272 | 238<br>264<br>206<br>237<br>180 | 34<br>35<br>38<br>42<br>52 | | | | 6<br>7<br>8<br>9<br>10 | 55<br>55<br>61<br>92<br>93 | 39<br>43<br>39<br>36<br>42 | e29<br>e26<br>e29<br>e27<br>e25 | e24<br>e18<br>e12<br>e13<br>e15 | e21<br>e16<br>e11<br>e12<br>e9.5 | e240<br>e170<br>e140<br>e110 | 36<br>34<br>37<br>38<br>35 | 78<br>83<br>80<br>74<br>65 | 57<br>54<br>46<br>38<br>39 | 157<br>171<br>544<br>480<br>279 | 138<br>114<br>102<br>90<br>107 | 52<br>48<br>45<br>41<br>38 | | | | 11<br>12<br>13<br>14<br>15 | 88<br>82<br>77<br>74<br>71 | 40<br>40<br>46<br>40<br>38 | e22<br>e26<br>35<br>40<br>43 | e18<br>e16<br>e17<br>e14<br>e11 | e9.7<br>e10<br>e10<br>e11<br>e11 | 89<br>86<br>85<br>85<br>79 | 34<br>54<br>89<br>89<br>105 | 63<br>56<br>54<br>55<br>49 | 54<br>48<br>e145<br>e156<br>124 | 170<br>146<br>229<br>340<br>325 | 137<br>155<br>220<br>180<br>140 | 35<br>32<br>31<br>29<br>28 | | | | 16<br>17<br>18<br>19<br>20 | 70<br>66<br>63<br>60<br>59 | 39<br>39<br>40<br>40<br>37 | 46<br>52<br>63<br>65<br>64 | e12<br>e15<br>e13<br>e10<br>e12 | e10<br>e13<br>e15<br>e25<br>e80 | 65<br>60<br>55<br>51<br>50 | 119<br>104<br>95<br>82<br>77 | 44<br>42<br>39<br>36<br>34 | 80<br>63<br>61<br>184<br>138 | 464<br>766<br>720<br>633<br>563 | 116<br>98<br>87<br>78<br>70 | 33<br>29<br>26<br>25<br>24 | | | | 21<br>22<br>23<br>24<br>25 | 59<br>56<br>56<br>56<br>54 | 38<br>37<br>39<br>35<br>36 | e20<br>e23<br>e19<br>e21<br>e16 | e11<br>e16<br>e14<br>e22<br>e20 | e 68<br>e 56<br>e 45<br>e 40<br>e 33 | 49<br>46<br>48<br>48<br>43 | 76<br>70<br>66<br>66<br>64 | 27<br>25<br>34<br>76<br>80 | 107<br>77<br>270<br>631<br>569 | 427<br>313<br>242<br>191<br>156 | 58<br>54<br>53<br>48<br>47 | 33<br>169<br>136<br>104<br>93 | | | | 26<br>27<br>28<br>29<br>30<br>31 | 52<br>50<br>52<br>48<br>45<br>44 | e31<br>e28<br>e32<br>e33<br>e33 | e15<br>e14<br>e11<br>e18<br>e15<br>e23 | e17<br>e15<br>e17<br>e15<br>e14<br>e13 | e37<br>e34<br>e38<br> | 45<br>44<br>42<br>40<br>37<br>38 | 110<br>109<br>83<br>85<br>85 | 81<br>-66<br>57<br>50<br>42<br>34 | 396<br>239<br>157<br>119<br>96 | 131<br>116<br>103<br>92<br>86<br>83 | 61<br>53<br>47<br>43<br>41<br>37 | 97<br>90<br>80<br>73<br>69 | | | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 1935<br>62.4<br>93<br>44<br>3840<br>.47<br>.54 | 1158<br>38.6<br>46<br>28<br>2300<br>.29<br>.32 | 946<br>30.5<br>65<br>11<br>1880<br>.23 | 512<br>16.5<br>28<br>10<br>1020<br>.12<br>.14 | 701.2<br>25.0<br>80<br>9.5<br>1390<br>.19<br>.20 | 2624<br>84.6<br>300<br>37<br>5200<br>.64<br>.73 | 2015<br>67.2<br>119<br>31<br>4000<br>.51 | 1776<br>57.3<br>83<br>25<br>3520<br>.43<br>.50 | 4078<br>136<br>631<br>17<br>8090<br>1.02<br>1.14 | 8726<br>281<br>766<br>83<br>17310<br>2.12<br>2.44 | 3499<br>113<br>264<br>37<br>6940<br>.85<br>.98 | 1661<br>55.4<br>169<br>24<br>3290<br>.42<br>.46 | | | | STATIST<br>MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 40.7<br>217<br>1987<br>2.08<br>1949 | 39.7<br>234<br>1993<br>1.78<br>1990 | 27.9<br>215<br>1983<br>.68<br>1990 | 13.1<br>88.8<br>1992<br>.15<br>1990 | YEARS 1949<br>31.7<br>334<br>1984<br>.28<br>1959 | - 1994,<br>121<br>441<br>1973<br>4.25<br>1975 | 146<br>728<br>1965<br>7.41<br>1957 | YEAR (WY) 102 435 1991 7.44 1989 | 141<br>738<br>1984<br>3.63<br>1989 | 90.0<br>487<br>1993<br>2.47<br>1989 | 51.8<br>656<br>1979<br>4.70<br>1949 | 51.5<br>455<br>1965<br>3.63<br>1958 | | | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 50 PERC | MEAN ANNUAL MANNUAL MANNUAL MAILY MEA | MEAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS | FOR | 1993 CALE<br>82753<br>227<br>3530<br>11<br>16<br>164100<br>1.7<br>23.1<br>631<br>83<br>21 | | F | 766<br>9.5<br>10<br>800<br>8.58<br>58770<br>8.29<br>169<br>49 | Jul 17<br>Feb 10<br>Feb 10<br>Jul 17<br>Jul 17 | | 69.1<br>247<br>8.74<br>3880<br>.00<br>.00<br>5960<br>10.67<br>50090<br>-52<br>7.06<br>176<br>20<br>3.6 | Jun<br>Dec<br>Dec<br>Jun | 1993<br>1989<br>21 1954<br>21 1989<br>21 1989<br>19 1954<br>6 1965 | | | | e Estim | ated. | | | | | | | | | | | | | | e Estimated. 73 #### 05449500 IOWA RIVER NEAR ROWAN, IA LOCATION.--Lat 42°45'36", long 93°37'23", in NW1/4 NE1/4 sec.25, T.92 N., R.24 W., Wright County, Hydrologic Unit 07080207, on left bank 10 ft downstream from bridge on county highway C38, 0.9 mi downstream from drainage ditch 123, 3.8 mi northwest of Rowan, 10.7 mi downstream from confluence of East and West Branches, and at mile 316.4. DRAINAGE AREA.--429 mi<sup>2</sup>. PERIOD OF RECORD.--October 1940 to September 1976, June 1977 to current year. REVISED RECORDS.--WSP 1308: 1942-43 (M). WSP 1438: Drainage area. WDR IA-80-1: 1978. GAGE.--Water-stage recorder. Datum of gage is 1,143.35 ft above sea level . Prior to Oct. 14, 1948, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Nov. 27 to Dec. 1, Dec. 7-12, Dec. 22 to Mar. 8, Mar. 17, and July 28, 29. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. | | DIS | CHARGE, | CUBIC F | EET PER S | SECOND, V<br>DAILY | VATER Y<br>MEAN V | TEAR OCTO | BER 1993 | TO SEP | TEMBER 19 | 94 | | |-------------------------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-----------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 243<br>234<br>219<br>214<br>207 | 155<br>153<br>153<br>153<br>151 | e110<br>117<br>119<br>118<br>120 | e100<br>e90<br>e80<br>e72<br>e78 | e54<br>e62<br>e68<br>e62<br>e68 | e180<br>e210<br>e270<br>e500<br>e1100 | 139<br>139<br>136<br>129<br>132 | 255<br>238<br>217<br>205<br>205 | 135<br>128<br>123<br>115<br>118 | 484<br>469<br>418<br>627<br>1170 | 301<br>444<br>472<br>416<br>421 | 103<br>106<br>109<br>117<br>133 | | 6<br>7<br>8<br>9 | 200<br>202<br>201<br>250<br>306 | 142<br>127<br>145<br>143<br>136 | 109<br>e89<br>e98<br>e90<br>e84 | e88<br>e68<br>e45<br>e50<br>e56 | e74<br>e56<br>e40<br>e43<br>e35 | e900<br>e700<br>e580<br>490<br>456 | 128<br>131<br>129<br>131<br>134 | 218<br>269<br>293<br>280<br>253 | 152<br>189<br>182<br>161<br>146 | 1210<br>970<br>949<br>1050<br>1050 | 354<br>289<br>255<br>242<br>237 | 137<br>127<br>118<br>110<br>102 | | 11<br>12<br>13<br>14<br>15 | 309<br>297<br>272<br>251<br>243 | 140<br>142<br>148<br>151<br>146 | e80<br>e94<br>119<br>128<br>142 | e64<br>e56<br>e60<br>e52<br>e41 | e37<br>e38<br>e38<br>e41<br>e40 | 368<br>341<br>317<br>323<br>303 | 129<br>138<br>215<br>324<br>355 | 225<br>213<br>193<br>184<br>186 | 145<br>158<br>410<br>786<br>754 | 953<br>681<br>574<br>720<br>933 | 289<br>365<br>477<br>563<br>468 | 97<br>91<br>87<br>84<br>82 | | 16<br>17<br>18<br>19<br>20 | 236<br>228<br>217<br>210<br>203 | 141<br>145<br>144<br>140<br>141 | 156<br>166<br>190<br>213<br>214 | e48<br>e54<br>e48<br>e39<br>e42 | e38<br>e47<br>e70<br>e130<br>e290 | 287<br>e248<br>228<br>213<br>213 | 423<br>429<br>372<br>331<br>289 | 173<br>158<br>151<br>145<br>140 | 486<br>319<br>258<br>242<br>349 | 965<br>1080<br>1270<br>1440<br>1580 | 365<br>299<br>257<br>228<br>202 | 78<br>79<br>75<br>74<br>74 | | 21<br>22<br>23<br>24<br>25 | 205<br>205<br>201<br>197<br>190 | 135<br>135<br>131<br>132<br>135 | 159<br>e110<br>e68<br>e74<br>e58 | e39<br>e56<br>e52<br>e80<br>e72 | e250<br>e210<br>e160<br>e140<br>e120 | 209<br>199<br>191<br>182<br>171 | 269<br>254<br>236<br>223<br>221 | 134<br>128<br>126<br>174<br>267 | 340<br>283<br>611<br>1270<br>1580 | 1470<br>1270<br>1000<br>728<br>565 | 181<br>165<br>150<br>139<br>134 | 75<br>135<br>301<br>260<br>223 | | 26<br>27<br>28<br>29<br>30<br>31 | 182<br>177<br>173<br>172<br>163<br>156 | 113<br>e98<br>e105<br>e110<br>e105 | e52<br>e49<br>e41<br>e64<br>e56<br>e85 | e64<br>e55<br>e60<br>e54<br>e50<br>e48 | e140<br>e130<br>e150<br> | 163<br>164<br>160<br>153<br>147<br>140 | 219<br>288<br>273<br>241<br>253 | 263<br>238<br>200<br>179<br>165<br>147 | 1680<br>1570<br>1240<br>863<br>608 | 467<br>400<br>e350<br>e309<br>275<br>250 | 140<br>148<br>132<br>123<br>114<br>110 | 211<br>207<br>190<br>170<br>154 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 6763<br>218<br>309<br>156<br>13410<br>.51 | 4095<br>136<br>155<br>98<br>8120<br>.32<br>.36 | 3372<br>109<br>214<br>41<br>6690<br>.25 | 1861<br>60.0<br>100<br>39<br>3690<br>.14<br>.16 | 2631<br>94.0<br>290<br>35<br>5220<br>.22<br>.23 | 10106<br>326<br>1100<br>140<br>20050<br>.76<br>.88 | 6810<br>227<br>429<br>128<br>13510<br>.53<br>.59 | 6222<br>201<br>293<br>126<br>12340<br>.47<br>.54 | 15401<br>513<br>1680<br>115<br>30550<br>1.20<br>1.34 | 25677<br>828<br>1580<br>250<br>50930<br>1.93<br>2.23 | 8480<br>274<br>563<br>110<br>16820<br>.64<br>.74 | 3909<br>130<br>301<br>74<br>7750<br>.30 | | STATIST | rics of Mo | ONTHLY MEA | N DATA FO | OR WATER | YEARS 1941 | - 1994, | , BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 131<br>720<br>1987<br>8.14<br>1990 | 131<br>695<br>1993<br>9.49<br>1990 | 85.2<br>588<br>1983<br>5.62<br>1990 | 54.9<br>298<br>1983<br>3.63<br>1959 | 106<br>931<br>1984<br>3.54<br>1959 | 391<br>1415<br>1973<br>23.9<br>1968 | 470<br>2439<br>1965<br>32.4<br>1957 | 338<br>1793<br>1991<br>44.3<br>1989 | 462<br>2452<br>1984<br>19.2<br>1989 | 298<br>1922<br>1993<br>14.9<br>1989 | 161<br>1684<br>1979<br>14.3<br>1948 | 148<br>1213<br>1965<br>8.83<br>1958 | | SUMMARY | STATISTI | cs | FOR 1 | 993 CALE | NDAR YEAR | E | FOR 1994 WA | TER YEAR | | WATER YE | ARS 1941 | - 1994 | | LOWEST<br>HIGHEST<br>LOWEST<br>ANNUAL | MEAN ANNUAL ME ANNUAL ME DAILY ME SEVEN-DAY | AN<br>AN<br>N<br>MINIMUM | | 297391<br>815<br>6010<br>41<br>56 | Apr 1<br>Dec 28<br>Dec 24 | | 95327<br>261<br>1680<br>35<br>38 | Jun 26<br>Feb 10<br>Feb 10 | | 232<br>869<br>30.4<br>7640<br>2.8<br>3.0 | Dec<br>Jan | 1993<br>1956<br>21 1954<br>22 1989<br>19 1959 | | INSTANT<br>ANNUAL<br>ANNUAL<br>ANNUAL<br>10 PERC<br>50 PERC | | AK STAGE<br>AC-FT)<br>FSM)<br>NCHES)<br>DS | | 589900<br>1.90<br>25.79<br>2100<br>338<br>84 | ) | | 1690<br>10.33<br>189100<br>.61<br>8.27<br>564<br>164<br>60 | | | 8460<br>14.88<br>168400<br>54<br>7.36<br>578<br>80<br>16 | Jun<br>Jun | 21 1954<br>21 1954 | e Estimated. 74 IOWA RIVER BASIN #### 05451500 IOWA RIVER AT MARSHALLTOWN, IA LOCATION.--Lat 42°03'57", long 92°54'27", in SE1/4 SE1/4 sec.23, T.84 N., R.18 W., Marshall County, Hydrologic Unit 07080208, on right bank 10 ft downstream from bridge on State Highway 14, 1,500 ft upstream from Burnett Creek, 2.2 mi upstream from Linn Creek, and at mile DRAINAGE AREA.--1,532 mi<sup>2</sup>, revised. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1902 to September 1903, October 1914 to September 1927, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1915-18, 1919 (M), 1920, 1921-23 (M), 1924-27, 1933, 1934 (M), 1936, 1938, 1947 (M). GAGE.--Water-stage encoder. Datum of gage is 853.10 ft above sea level. See WSP 1728 for history of changes prior to Sept. 21, 1934. REMARKS.--Estimated daily discharges: Dec. 8-14, Dec. 20 to Mar. 5, July 31 to Aug. 1, Aug. 31 to Sept. 5, and Sept. 10-16.. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers data collection platform at station. | | DIS | SCHARGE | CUBIC I | EET PER S | | VATER Y<br>MEAN V | EAR OCTO<br>ALUES | BER 1993 | то ѕерт | EMBER 19 | 94 | | | |-----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1<br>2<br>3 | 1900<br>1780<br>1710 | 996<br>988<br>963 | 704<br>687<br>665 | e340<br>e355<br>e320 | e220<br>e241<br>e210 | e800<br>e1000<br>e1200 | 703<br>689<br>660 | 763<br>742<br>747 | 584<br>577<br>554 | 2860<br>2420<br>1920 | e788<br>788<br>753 | e380<br>e325<br>e295 | | | 5 | 1620<br>1560 | 960<br>932 | 661<br>632 | e280<br>e300 | e220<br>e240 | e1800<br>e4600 | 633<br>646 | 740<br>729 | 529<br>513 | 2100<br>2980 | 930<br>937 | e330<br>e400 | | | 6<br>7<br>8<br>9 | 1530<br>1490<br>1440<br>2170 | 875<br>866<br>856<br>844 | 612<br>590<br>e560<br>e540 | e280<br>e260<br>e280<br>e303 | e278<br>e250<br>e230<br>e220 | 5520<br>4260<br>2930<br>2570 | 622<br>613<br>605<br>608 | 809<br>922<br>997<br>1030 | 515<br>570<br>1220<br>980 | 2260<br>2080<br>2520<br>2 <b>4</b> 90 | 919<br>869<br>824<br>750 | 468<br>487<br>468<br>444 | | | 10 | 2430 | 812 | e520 | e325 | e200 | 2370 | 606 | 1010 | 837 | 2130 | 698<br>677 | e375<br>e335 | | | 11<br>12<br>13<br>14<br>15 | 2160<br>2010<br>1870<br>1770<br>1730 | 834<br>807<br>866<br>846<br>831 | e500<br>e480<br>e540<br>e600<br>621 | e310<br>e280<br>e250<br>e230<br>e250 | e230<br>e290<br>250<br>e265<br>e270 | 1930<br>1640<br>e280<br>1410<br>1380 | 578<br>617<br>1500<br>684<br>855 | 963<br>905<br>669<br>785<br>777 | 808<br>711<br>825<br>2130<br>1850 | 1930<br>1850<br>2380<br>1810<br>1660 | 689<br>1870<br>1060<br>1110 | e335<br>e300<br>907<br>e240<br>e230 | e260 | | 16<br>17<br>18<br>19<br>20 | 1700<br>1600<br>1510<br>1450<br>1400 | 816<br>812<br>793<br>793<br>773 | 602<br>613<br>642<br>660<br>e605 | e230<br>e240<br>e198<br>e215<br>e235 | e280<br>e400<br>e690<br>e1200<br>e2500 | 1290<br>1210<br>1140<br>1070<br>1040 | 1050<br>1060<br>1070<br>1060<br>1010 | 761<br>746<br>717<br>673<br>650 | 1670<br>1580<br>1460<br>1290<br>1360 | 1520<br>1510<br>1550<br>1550<br>1740 | 1110<br>1070<br>952<br>829<br>736 | e225<br>319<br>284<br>267<br>262 | | | 21<br>22<br>23<br>24<br>25 | 1360<br>1310<br>1270<br>1250<br>1220 | 757<br>754<br>753<br>733<br>736 | e520<br>e435<br>e280<br>e240<br>e218 | e260<br>e290<br>e330<br>e320<br>e300 | e1800<br>e1400<br>e1100<br>e900<br>e800 | 1020<br>982<br>942<br>927<br>888 | 963<br>906<br>847<br>817<br>793 | 631<br>601<br>601<br>638<br>638 | 1750<br>1760<br>2740<br>4320<br>3850 | 1750<br>1790<br>1840<br>1830<br>1720 | 658<br>607<br>559<br>511<br>472 | 293<br>582<br>971<br>1040<br>1260 | | | 26<br>27<br>28<br>29<br>30<br>31 | 1220<br>1160<br>1140<br>1110<br>1070<br>1030 | 709<br>706<br>691<br>704<br>697 | e200<br>e200<br>e220<br>e200<br>e240<br>e290 | e280<br>e250<br>e240<br>e220<br>e213<br>e209 | e700<br>e640<br>e700<br> | 863<br>843<br>803<br>770<br>741<br>717 | 770<br>726<br>703<br>715<br>755 | 630<br>700<br>721<br>686<br>651<br>613 | 3540<br>3460<br>3480<br>3240<br>2910 | 1510<br>1270<br>1100<br>990<br>916<br>e844 | 461<br>447<br>429<br>409<br>412<br>e390 | 1550<br>1380<br>1210<br>1060<br>959 | | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 47970<br>1547<br>2430<br>1030<br>95150<br>.99<br>1.14 | 24503<br>817<br>996<br>691<br>48600<br>.52<br>.58 | 15077<br>486<br>704<br>200<br>29910<br>.31<br>.36 | 8393<br>271<br>355<br>198<br>16650<br>.17<br>.20 | 16754<br>598<br>2500<br>200<br>33230<br>.38<br>.40 | 50156<br>1618<br>5520<br>717<br>99480<br>1.03<br>1.19 | 23033<br>768<br>1070<br>578<br>45690<br>.49 | 23401<br>755<br>1030<br>601<br>46420<br>.48<br>.56 | 53168<br>1772<br>4320<br>513<br>105500<br>1.13<br>1.26 | 56310<br>1816<br>2980<br>844<br>111700<br>1.16<br>1.34 | 22751<br>734<br>1110<br>390<br>45130<br>.47<br>.54 | 16999<br>567<br>1550<br>225<br>33720<br>.36<br>.40 | | | STATIST<br>MEAN | rics of M | ONTHLY ME | AN DATA I<br>358 | FOR WATER | YEARS 1903<br>626 | - 1994<br>1601 | , BY WATER<br>1478 | YEAR (WY<br>1276 | )<br>1696 | 1002 | 573 | 515 | | | MAX<br>(WY)<br>MIN<br>(WY) | 2721<br>1987<br>39.2<br>1940 | 2593<br>1973<br>46.2<br>1940 | 2139<br>1983<br>31.0<br>1990 | 2231<br>1973<br>10.2<br>1977 | 3424<br>1915<br>20.9<br>1940 | 4206<br>1973<br>98.4<br>1934 | 6796<br>1965<br>99.3<br>1934 | 5559<br>1991<br>49.9<br>1934 | 7619<br>1918<br>16.0<br>1934 | 8389<br>1993<br>41.8<br>1977 | 7062<br>1993<br>35.9<br>1934 | 3362<br>1993<br>27.5<br>1939 | | | SUMMARY | Y STATIST | ics | FOR | 1993 CALE | NDAR YEAR | 1 | FOR 1994 WA | TER YEAR | | WATER Y | EARS 1903 | - 1994 | | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT | MEAN F ANNUAL ANNUAL M F DAILY ME DAILY ME SEVEN-DA FANEOUS F | EAN<br>EAN<br>AN<br>Y MINIMUM<br>EAK FLOW<br>EAK STAGE | | 1251590<br>3429<br>19300<br>200<br>217<br>2483000 | Aug 17<br>Dec 26<br>Dec 24 | | 358515<br>982<br>5520<br>198<br>217<br>6420<br>16.75 | Mar 6<br>Jan 18<br>Dec 24<br>Mar 6<br>Mar 6 | | 868<br>3456<br>77.3<br>39400<br>4.7<br>5.2<br>42000<br>20.7' | Jan<br>Jan<br>Jun | 1993<br>1934<br>4 1918<br>25 1977<br>20 1977<br>4 1918<br>17 1993 | | | ANNUAL<br>10 PERC<br>50 PERC | | EDS | | 2.1<br>29.7<br>7740<br>2250<br>460 | | | .63<br>8.53<br>1860<br>770<br>261 | | | 7.5<br>7.5<br>2110<br>381<br>71 | | | | e Estimated. #### 05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--April 1988 to current year. PERIOD OF DAILY RECORD. SPECIFIC CONDUCTANCE: April 1988 to current year. WATER TEMPERATURES: April 1988 to current year. SUSPENDED-SEDIMENT DISCHARGE: April 1988 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at times of analysis. During periods of partial ice cover, sediment samples are collected in open water channel. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 805 microsiemens May 13, 1990; minimum daily, 239 microsiemens Aug. 17, 1993. WATER TEMPERATURES: Maximum daily, 34.0°C July 27, 1988; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,960 mg/L Mar. 19, 1990; minimum daily mean, 2 mg/L Aug. 8, 16, 1988. SEDIMENT LOADS: Maximum daily, 76,700 tons July 12, 1993; minimum daily, 0.20 tons Aug. 8, 16, 1988. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 683 microsiemens Jan. 12; minimum daily, 256 microsiemens Feb. 20. WATER TEMPERATURES: Maximum daily, 28.0°C June 17; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,860 mg/L June 13; minimum daily mean, 12 mg/L Feb. 7. SEDIMENT LOADS: Maximum daily, 21,200 tons June 13; minimum daily, 8.1 tons Feb. 7. ### SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|------------|-----|-----| | 1 | | 431 | 457 | | 517 | 530 | | 414 | 431 | 521 | 462 | 425 | | 2 | | 460 | 462 | | | 556 | | 412 | 499 | | 451 | 463 | | 3 | 488 | 419 | 445 | | 551 | 586 | 556 | 407 | 523 | | 460 | | | 4 | 447 | 441 | 415 | | 637 | 527 | 497 | 434 | 607 | 479 | 516 | | | 5 | 457 | 427 | 454 | | | 269 | 546 | 423 | 491 | 518 | | 439 | | • | 15. | 12. | 451 | | | 205 | 310 | 125 | 172 | 310 | | | | 6 | 425 | | 489 | | | 305 | 510 | 423 | 474 | 465 | | 445 | | 7 | 575 | 439 | 465 | | 596 | 388 | 458 | | 551 | 498 | 531 | 496 | | 8 | 587 | 433 | 448 | | | | 423 | | 452 | 512 | 474 | 486 | | 9 | | 435 | 434 | | 553 | | 443 | 453 | 526 | 490 | 519 | | | 10 | | 426 | 427 | | | 434 | 452 | 481 | 531 | 770 | 516 | | | 10 | | 720 | 421 | | | 434 | 432 | 401 | 331 | | 310 | | | 11 | 572 | 437 | 462 | 534 | 585 | 482 | 430 | 427 | | 511 | 484 | | | 12 | 549 | | 438 | 683 | | 505 | 418 | 429 | 452 | 586 | 522 | | | 13 | 655 | 453 | 437 | | | 533 | 543 | 545 | 391 | 480 | 496 | 520 | | 14 | 590 | 433 | 463 | 601 | 629 | 495 | 453 | J43 | 512 | 524 | 490 | 490 | | 15 | 538 | 469 | 460 | 90T | 642 | 495<br>485 | 463 | | 559 | 524<br>560 | 500 | 507 | | 13 | 336 | 469 | 460 | | 642 | 485 | 463 | | 339 | 360 | 300 | 307 | | 16 | 567 | 463 | 450 | | 435 | 550 | 477 | 552 | 601 | 436 | 530 | 491 | | 17 | | 479 | 452 | 544 | 502 | 485 | 436 | 488 | 586 | | 540 | | | 18 | 591 | 530 | 469 | | 456 | 492 | 429 | 437 | | 506 | 556 | | | 19 | | 440 | 447 | | | 772 | 436 | 466 | | 532 | 457 | 480 | | 20 | 611 | 437 | 450 | 565 | 256 | | 480 | 442 | 538 | 544 | 437 | 499 | | 20 | 011 | 437 | 450 | 263 | 236 | | 400 | 442 | 336 | 344 | | 777 | | 21 | 595 | 430 | 444 | 539 | 330 | 525 | 433 | 515 | 560 | 534 | | 516 | | 22 | 611 | 451 | 458 | | 376 | 551 | 461 | 488 | 564 | 514 | 448 | 478 | | 23 | | 465 | 508 | 559 | | 512 | 457 | 550 | | | 521 | 588 | | 24 | | 459 | | 486 | | 500 | 443 | 479 | | 449 | 465 | | | 25 | 493 | 133 | | 700 | | 533 | 428 | 505 | | 528 | 475 | 594 | | 23 | 193 | | | | | 333 | 120 | 303 | | 320 | 3,5 | 551 | | 26 | 419 | | | 492 | | 496 | 461 | 522 | | 455 | 472 | 547 | | 27 | 463 | | | | | 494 | 417 | 510 | 564 | | | 586 | | 28 | 461 | 480 | | 547 | | 559 | | | 524 | 513 | | 471 | | 29 | 440 | 442 | | 341 | | 519 | 419 | | 520 | 469 | 425 | 472 | | 30 | | 444 | | | | 606 | 417 | 574 | 507 | 707 | 506 | 583 | | 31 | | 744 | | 494 | | 655 | | 482 | | | 521 | 363 | | 31 | | | | 474 | | 633 | | 402 | | | 321 | | #### IOWA RIVER BASIN #### 05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued ### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 to SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU | ARY | MARC | :H | | 1<br>2<br>3<br>4<br>5 | 101<br>110<br>125<br>107<br>110 | 516<br>530<br>578<br>468<br>466 | 159<br>143<br>107<br>161<br>141 | 427<br>382<br>279<br>419<br>355 | 133<br>145<br>78<br>87<br>120 | 253<br>269<br>140<br>155<br>205 | 115<br>112<br>113<br>111<br>115 | 106<br>107<br>98<br>84<br>93 | 121<br>107<br>91<br>45<br>37 | 72<br>70<br>52<br>27<br>24 | 34<br>45<br>36<br>95<br>591 | 73<br>121<br>117<br>462<br>7340 | | 6<br>7<br>8<br>9 | 105<br>100<br>76<br>119<br>115 | 434<br>401<br>296<br>713<br>755 | 128<br>125<br>172<br>175<br>153 | 303<br>291<br>396<br>398<br>334 | 106<br>131<br>111<br>106<br>112 | 175<br>208<br>168<br>155<br>157 | 113<br>104<br>97<br>93<br>91 | 85<br>73<br>73<br>76<br>80 | 27<br>12<br>19<br>61<br>44 | 20<br>8.1<br>12<br>36<br>24 | 553<br>482<br>494<br>435<br>280 | 8120<br>5460<br>3900<br>3020<br>1800 | | 11<br>12<br>13<br>14<br>15 | 91<br>98<br>71<br>83<br>67 | 530<br>532<br>358<br>399<br>314 | 78<br>59<br>117<br>129<br>130 | 175<br>129<br>276<br>296<br>292 | 119<br>139<br>158<br>148<br>140 | 161<br>180<br>230<br>240<br>235 | 89<br>91<br>96<br>142<br>103 | 74<br>69<br>65<br>88<br>70 | 39<br>42<br>45<br>56<br>46 | 24<br>33<br>34<br>40<br>34 | 200<br>177<br>169<br>158<br>140 | 1050<br>783<br>684<br>603<br>523 | | 16<br>17<br>18<br>19<br>20 | 65<br>61<br>55<br>54<br>75 | 296<br>266<br>224<br>212<br>284 | 75<br>92<br>117<br>127<br>151 | 165<br>202<br>251<br>271<br>316 | 153<br>144<br>166<br>174<br>162 | 248<br>238<br>287<br>310<br>265 | 93<br>92<br>96<br>96<br>114 | 58<br>60<br>51<br>56<br>72 | 40<br>24<br>30<br>278<br>327 | 30<br>26<br>56<br>901<br>2210 | 129<br>133<br>106<br>84<br>74 | 446<br>434<br>327<br>242<br>206 | | 21<br>22<br>23<br>24<br>25 | 63<br>75<br>63<br>80<br>97 | 233<br>266<br>218<br>269<br>318 | 155<br>137<br>139<br>176<br>137 | 317<br>279<br>282<br>349<br>271 | 165<br>164<br>167<br>152<br>145 | 232<br>193<br>126<br>98<br>85 | 118<br>128<br>145<br>112<br>112 | 83<br>100<br>129<br>97<br>91 | 164<br>91<br>53<br>36<br>31 | 797<br>344<br>157<br>87<br>67 | 73<br>75<br>96<br>89<br>105 | 200<br>198<br>243<br>222<br>252 | | 26<br>27<br>28<br>29<br>30<br>31 | 91<br>134<br>146<br>106<br>89<br>87 | 298<br>417<br>449<br>319<br>255<br>242 | 102<br>83<br>76<br>94<br>141 | 196<br>159<br>142<br>179<br>265 | 136<br>128<br>124<br>120<br>115<br>118 | 73<br>69<br>74<br>65<br>75<br>92 | 118<br>107<br>102<br>108<br>117<br>121 | 89<br>72<br>66<br>64<br>67<br>68 | 32<br>28<br>31<br> | 60<br>48<br>59<br> | 55<br>43<br>63<br>67<br>47<br>30 | 128<br>98<br>136<br>140<br>94<br>57 | | TOTAL | | 11856 | | 8396 | | 5461 | | 2464 | | 5352.1 | | 37479 | | | | | | | | | | | | | | | | | APR | IL | м | AY | Jt | INE | JU | LY | JA. | UGUST | SEPT | TEMBER | | 1<br>2<br>3<br>4<br>5 | 27<br>35<br>33<br>47<br>39 | 52<br>66<br>60<br>81<br>69 | 110<br>93<br>90<br>92<br>94 | 226<br>187<br>182<br>183<br>185 | 167<br>114<br>107<br>98<br>119 | 263<br>177<br>159<br>140<br>165 | 405<br>330<br>252<br>361<br>706 | 3120<br>2180<br>1310<br>2390<br>5890 | 93<br>81<br>71<br>121<br>107 | 198<br>172<br>144<br>311<br>270 | 84<br>48<br>56<br>63<br>114 | 86<br>42<br>45<br>56<br>123 | | 6<br>7<br>8<br>9 | 32<br>51<br>42<br>49<br>57 | 54<br>84<br>69<br>81<br>94 | 105<br>119<br>129<br>136<br>124 | 231<br>298<br>348<br>378<br>338 | 150<br>214<br>1050<br>544<br>343 | 208<br>348<br>3830<br>1450<br>776 | 407<br>332<br>602<br>456<br>305 | 2480<br>1860<br>4180<br>3090<br>1760 | 87<br>83<br>84<br>64<br>52 | 215<br>194<br>186<br>129<br>99 | 101<br>86<br>93<br>90<br>83 | 127<br>113<br>117<br>108<br>84 | | 11<br>12<br>13<br>14<br>15 | 83<br>100<br>61<br>97<br>173 | 129<br>167<br>111<br>181<br>404 | 113<br>97<br>104<br>109<br>109 | 295<br>236<br>232<br>231<br>229 | 283<br>238<br>2860<br>979<br>550 | 619<br>457<br>21200<br>5780<br>2750 | 248<br>223<br>199<br>223<br>198 | 1290<br>1110<br>1000<br>1080<br>890 | 58<br>66<br>177<br>208<br>177 | 105<br>124<br>440<br>597<br>533 | 74<br>64<br>57<br>59<br>55 | 67<br>52<br>40<br>39<br>34 | | 16<br>17<br>18<br>19<br>20 | 217<br>196<br>211<br>219<br>167 | 614<br>563<br>612<br>630<br>454 | 111<br>119<br>115<br>112<br>105 | 228<br>239<br>223<br>203<br>184 | 412<br>379<br>348<br>293<br>333 | 1860<br>1620<br>1370<br>1030<br>1230 | 177<br>168<br>164<br>163<br>206 | 726<br>686<br>687<br>684<br>978 | 194<br>182<br>167<br>146<br>127 | 585<br>526<br>430<br>328<br>251 | 57<br>80<br>84<br>71<br>58 | 35<br>69<br>64<br>51<br>41 | | 21<br>22<br>23<br>24<br>25 | 163<br>159<br>123<br>131<br>153 | 423<br>389<br>281<br>288<br>327 | 100<br>103<br>99<br>146<br>123 | 170<br>167<br>160<br>252<br>212 | 527<br>465<br>792<br>1400<br>718 | 2520<br>2220<br>6710<br>16300<br>7500 | 205<br>179<br>200<br>243<br>197 | 970<br>866<br>992<br>1200<br>917 | 110<br>96<br>71<br>74<br>72 | 196<br>158<br>107<br>101<br>92 | 83<br>450<br>539<br>432<br>431 | 71<br>852<br>1400<br>1210<br>1460 | | 26<br>27<br>28<br>29<br>30<br>31 | 147<br>145<br>133<br>108<br>104 | 305<br>284<br>252<br>209<br>213 | 128<br>158<br>134<br>122<br>117<br>151 | 219<br>300<br>261<br>226<br>205<br>250 | 489<br>453<br>479<br>446<br>444 | 4680<br>4230<br>4500<br>3900<br>3480 | 197<br>161<br>127<br>102<br>89<br>87 | 804<br>553<br>376<br>272<br>219<br>198 | 58<br>61<br>66<br>81<br>64<br>74 | 72<br>74<br>77<br>90<br>71<br>78 | 423<br>361<br>315<br>264<br>187 | 1770<br>1350<br>1030<br>752<br>486 | | TOTAL | | 7546 | | 7278 | | 101472 | | 44758 | | 6953 | *** | 11773 | | YEAR | 250788.1 | | | | | | | | | | | | ### IOWA RIVER BASIN 77 #### 05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--------------------------------------|---------------------------------|---------------------------------|-----|----------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | 1<br>2<br>3<br>4<br>5 | 15.0<br>14.5<br>13.5 | 5.0<br>6.5<br>8.0<br>9.0<br>6.0 | .5<br>3.0<br>2.5<br>2.5<br>2.0 | | .0 | .5<br>1.0<br>1.0<br>1.5<br>1.5 | 11.0<br>10.0<br>6.0 | 13.0<br>14.0<br>13.0<br>15.0<br>14.5 | 20.5<br>19.0<br>19.5<br>25.0<br>25.0 | 21.5<br><br>24.5<br>25.0 | 25.0<br>23.5<br>24.0<br>22.5 | 21.5<br>19.0<br><br>21.5 | | 6<br>7<br>8<br>9<br>10 | 16.0<br>20.0<br>18.0 | 4.0<br>4.0<br>5.0<br>4.5 | 2.5<br>2.0<br>1.5<br>3.0<br>2.5 | | .0 | 1.0<br>2.5<br><br>2.0 | 5.5<br>7.5<br>10.0<br>12.5<br>13.5 | 12.0<br><br>13.0<br>14.0 | 25.0<br>25.0<br>19.5<br>22.5<br>22.5 | 25.0<br>26.0<br>22.5<br>22.0 | 25.0<br>23.5<br>23.5<br>22.0 | 19.5<br>23.0<br>24.0 | | 11<br>12<br>13<br>14<br>15 | 11.0<br>12.0<br>11.0<br>10.0<br>14.0 | 7.0<br>6.5<br>5.5 | .0<br>.5<br>2.0<br>2.5<br>4.0 | .0 | .0 | 3.0<br>4.0<br>5.0<br>6.0<br>6.5 | 10.0<br>9.0<br>10.0<br>13.5<br>13.0 | 14.0<br>15.0<br>15.0 | 23.5<br>20.0<br>23.0<br>27.0 | 23.5<br>25.0<br>23.0<br>22.0<br>23.0 | 20.0<br>20.5<br>21.0<br>20.5<br>21.0 | 24.0<br>25.0<br>25.5 | | 16<br>17<br>18<br>19<br>20 | 13.0<br><br>12.0<br><br>14.0 | 4.5<br>5.5<br>5.0<br>5.0 | 3.5<br>4.0<br>4.0<br>4.0<br>2.5 | .0 | .5<br>1.0<br>1.0<br> | 6.0<br>5.5<br>7.0<br> | 14.5<br>16.0<br>16.5<br>16.0<br>13.5 | 17.0<br>21.5<br>19.5<br>20.0<br>20.5 | 26.0<br>28.0<br><br>23.5 | 24.5<br><br>24.0<br>25.0<br>24.0 | 21.0<br>22.0<br>24.0<br>24.5 | 22.0<br><br>20.5<br>20.0 | | 21<br>22<br>23<br>24<br>25 | 12.0<br>10.0<br><br>14.0 | 6.0<br>5.0<br>6.5<br>5.0 | .5<br>.0<br>.0 | .0 | 1.0 | 11.0<br>10.0<br>11.5<br>9.0<br>7.0 | 13.5<br>14.0<br>13.5<br>20.5<br>19.0 | 24.0<br>26.0<br>24.5<br>20.0<br>22.5 | 25.0<br>25.0<br> | 22.5<br>23.5<br><br>25.0<br>24.0 | 22.5<br>22.5<br>24.5<br>26.0 | 21.0<br>17.0<br>15.5<br><br>16.5 | | 26<br>27<br>28<br>29<br>30<br>31 | 11.0<br>8.0<br>9.0<br>6.0 | .0 | | .0 | | 8.5<br>8.5<br>6.0<br>5.0<br>5.0<br>7.5 | 20.0<br>13.5<br><br>11.0 | 19.0<br>20.0<br><br>25.0<br>24.0 | 20.5<br>21.5<br>22.0<br>22.0 | 23.0<br><br>24.0<br>23.5 | 24.5<br><br>21.0<br>21.5<br>20.0 | 14.5<br>14.0<br>14.5<br>15.0<br>17.5 | #### 05451700 TIMBER CREEK NEAR MARSHALLTOWN, IA LOCATION.--Lat 42°00'32", long 92°51'08", in SE1/4 SW1/4 sec.8, T.83 N., R.17 W., Marshall County, Hydrologic Unit 07080208, on left bank 20 ft upstream from bridge on Shady Oaks Road, 3.0 mi upstream from mouth, and 3.0 mi southeast of Marshalltown. DRAINAGE AREA.--118 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1949 to current year. REVISED RECORDS .-- WSP 1708: 1950-55, 1957-59. GAGE.--Water-stage encoder. Datum of gage is 849.44 ft above sea level. Prior to Oct. 1, 1991 at site 1/8 mile upstream at same datum. REMARKS.--Estimated daily discharges: Nov. 27-30, Dec. 11-13, and Dec. 23 to Mar. 5. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and data collection platform at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of 16.8 ft, discharge, 5,700 ft<sup>3</sup>/s. | | Di | CHAROL, | CODIC 14 | EI FER S | | MEAN V | | LK 1993 | IO SEL L | LIVIDER 199 | 7 | | |------------------|-----------------------|--------------------|------------------|---------------|------------------|-------------|----------------------|------------------|-------------------------|---------------------|-------------|----------------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 219 | 93 | 57 | e50 | e28 | e70 | 48 | 61 | 38 | 120 | 31 | 13 | | 2<br>3 | 202<br>196 | 91<br>89 | 57<br>56 | e45<br>e40 | e28<br>e29 | e68<br>e70 | 46<br>45 | 55<br>53 | <b>44</b><br><b>4</b> 2 | 79<br>66 | 30<br>30 | 13<br>12 | | 4 | 188 | 88 | 56 | e35 | e28 | e400 | 45 | 52 | 39 | 73 | 35 | 28 | | 5 | 177 | 83 | 55 | e38 | e31 | e580 | 45 | 52 | 40 | 66 | 29 | 48 | | 6<br>7 | 172 | 82 | 54 | e40 | e35 | 306 | 44 | 68<br>66 | 40<br>40 | 60<br>56 | 26<br>25 | 26<br>20 | | 8 | 165<br>164 | 81<br>78 | 52<br>52 | e43<br>e35 | e30<br>e27 | 170<br>123 | 43<br>43 | 65 | 87 | 62 | 25 | 18 | | 9 | 190 | 76 | 52 | e37 | e26 | 101 | 41 | 62 | 61 | 55 | 23 | 15 | | 10 | 170 | 75 | 52 | e40 | e25 | 90 | 40 | 60 | 57 | 5 <b>4</b> | 24 | 15 | | 11<br>12 | 159<br>153 | 75<br>76 | e40<br>e46 | e42<br>e40 | e27<br>e30 | 81<br>80 | 38<br>43 | 57<br>55 | 5 <b>4</b><br>51 | 52<br><b>4</b> 9 | 25<br>39 | 12<br>11 | | 13 | 145 | 82 | e50 | e35 | e28 | 77 | 44 | 54 | 295 | 57 | 42 | īī | | 14 | 142 | 73 | 54 | e30 | e27 | 75 | 42 | 54 | 131 | 251 | 27 | 10 | | 15 | 150 | 74 | 54 | e25 | e27 | 73 | 210 | 55 | 100 | 86 | 24 | 9.9 | | 16<br>17 | 150<br>139 | 72<br>71 | 52<br>5 <b>4</b> | e29<br>e33 | e35<br>e50 | 69<br>69 | 115<br>9 <b>4</b> | 51<br>50 | 87<br>80 | 68<br>62 | 23<br>22 | 11<br>8.5 | | 18 | 132 | 69 | 53 | e28 | e150 | 67 | 86 | 48 | 111 | 57 | 21 | 7.9 | | 19 | 130 | 68 | 50 | e23 | e1100 | 65 | 76 | 48 | 103 | 53 | 19 | 7.6 | | 20 | 126 | 66 | 49 | e25 | e600 | 64 | 71 | 47 | 84 | 52 | 19 | 7.5 | | 21 | 122 | 66 | 46 | e28 | e180 | 64 | 71 | 45 | 78 | 50 | 16 | 9.7 | | 22<br>23 | 120<br>120 | 64<br>64 | 42<br>e23 | e34<br>e47 | e120<br>e100 | 61<br>61 | 67<br>63 | 44<br>46<br>53 | 71<br>101 | 46<br>44 | 16<br>16 | 71<br>37 | | 24 | 116 | 63 | e23 | e42 | e64 | 58 | 62 | 53 | 99 | 41 | 15 | 32 | | 25 | 112 | 68 | e22 | e37 | e68 | 55 | 61 | 46 | 82 | 40 | 15 | 172 | | 26 | 106 | 61 | e22 | e25 | e60 | 54 | 59 | 45 | 77 | 38 | 22 | 142 | | 27<br>28 | 101<br>100 | e56 | e23 | e32 | e64 | 53 | 54 | 43<br>41 | 71<br>69 | 37<br>37 | 17<br>12 | 93<br>72 | | 26<br>29 | 97 | e50<br>e5 <b>4</b> | e21<br>e25 | e30<br>e27 | e72 | 51<br>51 | 59<br>54<br>55<br>55 | 42 | 66 | 35 | 13 | 59 | | 30 | 98 | e58 | e31 | e26 | | 50 | 57 | 42 | 64 | 32 | 18 | 53 | | 31 | 96 | | e40 | e27 | | 49 | | 39 | | 30 | 19 | | | TOTAL | 4457 | 2166 | 1363 | 1068 | 3089 | 3305 | 1863 | 1599 | 2362 | 1908 | 718 | 1045.1 | | MEAN<br>MAX | 1 <b>44</b><br>219 | 72.2 | 44.0 | 34.5 | 110 | 107<br>580 | | 51.6 | 78.7<br>295 | 61.5<br>251 | 23.2<br>42 | 34.8<br>172 | | MIN | 96 | 93<br>50 | 57<br>21 | 50<br>23 | 1100<br>25 | 49 | 210<br>38 | 68<br>39 | 38 | 30 | 12 | 7.5 | | AC-FT | 8840 | 4300 | 2700 | 2120 | 6130 | 6560 | 3700 | 3170 | 4690 | 3780 | 1420 | 2070 | | CFSM | 1.22 | .61 | . 37 | .29 | . 93 | .90 | .53 | .44 | .67 | .52<br>.60 | .20 | .30 | | IN. | 1.41 | .68 | . 43 | .34 | . 97 | 1.04 | .59 | .50 | .74 | .00 | .23 | | | STATIST | rics of M | ONTHLY MEA | N DATA FO | R WATER | YEARS 1950 | - 1994, | BY WATER Y | | | | | | | MEAN | 38.3 | 40.7 | 36.8 | 37.4 | 87.5 | 149 | 105 | 121 | 140 | 94.7 | 61.5<br>635 | 41.3<br>341 | | MAX<br>(WY) | 286<br>1987 | 265<br>1984 | 183<br>1984 | 200<br>1973 | 351<br>1971 | 597<br>1979 | 385<br>1993 | 447<br>1974 | 493<br>1984 | 866<br><b>199</b> 3 | 1993 | 1986 | | MIN | .76 | 1.11 | .60 | .054 | 3.07 | 5.11 | 2.84 | 3.08 | 1.09 | 1.03 | 1.16 | 1.21 | | (WY) | 1951 | 1951 | 1956 | 1977 | 1954 | 1956 | 1956 | 1977 | 1977 | 1956 | 1956 | 1950 | | SUMMARY | Y STATIST | ics | FOR 1 | .993 CALE | NDAR YEAR | F | OR 1994 WAT | ER YEAR | | WATER YEA | ARS 1950 | - 1994 | | ANNUAL<br>ANNUAL | | | | 111772<br>306 | | | 24943.1<br>68.3 | | | 79.4 | | | | | T ANNUAL | MEAN | | 300 | | | 00.3 | | | 299 | | 1993 | | LOWEST | ANNUAL M | EAN | | | | | | | | 2.84 | | 1956 | | | r DAILY M | | | 5310 | Jul 9 | | 1100 | Feb 19<br>Sep 20 | | 6570<br>.00 | | 16 1977<br>24 195 <b>6</b> | | | DAILY ME | AN<br>Y MINIMUM | | 21<br>23 | Dec 28<br>Dec 23 | | 7.5<br><b>8.</b> 9 | Sep 20 | | .00 | | 4 1956 | | | TANEOUS P | | | | | | a1200 | Feb 19 | | 12000 | | 16 1977 | | | | EAK STAGE | | | | | a14.14<br>7.2 | Feb 19<br>Sep 20 | | 17.69 | Aug | 16 1977 | | | TANEOUS L<br>RUNOFF ( | | | 221700 | | | 49470 | 3ep 20 | | 57540 | | | | ANNUAL | RUNOFF ( | CFSM) | | 2.6 | | | .58 | | | . 67 | | | | ANNUAL | RUNOFF ( | INCHES) | | 35.2 | 4 | | 7.86 | | | 9.14<br>172 | | | | | CENT EXCE | | | 642<br>196 | | | 121<br>53 | | | 32 | | | | | CENT EXCE | | | 50 | | | 23 | | | 2.8 | | | | | | | | | | | | | | | | | e Estimated. a Ice affected. #### 05451900 RICHLAND CREEK NEAR HAVEN, IA LOCATION.--Lat 41°53'58", long 92°28'27", in SEI/4 NEI/4 sec.21, T.82 N., R.14 W., Tama County, Hydrologic Unit 07080208, on right bank 5 ft upstream from bridge on county highway, 0.5 mi northeast of Haven, and 3.0 mi upstream from mouth. DRAINAGE AREA.--56.1 mi<sup>2</sup>. PERIOD OF RECORD.--October 1949 to current year. REVISED RECORDS.--WSP 1708: 1950-55, 1956 (M), 1957, 1958 (M), 1959. GAGE.--Water-stage encoder. Datum of gage is 788.69 ft above sea level. Prior to Oct. 1, 1971, at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 26-28, Dec. 21 to Mar. 4, June 21-24, and July 7. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1918 reached a stage of 24.3 ft present datum, discharge not determined. | | | DIS | CHARGE | , CUBIC F | EET PER SI | | VATER YI<br>MEAN VA | EAR OCTOR<br>ALUES | BER 1993 T | O SEPT | EMBER 199 | 94 | | |---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------| | • | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1<br>2<br>3<br>4<br>5 | 114<br>102<br>98<br>93<br>85 | 43<br>42<br>42<br>40<br>37 | 24<br>24<br>23<br>22<br>22 | e25<br>e22<br>e19<br>e17<br>e15 | e13<br>e15<br>e15<br>e14<br>e15 | e20<br>e24<br>e30<br>e350<br>300 | 18<br>18<br>18<br>18 | 21<br>19<br>18<br>18<br>18 | 16<br>18<br>17<br>16<br>16 | 56<br>36<br>29<br>44<br>31 | 12<br>12<br>13<br>13 | 6.4<br>6.5<br>6.6<br>13 | | | 6<br>7<br>8<br>9<br>10 | 82<br>79<br>77<br>102<br>81 | 37<br>37<br>36<br>34<br>33 | 22<br>21<br>21<br>21<br>21 | e17<br>e16<br>e14<br>e15<br>e17 | e17<br>e15<br>e13<br>e11<br>e10 | 138<br>73<br>50<br>40<br>35 | 17<br>17<br>18<br>17<br>16 | 24<br>22<br>21<br>20<br>19 | 16<br>17<br>32<br>20<br>21 | 32<br>e45<br>75<br>35<br>31 | 11<br>11<br>10<br>9.3 | 8.8<br>8.0<br>7.9<br>7.7<br>7.0 | | | 11<br>12<br>13<br>14<br>15 | 78<br>74<br>69<br>67<br>73 | 33<br>34<br>37<br>32<br>32 | 20<br>23<br>21<br>21<br>21 | e19<br>e18<br>e15<br>e12<br>e9.6 | e11<br>e13<br>e13<br>e12<br>e13 | 31<br>29<br>29<br>28<br>27 | 16<br>20<br>19<br>17<br>38 | 19<br>18<br>17<br>18<br>18 | 22<br>20<br>334<br>81<br>54 | 29<br>27<br>33<br>29<br>26 | 11<br>14<br>13<br>10<br>9.4 | 7.0<br>7.2<br>7.1<br>6.1<br>5.4 | | | 16<br>17<br>18<br>19<br>20 | 70<br>65<br>62<br>61<br>59 | 31<br>30<br>29<br>29<br>28 | 20<br>20<br>20<br>20<br>20 | e11<br>e12<br>e10<br>e9.0<br>e9.5 | e19<br>e28<br>e80<br>e700<br>e200 | 25<br>24<br>23<br>21<br>22 | 26<br>23<br>22<br>20<br>21 | 17<br>17<br>17<br>17<br>17 | 43<br>37<br>77<br>71<br>49 | 26<br>25<br>23<br>21<br>35 | 9.1<br>8.8<br>8.4<br>8.0<br>7.8 | 5.1<br>5.2<br>5.3<br>5.2<br>5.1 | | | 21<br>22<br>23<br>24<br>25 | 57<br>55<br>54<br>53<br>51 | 28<br>26<br>26<br>26<br>29 | e16<br>e12<br>e10<br>e9.0<br>e8.8 | e12<br>e15<br>e21<br>e25<br>e23 | e60<br>e36<br>e30<br>e21<br>e23 | 23<br>22<br>22<br>21<br>20 | 21<br>20<br>20<br>20<br>20 | 16<br>16<br>18<br>19<br>20 | e41<br>e70<br>e100<br>e80<br>47 | 22<br>21<br>20<br>19<br>18 | 7.5<br>7.3<br>7.0<br>6.5<br>6.2 | 5.1<br>9.4<br>7.2<br>6.7<br>22 | | | 26<br>27<br>28<br>29<br>30<br>31 | 49<br>47<br>47<br>45<br>44<br>43 | e22<br>e21<br>e23<br>26<br>32 | e8.7<br>e9.2<br>e8.2<br>e9.6<br>e14<br>e20 | e20<br>e19<br>e17<br>e16<br>e14<br>e12 | e20<br>e19<br>e21 | 21<br>20<br>20<br>20<br>19<br>19 | 19<br>18<br>19<br>19<br>20 | 19<br>17<br>16<br>17<br>17 | 57<br>39<br>36<br>33<br>31 | 17<br>17<br>17<br>15<br>14<br>13 | 7.5<br>6.5<br>6.2<br>6.2<br>7.5<br>7.2 | 25<br>14<br>11<br>9.9<br>8.9 | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 2136<br>68.9<br>114<br>43<br>4240<br>1.23<br>1.42 | 955<br>31.8<br>43<br>21<br>1890<br>.57 | 552.5<br>17.8<br>24<br>8.2<br>1100<br>.32<br>.37 | 496.1<br>16.0<br>25<br>9.0<br>984<br>.29<br>.33 | 1457<br>52.0<br>700<br>10<br>2890<br>.93 | 1546<br>49.9<br>350<br>19<br>3070<br>.89<br>1.03 | 592<br>19.7<br>38<br>16<br>1170<br>.35 | 565<br>18.2<br>24<br>15<br>1120<br>.32<br>.37 | 1511<br>50.4<br>334<br>16<br>3000<br>.90 | 881<br>28.4<br>75<br>13<br>1750<br>.51 | 287.4<br>9.27<br>14<br>6.2<br>570<br>.17 | 263.8<br>8.79<br>25<br>5.1<br>523<br>.16 | | | | | | | | | | BY WATER Y | | | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 18.3<br>105<br>1987<br>.24<br>1957 | 23.2<br>122<br>1984<br>.31<br>1951 | 17.9<br>85.8<br>1983<br>.25<br>1957 | 20.3<br>104<br>1960<br>.020<br>1977 | 43.4<br>165<br>1965<br>.32<br>1989 | 69.8<br>270<br>1979<br>1.05<br>1956 | 58.2<br>323<br>1991<br>.85<br>1956 | 57.1<br>337<br>1974<br>2.04<br>1956 | 62.3<br>270<br>1990<br>.25<br>1956 | 46.5<br>463<br>1993<br>.66<br>1977 | 33.7<br>427<br>1993<br>.76<br>1955 | 21.0<br>159<br>1993<br>.58<br>1950 | | | | STATISTI | cs | FOR | 1993 CALEN | DAR YEAR | F | OR 1994 WAT | er year | | WATER YE | ARS 1950 | - 1994 | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (C.F.SM) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 57729.5<br>158<br>2260<br>8.2<br>9.1<br>114500<br>2.82<br>38.28<br>343<br>82<br>20 | Aug 29<br>Dec 28<br>Dec 23 | | 11242.8<br>30.8<br>700<br>5.1<br>5.2<br>1170<br>a19.49<br>4.9<br>22300<br>.55<br>7.46<br>58<br>20<br>8.8 | Feb 19<br>Sep 16<br>Sep 15<br>Mar 4<br>Feb 19<br>Sep 15b | | 39.3<br>162<br>2.49<br>2880<br>.00<br>.00<br>12200<br>26.71<br>28440<br>.70<br>9.51<br>78 | Aug<br>Jan<br>Jan<br>Apr<br>Apr | 1993<br>1956<br>16 1977<br>22 1977<br>22 1977<br>12 1991<br>12 1991 | e Estimated. a Ice affected. b Also Sept. 16, 17. #### 05452000 SALT CREEK NEAR ELBERON, IA LOCATION.--Lat 41°57'51", long 92°18'47", in NW1/4 NW1/4 sec.36, T.83 N., R.13 W., Tama County, Hydrologic Unit 07080208, on left bank 20 ft upstream from bridge on U.S. Highway 30, 2.0 mi upstream from Hog Run, 3.0 mi south of Elberon, and 9.0 mi upstream from mouth. DRAINAGE AREA, -- 201 mi<sup>2</sup>, PERIOD OF RECORD .-- October 1945 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946. GAGE.--Water-stage encoder. Datum of gage is 781.58 ft above sea level (Iowa Highway Commission bench mark). Prior to Oct. 15, 1945 and June 14, 1947 to Feb. 10, 1949, nonrecording gage on upstream side of bridge at present datum. REMARKS.--Estimated daily discharges: Oct. 9, Nov. 27-29, Dec. 21 to Mar. 2, June 13-16, 26, 27, July 6, 7, and July 29 to Aug.1. Records good except those for estimated daily discharge, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and data collection platform at station. Rating extended above 33,000 ft<sup>3</sup>/s. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 16, 1944 reached a stage of 19.9 ft, from floodmark at downstream side of bridge, discharge, about 30,000 ft<sup>3</sup>/s. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOW DEC JAN BER MAR ARR MAY JULY BUG SEP | | | | | | | | | | | | | | |---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|---------------|------------|--------------|--------------|------------------|--------------|--------------------|------------------|------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 354 | 142 | 101 | e54 | e34 | e54 | 68 | 77 | 65 | 110 | e79 | 40 | | | | 2 | 316 | 141 | 97 | e47 | e39 | e57 | 68 | 71 | 70 | 98 | 75 | 39 | | | | 3 | 301 | 139 | 86 | e42 | e37 | 74 | 69 | 69 | 68 | 91<br>94 | 74 | 40 | | | | 4<br>5 | 288<br>268 | 137<br>130 | 87<br>87 | e38<br>e36 | e41<br>e48 | 598<br>1610 | 67<br>67 | 69<br>70 | 65<br>64 | 94<br>99 | 76<br>68 | 48<br>68 | | | | | | | | | | 731 | | 103 | 64 | e85 | 65 | 48 | | | | 6<br>7 | 260<br>253 | 124<br>124 | 86<br>81 | e39<br>e38 | e50<br>e47 | 731<br>248 | 66<br>66 | 103 | 98 | e80 | 64 | 43 | | | | 8 | 245 | 124 | 84 | e33 | e43 | 158 | 67 | 99 | 301 | 569 | 62 | 41 | | | | ğ | e360 | 119 | 83 | e35 | e42 | 111 | 68 | 95 | 103 | 178 | 57 | 40 | | | | 10 | 313 | 118 | 82 | e38 | e39 | 97 | 65 | 89 | 100 | 115 | 60 | 39 | | | | 11 | 290 | 118 | 66 | e41 | e41 | 83 | 63 | 87 | 115 | 102 | 65 | 38 | | | | 12 | 269 | 115 | 83 | e40 | e43 | 86 | 73 | 83 | 117 | 98 | 67 | 36 | | | | 13 | 248 | 131 | 88 | e36 | e40 | 86 | 78 | 80 | e700 | 937 | 74 | 36 | | | | 14<br>15 | 238<br>242 | 115<br>112 | 84<br>84 | e33<br>e30 | e42<br>e47 | 84<br>84 | 71<br>108 | 80<br>81 | e500<br>e400 | 2770<br>1690 | 62<br>58 | 34<br>33 | | | | | | | | | | | | | | | | | | | | 16<br>17 | 237<br>221 | 109<br>108 | 80<br>80 | e32<br>e37 | e53<br>e60 | 75<br>72 | 95<br>84 | 73<br>71 | e290<br>228 | 396<br>344 | 56<br>5 <b>4</b> | 33<br>32 | | | | 18 | 210 | 103 | 81 | e37 | e200 | 71 | 82 | 69 | 88 | 252 | 52 | 32 | | | | 19 | 206 | 102 | 81 | e29 | e700 | 67 | 77 | 67 | 101 | 211 | 51 | 32 | | | | 20 | 200 | 100 | 81 | e32 | e1100 | 69 | 73 | 66 | 361 | 199 | 49 | 32 | | | | 21 | 196 | 98 | e60 | e33 | e200 | 78 | 77 | 64 | 123 | 173 | 47 | 32 | | | | 22 | 187 | 97 | e50 | <b>e</b> 36 | e90 | 79 | 74 | 62 | 96 | 152 | 45 | 38 | | | | 23 | 183 | 97 | e44 | e41 | e70 | 81 | 73 | 63 | 408 | 137 | 44 | 41<br>39 | | | | 24<br>25 | 179<br>175 | 96<br>100 | e36 | e49<br>e46 | e60 | 73<br>71 | 75<br>74 | 80<br>73 | 602<br>260 | 126<br>117 | 43<br>42 | 205 | | | | | 175 | | e33 | | e60 | | | | | | | | | | | 26<br>27 | 167<br>162 | 92<br><del>e</del> 80 | e31<br>e33 | e44<br>e42 | e54<br>e50 | 73<br>73 | 72<br>65 | 72<br>66 | e200<br>e170 | 108<br>103 | 46<br>43 | 397<br>213 | | | | 28 | 162 | e77 | e30 | e41 | e54 | 71 | 66 | 65 | 134 | 97 | 41 | 138 | | | | 29 | 152 | e82 | e33 | e37 | | 68 | 70 | 70 | 117 | e90 | 40 | 109 | | | | 30 | 148 | 86 | e40 | e34 | | 67 | 69 | 78 | 108 | e84 | 43 | 97 | | | | 31 | 144 | | e46 | e32 | | 67 | | 69 | | e82 | 46 | | | | | TOTAL | 7174 | 3316 | 2118 | 1179 | 3384 | 5316 | 2190 | 2365 | 6116 | 9787 | 1748 | 2093 | | | | MEAN | 231 | 111 | 68.3 | 38.0 | 121 | 171 | 73.0 | 76.3 | 204 | 316 | 56.4 | 69.8 | | | | MAX | 360 | 142 | 101 | 54 | 1100 | 1610 | 108 | 104 | 700 | 2770 | 79 | 397 | | | | MIN | 144<br>14230 | 77 | 30<br>4200 | 29<br>2340 | 34<br>6710 | 54 | 63<br>4340 | 62<br>4690 | 64<br>12130 | 80<br>19410 | 40<br>3470 | 32<br>4150 | | | | AC-FT<br>CFSM | 1.15 | 6580<br>.55 | .34 | .19 | .60 | 10540<br>.85 | .36 | .38 | 1.01 | 1.57 | .28 | .35 | | | | IN. | 1.33 | .61 | .39 | . 22 | .63 | .98 | .41 | .44 | 1.13 | 1.81 | .32 | .39 | | | | | | | | | | | BY WATER | VEAR (WV) | | | | | | | | | | | | | 141 | | | 189 | 251 | 200 | 109 | 71.8 | | | | MEAN<br>MAX | 65.1<br>250 | 81.8<br>425 | 66.3<br>314 | 75.2<br>337 | 607 | 279<br>844 | 194<br>652 | 189<br>573 | 1825 | 200<br>1803 | 1157 | 440 | | | | (WY) | 1978 | 1983 | 1983 | 1973 | 1982 | 1993 | 1983 | 1982 | 1947 | 1993 | 1993 | 1993 | | | | MIN | 4.85 | 4.08 | 2.29 | 1.14 | 7.02 | 11.7 | 11.0 | 5.75 | 7.79 | 3.84 | 5.65 | 5.43 | | | | (WY) | 1951 | 1951 | 1977 | 1977 | 1977 | 1954 | 1989 | 1977 | 1977 | 1989 | 1949 | 1950 | | | | SUMMAR | Y STATISTI | cs | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | RS 1946 | - 1994 | | | | LOWEST | MEAN<br>T ANNUAL N<br>ANNUAL ME | EAN | | 206038<br>564 | | | 46786<br>128 | | | 144<br>569<br>23.2 | | 1993<br>1989 | | | | | T DAILY ME | | | 14000 | Jul 9 | | 2770 | Jul 14 | | 14000<br>.85 | | 9 1993 | | | | | DAILY MEA | | | 30 | Dec 28 | | 29 | Jan 19 | | .85<br>.95 | Jan 3 | 1 1977<br>5 1977 | | | | | SEVEN-DAY<br>FANEOUS PE | | | 34 | Dec 24 | | 32<br>5060 | Sep 15<br>Jul 14 | | 41800 | | 9 1993 | | | | | TANEOUS PE | | | | | | 16.98 | Jul 14 | | 20.85 | | 9 1993 | | | | ANNUAL | RUNOFF (A | C-FT) | | 408700 | | | 92800 | | | 104000 | | | | | | | RUNOFF (C | | | 2.81 | | | . 64 | | | .71 | | | | | | | RUNOFF (1<br>CENT EXCE | | | 38.13<br>1280 | 5 | | 8.66<br>243 | | | 9.71<br>280 | | | | | | | CENT EXCER | | | 295 | | | 76 | | | 5 <b>4</b> | | | | | | | CENT EXCE | | | 63 | | | 38 | | | 8.5 | | | | | | | | | | | | | | | | | | | | | e Estimated. #### 05452200 WALNUT CREEK NEAR HARTWICK, IA LOCATION.--Lat 41°50'06", long 92°23'10", in SE1/4 SW1/4 sec.8, T.81 N, R.13 W., Poweshiek County, Hydrologic Unit 07080208, on right bank 5 ft downstream from bridge on county highway V21, 1.2 mi downstream from North Walnut Creek, 4.0 mi northwest of Hartwick, and 6.5 mi upstream from mouth. DRAINAGE AREA.--70.9 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1949 to current year. REVISED RECORDS .-- WSP 1558: 1950 (P), 1951-57. GAGE.--Water-stage encoder. Datum of gage is 786.59 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 27, 28, Dec. 21 to Mar. 3, and Aug. 30 to Sept. 2. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1947 reached a stage of 17.7 ft, from information by local residents, discharge not determined. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAILY MEAN VALUES | | | | | | | | | | | | | | |-------------------|------------------|-------------|----------------------|-----------------------|----------------------|-------------|-----------------------|----------------------------------|-------------|---------------|--------------------|--------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 125 | 42 | 27 | e27 | e13 | e21 | 20 | 20 | 13 | 35 | 11 | e7.4 | | | 2<br>3 | 109<br>103 | 41<br>40 | 26 | e24 | e14 | e30 | 19 | 18<br>18 | 17<br>15 | 28<br>24 | 10<br>18 | e6.8<br>5.8 | | | 4 | 103<br>97 | 39 | 24<br>23 | e21<br>e18 | e13<br>e13 | e56<br>507 | 19<br>20 | 17 | 13 | 24 | 24 | 25 | | | 5 | 89 | 37 | 23 | e17 | e14 | 315 | 19 | 17 | 14 | 22 | 16 | 26 | | | 6 | 87 | 37 | 23 | e19 | e16 | 151 | 18 | 23 | . 14 | 79 | 14 | 16 | | | 7<br>8 | 83<br>79 | 37<br>37 | 22 | e17 | e15 | 88 | 18<br>19 | 22<br>21 | 15<br>74 | 92<br>128 | 14<br>13 | 13<br>13 | | | 9 | 75<br>95 | 35 | 22<br>21 | e15<br>e16 | e13<br>e12 | 63<br>51 | 18 | 20 | 31 | 56 | 11 | 12 | | | 10 | 78 | 35 | 20 | e18 | e11 | 46 | 18 | 18 | 28 | 43 | 11 | 9.5 | | | 11 | 75 | 35 | 18 | e19 | e12 | 41 | 17 | 17 | 26 | 37 | 12 | 7.1 | | | 12<br>13 | 72<br>67 | 36<br>39 | 23<br>22 | e18<br>e15 | e12<br>e11 | 40<br>37 | 22<br>20 | 16<br>16 | 23<br>212 | 32<br>41 | 17<br>19 | 6.5<br>5.2 | | | 14 | 67 | 34 | 22 | e12 | e11 | 36 | 19 | 17 | 62 | 29 | 15 | 4.0 | | | 15 | 71 | 33 | 21 | e10 | e16 | 34 | 28 | 18 | 44 | 27 | 13 | 3.7 | | | 16 | 68 | 32 | 20 | e11 | e36 | 31 | 22 | 16 | 37 | 27 | 13 | 3.5 | | | 17<br>18 | 6 <b>4</b><br>61 | 31<br>30 | 20<br>21 | e12<br>e11 | e70<br>e400 | 31 | 21<br>21 | 16<br>15 | 32<br>34 | 25<br>23 | 13<br>12 | 3.5<br>3.5 | | | 19 | 61 | 30 | 20 | e9.8 | e250 | 27 | 19 | 16<br>15<br>15<br>14 | 38 | 22 | 11 | 3.6 | | | 20 | 58 | 29 | 20 | e11 | e150 | 28 | 18 | 14 | 41 | 66 | 11 | 3.5 | | | 21 | 56 | 28 | e16 | e12 | e62 | 32 | 19 | 14 | 32 | 29 | 9.6 | 3.4 | | | 22 | 54 | 28 | e13 | e14 | e35 | 29 | 18<br>18 | 13<br>17 | 27<br>52 | 25<br>23 | 9.6<br>9. <b>4</b> | 6.6<br>3.5 | | | 23<br>24 | 52<br>51 | 27<br>27 | e11<br>e10 | e20<br>e28 | e27<br>e22 | 28<br>25 | 18<br>19 | 18 | 57 | 22 | 8.7 | 3.8 | | | 25 | 50 | 30 | e9.6 | e25 | e24 | 25 | 18 | 21 | 39 | 20 | 7.4 | 34 | | | 26 | 48 | 26 | e9.5 | e22 | e22 | 25 | 18 | 20<br>16<br>15<br>15<br>16<br>14 | 39 | 19 | 7.8 | 25 | | | 27<br>28 | 47<br>47 | e22<br>e25 | e10<br>e9.4 | e21<br>e19 | e21<br>e22 | 24<br>23 | 16<br>18 | 16 | 32<br>29 | 17<br>14 | 5.2<br>5.1 | 14<br>11 | | | 29 | 44 | 28 | e10 | e16 | | 22 | 17 | 15 | 26 | 13 | 4.6 | 8.7 | | | 30 | 44 | 29 | e12 | e13 | | 21 | 20 | 16 | 24 | 12 | e7.0 | 8.1 | | | 31 | 43 | | e18 | e12 | | 21 | | 14 | | 11 | e8.0 | | | | TOTAL | 2145 | 979 | | 522.8 | 1337<br><b>4</b> 7.7 | 1937 | 576 | 533 | 1140 | | 360.4 | 296.7 | | | MEAN<br>MAX | 69.2<br>125 | 32.6<br>42 | 18.3<br>27 | 16.9 | 47.7 | 507 | 19.2<br>28 | 17.2<br>23 | 38.0<br>212 | 34.4<br>128 | 11.6<br>24 | 9.89<br>34 | | | MIN | 43 | 22 | 9.4 | 9.8 | 400<br>11 | 21 | 16 | 13 | 13 | 11 | 4.6 | 3.4 | | | AC-FT | 4250 | 1940 | 1120 | 1040 | 2650 | 3840 | 1140 | 1060 | 2260 | 2110 | 715 | 589 | | | CFSM<br>IN. | . 98 | .46<br>.51 | .26<br>.30 | . 24<br>. 27 | . 67<br>. 70 | .88<br>1.02 | .27 | . 24<br>. 28 | .54<br>.60 | . 48<br>. 56 | .16<br>.19 | .14<br>.16 | | | | 1.13 | | | | | | .30 | | . 60 | .50 | ,13 | .10 | | | STATIST | rics of Mo | NTHLY ME | AN DATA I | FOR WATER Y | EARS 1950 | - | BY WATER | | | | | | | | MEAN | 19.8 | 28.6 | 24.1 | 27.0 | 51.1 | 85.8 | 77.1 | 73.5 | 77.8 | 57.1 | 38.1<br>498 | 26.8<br>185 | | | MAX<br>(WY) | 137<br>1987 | 171<br>1984 | 109 | 179<br>1960 | 191<br>1971 | 300<br>1993 | 365<br>1991 | 452<br>1974 | 450<br>1990 | 461<br>1993 | 1993 | 1993 | | | MIN | .003 | .29 | 1993<br>.060<br>1977 | . 006 | 1.40 | 1.64 | 1.03 | 1.62 | .76 | 1.01 | .38 | . 28 | | | (WY) | 1957 | 1956 | 1977 | 1956 | 1954 | 1954 | 1957 | 1977 | 1956 | 1954 | 1955 | 1953 | | | SUMMARY<br>ANNUAL | STATISTI | cs | FOR | 1993 CALEN<br>68502.5 | DAR YEAR | F | OR 1994 WA<br>11458.4 | TER YEAR | | WATER YE | ARS 1950 | - 1994 | | | ANNUAL | | | | 188 | | | 31.4 | | | 48.8 | | | | | | ANNUAL M | | | | | | | | | 200 | | 1993<br>1956 | | | | ANNUAL ME | | | 2790 | Aug 29 | | 507 | Mar 4 | | 4.76<br>4840 | | 2 1983 | | | | DAILY MEA | | | 9.4<br>9.9 | Dec 28 | | 3.4<br>3.5 | Sep 21 | | . 00 | Jul : | 31 1954 | | | | SEVEN-DAY | | I | 9.9 | Dec 23 | | | Sep 15 | | | | 27 1955 | | | | ANEOUS PE | | | | | | 1430<br>a14.46 | Mar 4<br>Feb 18 | | 7900<br>16.93 | | 29 1991<br>29 1991 | | | | ANEOUS LO | | | | | | 2.5 | Sep 23 | | | | | | | ANNUAL | RUNOFF (A | C-FT) | | 135900 | | | 22730 | - | | 35390 | | | | | | RUNOFF (C | | | 2.65<br>35.94 | | | .44<br>6.01 | | | .69<br>9.36 | | | | | | ENT EXCEE | | | 406 | | | 59 | | | 101 | | | | | 50 PERC | CENT EXCEE | DS | | 94 | | | 21 | | | 16 | | | | | 90 PERC | CENT EXCEE | DS | | 25 | | | 10 | | | 1.0 | | | | e Estimated. a Ice affected. #### **IOWA RIVER BASIN** #### 05453000 BIG BEAR CREEK AT LADORA, IA LOCATION.--Lat 41°44'58", long 92°10'55", in SW1/4 SW1/4 sec.7, T.80 N., R.11 W., Iowa County, Hydrologic Unit 07080208, on left bank 10 ft downstream from bridge on county highway V52, 0.4 mi south of Ladora, 1.2 mi downstream from Coats Creek, 2.8 mi upstream from Little Bear Creek, and 8.1 mi upstream from mouth. DRAINAGE AREA.--189 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1945 to current year. Prior to October 1966, published as Bear Creek at Ladora. REVISED RECORDS.--WSP 1308: 1947 (M). WSP 1438: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 744.94 ft above sea level. Oct. 1945 to June 26, 1946, non-recording gage and June 27, 1946 to Sept. 30, 1980, water-stage recorder at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 27-29, Dec. 22 to Mar. 2, and June 10-13. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1<br>2<br>3<br>4<br>5 | 405<br>345<br>310<br>288<br>269 | 104<br>102<br>100<br>98<br>92 | 72<br>66<br>67<br>57<br>56 | e38<br>e34<br>e30<br>e26<br>e23 | e19<br>e21<br>e20<br>e19<br>e21 | e66<br>e100<br>160<br>1000<br>1170 | 56<br>56<br>54<br>55<br>53 | 59<br>50<br>46<br>45<br>45 | 25<br>32<br>36<br>28<br>26 | 122<br>138<br>86<br>82<br>75 | 28<br>27<br>30<br>48<br>39 | 16<br>15<br>14<br>30<br>73 | | | | 6<br>7<br>8<br>9<br>10 | 253<br>239<br>229<br>256<br>232 | 86<br>88<br>87<br>82<br>82 | 55<br>50<br>55<br>54<br>53 | e24<br>e23<br>e21<br>e23<br>e25 | e23<br>e22<br>e20<br>e18<br>e17 | 682<br>329<br>228<br>176<br>155 | 52<br>51<br>52<br>52<br>51 | 55<br>61<br>55<br>52<br>49 | 27<br>29<br>1100<br>202<br>e120 | 68<br>77<br>223<br>141<br>92 | 30<br>28<br>27<br>24<br>24 | 26<br>20<br>18<br>17<br>16 | | | | 11<br>12<br>13<br>14<br>15 | 212<br>200<br>188<br>181<br>182 | 81<br>83<br>103<br>85<br>81 | 51<br>63<br>65<br>55<br>53 | e27<br>e24<br>e21<br>e18<br>e17 | e18<br>e18<br>e17<br>e18<br>e20 | 130<br>128<br>121<br>113<br>108 | 48<br>54<br>59<br>52<br>53 | 51<br>48<br>48<br>47<br>53 | e76<br>e64<br>e700<br>283<br>179 | 77<br>67<br>62<br>59<br>56 | 25<br>27<br>45<br>29<br>24 | 15<br>14<br>14<br>14<br>13 | | | | 16<br>17<br>18<br>19<br>20 | 186<br>172<br>163<br>162<br>154 | 76<br>76<br>72<br>74<br>68 | 49<br>49<br>51<br>50<br>47 | e18<br>e19<br>e17<br>e16<br>e18 | e50<br>e100<br>e370<br>e1300<br>e600 | 97<br>93<br>89<br>84<br>82 | 58<br>51<br>52<br>49<br>46 | 45<br>41<br>38<br>36<br>35 | 137<br>105<br>83<br>446<br>148 | 77<br>75<br>54<br>49<br>61 | 22<br>21<br>21<br>20<br>19 | 12<br>12<br>12<br>11<br>10 | | | | 21<br>22<br>23<br>24<br>25 | 146<br>141<br>135<br>132<br>129 | 69<br><b>66</b><br>66<br>65<br>72 | 42<br>e33<br>e24<br>e20<br>e19 | e21<br>e25<br>e35<br>e43<br>e38 | e250<br>e130<br>e90<br>e66<br>e70 | 88<br>83<br>78<br>73<br>69 | 49<br>49<br>46<br>48<br>49 | 34<br>33<br>33<br>55<br>43 | 132<br>100<br>112<br>396<br>152 | 62<br>47<br>43<br>39<br>38 | 18<br>17<br>17<br>16<br>16 | 11<br>13<br>14<br>13<br>21 | | | | 26<br>27<br>28<br>29<br>30<br>31 | 123<br>117<br>118<br>111<br>105<br>105 | 67<br>e54<br>e58<br>e63<br>68 | e18<br>e18<br>e16<br>e17<br>e19<br>e24 | e33<br>e28<br>e23<br>e20<br>e19<br>e18 | e64<br>e60<br>e58 | 68<br>66<br>62<br>60<br>57<br>57 | 46<br>41<br>44<br>48<br>47 | 41<br>35<br>32<br>30<br>30<br>28 | 129<br>107<br>94<br>85<br>78 | 36<br>34<br>33<br>31<br>30<br>28 | 16<br>18<br>15<br>14<br>15 | 57<br>31<br>23<br>20<br>18 | | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 5988<br>193<br>405<br>105<br>11880<br>1.02<br>1.18 | 2368<br>78.9<br>104<br>54<br>4700<br>.42<br>.47 | 1368<br>44.1<br>72<br>16<br>2710<br>.23<br>.27 | 765<br>24.7<br>43<br>16<br>1520<br>.13 | 3499<br>125<br>1300<br>17<br>6940<br>.66 | 5872<br>189<br>1170<br>57<br>11650<br>1.00<br>1.16 | 1521<br>50.7<br>59<br>41<br>3020<br>.27<br>.30 | 1353<br>43.6<br>61<br>28<br>2680<br>.23<br>.27 | 5231<br>174<br>1100<br>25<br>10380<br>.92<br>1.03 | 2162<br>69.7<br>223<br>28<br>4290<br>.37 | 738<br>23.8<br>48<br>14<br>1460<br>.13<br>.15 | 593<br>19.8<br>73<br>10<br>1180<br>.10 | | | | STATIS | TICS OF MC | NTHLY MEA | N DATA FO | R WATER | YEARS 1946 | - 1994, | BY WATER | YEAR (WY) | | | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 59.4<br>375<br>1987<br>.49<br>1957 | 76.1<br>341<br>1993<br>1.68<br>1956 | 65.9<br>294<br>1983<br>.33<br>1956 | 77.1<br>432<br>1960<br>.021<br>1977 | 120<br>5 <b>43</b><br>1971<br>2.07<br>1977 | 242<br>895<br>1979<br>5.99<br>1957 | 200<br>704<br>1973<br>4.17<br>1956 | 195<br>1185<br>1974<br>2.25<br>1956 | 217<br>1136<br>1947<br>2.94<br>1956 | 144<br>1011<br>1993<br>5.00<br>1988 | 97.7<br>1537<br>1993<br>2.36<br>1955 | 80.2<br>559<br>1993<br>1.34<br>1956 | | | | | Y STATISTI | CS | | | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | RS 1946 | - 1994 | | | | LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ME I DAILY ME DAILY ME DAILY MEA SEVEN-DAY IANEOUS PE IANEOUS LO RUNOFF (A | AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS | | 178087<br>488<br>4780<br>16<br>18<br>353200<br>2.56<br>35.05<br>1140<br>244<br>64 | | | 31458<br>86.2<br>1300<br>10<br>12<br>2550<br>22.13<br>10<br>62400<br>.46<br>6.19<br>162<br>52<br>18 | Feb 19<br>Sep 20<br>Sep 15<br>Mar 4<br>Feb 19<br>Sep 20 | | 131<br>516<br>8.26<br>9480<br>.00<br>.00<br>10500<br>a15.32<br>95070<br>.69<br>9.43<br>277<br>46<br>4.9 | Jan 2<br>Jan 2<br>Mar 3 | 1993<br>1956<br>0 1960<br>2 1956<br>2 1956<br>0 1960<br>8 1977 | | | e Estimated. a Datum in use prior to Oct. 1, 1980. #### 05453100 IOWA RIVER AT MARENGO, IA LOCATION.—Lat 41°48'48", long 92°03'51", in SE1/4 NE1/4 sec.24, T.81 N., R.11 W., Iowa County, Hydrologic Unit 07080208, on left bank 5 ft upstream from bridge on county highway V66, 1.0 mi downstream from Big Bear Creek, 0.8 mi north of Marengo, 4.6 mi upstream from Hilton Creek, and at mile 139.1. DRAINAGE AREA .-- 2,794 mi2. PERIOD OF RECORD.--October 1956 to current year. Monthly discharge only for some periods, published in WSP 1728. REVISED RECORDS.--WSP 1558: 1957. GAGE.-Water-stage encoder. Datum of gage is 720.52 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 23 to Mar. 3, and Sept. 14-19. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. | | DI | SCHARGE | E, CUBIC | FEET PER | SECOND,<br>DAILY | WATER Y<br>MEAN V | YEAR OCTO<br>VALUES | OBER 1993 | 3 TO SEP | TEMBER 19 | 994 | | |----------|--------------|--------------|--------------|----------------|------------------|-------------------|---------------------|-----------------|--------------|--------------|--------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5110 | 1960 | 1350 | e760 | e470 | e1600 | 1290 | 1260 | 936 | 4610 | 1320 | 487 | | 2 | 4590 | 1920 | 1430 | e700 | e500 | e2100 | 1240 | 1300 | 904 | 4450 | 1220 | 451 | | 3 | 4230 | 1890 | 1410 | e640 | e430 | e2800 | 1200 | 1250 | 920 | 4160 | 1180 | 417 | | 4 | 3920 | 1870 | 1390 | e560 | e470 | 4050 | 1170 | 1200 | 880 | 3560 | 1250 | 455 | | 5 | 3610 | 1820 | 1340 | e 620 | e500 | 7130 | 1120 | 1190 | 812 | 3180 | 1160 | 687 | | 6<br>7 | 3400 | 1780 | 1310 | e560 | e560 | 7760 | 1080 | 1260 | 777 | 3690 | 1200 | 620 | | 8 | 3230<br>3090 | 1740<br>1710 | 1280 | e520 | e500 | 8240 | 1070<br>1050 | 1400 | 771 | 4140 | 1210 | 546<br>491 | | 9 | 3160 | 1690 | 1260<br>1250 | e580 | e450 | 8020 | | 1520<br>1600 | 1910<br>1870 | 3940<br>4210 | 1180<br>1120 | 470 | | 10 | 3680 | 1660 | 1240 | e 620<br>e 660 | e430<br>e390 | 8020<br>7510 | 1030<br>1010 | 1640 | 2030 | 3920 | 1080 | 456 | | | | | | | | | | | | | | | | 11 | 4040 | 1640 | 1180 | e600 | e470 | 5260 | 985 | 1640 | 1790 | 3570 | 1080 | 417 | | 12 | 4070 | 1620 | 1120 | e540 | e640 | 4290 | 998 | 1610 | 1590 | 3160 | 1010 | 379 | | 13 | 3850 | 1690 | 1130 | e500 | e620 | 3620 | 1040 | 1530 | 3180 | 3100 | 1060 | 346 | | 14<br>15 | 3600<br>3400 | 1690 | 1170 | e460 | e600 | 3230 | 1080 | 1460 | 4470<br>4310 | 4130<br>4470 | 1100<br>1160 | e310<br>e290 | | | | 1680 | 1220 | e500 | e620 | 3010 | 1100 | 1410 | | | | | | 16 | 3300 | 1650 | 1240 | e580 | e660 | 2770 | 1660 | 1360 | 3520 | 4610 | 1270 | e270 | | 17 | 3250 | 1620 | 1240 | e460 | e700 | 2580 | 1800 | 1290 | 3000 | 3490 | 1330 | e250 | | 18 | 3080 | 1600 | 1230 | e390 | e1200 | 2420 | 1770 | 1230 | 2660 | 2890 | 1360 | e300 | | 19 | 2900 | 1590 | 1250 | e430 | e2100 | 2260 | 1730 | 1180 | 3030 | 2650 | 1290 | e250 | | 20 | 2770 | 1560 | 1250 | e500 | e4300 | 2140 | 1680 | 1130 | 2850 | 2720 | 1160 | 224 | | 21 | 2640 | 1540 | 1250 | e580 | e3500 | 2070 | 1640 | 1080 | 2570 | 2700 | 1030 | 212 | | 22 | 2510 | 1510 | 1230 | e620 | e2500 | 1970 | 1580 | 1030 | 2330 | 2700 | 907 | 223 | | 23 | 2440 | 1480 | e760 | e700 | e1900 | 1880 | 1500 | 1000 | 2800 | 2610 | 806 | 370 | | 24 | 2380 | 1460 | e440 | e 620 | e1600 | 1790 | 1430 | 1040 | 4140 | 2600 | 728 | 635 | | 25 | 2330 | 1480 | e410 | e580 | e1400 | 1710 | 1380 | 1090 | 4770 | 2590 | 668 | 1050 | | 26 | 2280 | 1470 | e400 | e540 | e1200 | 1650 | 1340 | 1100 | 5090 | 2510 | 625 | 2350 | | 27 | 2220 | 1440 | e430 | e500 | e1100 | 1600 | 1270 | 1040 | 5240 | 2340 | 582 | 2720 | | 28 | 2190 | 1390 | e390 | e470 | e1400 | 1530 | 1220 | 991 | 5180 | 2090 | 542 | 2380 | | 29 | 2110 | 1310 | e500 | e440 | | 1460 | 1190 | 1030 | 4950 | 1810 | 502 | 2000 | | 30 | 2060 | 1290 | e580 | e430 | | 1390 | 1180 | 1080 | 4800 | 1600 | 509 | 1720 | | 31 | 2010 | | e680 | e400 | | 1330 | | 1020 | | 1440 | 499 | | | TOTAL | 97450 | 48750 | 32360 | 17060 | 31210 | 107190 | 38833 | 38961 | 84080 | 99640 | 31138 | 21776 | | MEAN | 3144 | 1625 | 1044 | 550 | 1115 | 3458 | 1294 | 1257 | 2803 | 3214 | 1004 | 726 | | MAX | 5110 | 1960 | 1430 | 760 | 4300 | 8240 | 1800 | 1640 | 5240 | 4610 | 1360 | 2720 | | MIN | 2010 | 1290 | 390 | 390 | 390 | 1330 | 985 | 991 | 771 | 1440 | 499 | 212 | | AC-FT | 193300 | 96700 | 64190 | 33840 | 61910 | 212600 | 77030 | 77280 | 166800 | 197600 | 61760 | 43190 | | CFSM | 1.13 | .58 | .37 | .20 | .40 | 1.24 | .46 | .45 | 1.00 | 1.15 | .36 | .26 | | IN. | 1.30 | .65 | .43 | .23 | .42 | 1.43 | .52 | .52 | 1.12 | 1.33 | .41 | .29 | | STATIS | STICS OF M | onthly me | AN DATA | FOR WATER | YEARS 195 | 7 - 1994 | , BY WATER | YEAR (WY | ) | | | | | MEAN | 1044 | 1189 | 998 | 875 | 1378 | 3323 | 3395 | 2879 | 3100 | 2680 | 1604 | 1105 | | MAX | 5078 | 3878 | 3633 | 4194 | 5424 | 8227 | 11310 | 9340 | 9051 | 19620 | 15290 | 7901 | | (WY) | 1987 | 1973 | 1983 | 1973 | 1984 | 1979 | 1993 | 1991 | 1993 | 1993 | 1993 | 1993 | | MIN | 80.8 | 90.0 | 63.0 | 31.3 | 79.0 | 256 | 259 | 179 | 114 | 116 | 108 | 123 | | (WY) | 1957 | 1957 | 1990 | 1977 | 1977 | 1964 | 1977 | 1977 | 1977 | 1977 | 1989 | 1988 | | SUMMAR | Y STATIST | ics | FOR | 1993 CALE | NDAR YEAR | 1 | FOR 1994 W | ATER YEAR | | WATER Y | EARS 1957 | - 1994 | | ANNUAL | TOTAL | | | 2599960 | | | 648448 | | | | | | | ANNUAL | | | | 7123 | | | 1777 | | | 1966 | | | | | T ANNUAL I | MEAN | | | | | | | | 7192 | | 1993 | | | ANNUAL M | | | | | | | | | 283 | | 1989 | | | T DAILY M | | | 35600 | Jul 12 | | 8240 | Mar 7 | | 35600 | | 12 1993 | | LOWEST | DAILY ME | AN | | 390 | Dec 28 | | 212 | Sep 21 | | 24 | | 29 1977 | | | SEVEN-DAY | | | 450 | Dec 24 | | 247 | Sep 16 | | 25 | Jan | 28 1977 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 8350 | Mar 7 | | 38000 | Jul | 19 1993 | | INSTAN | TANEOUS PI | EAK STAGE | | | | | 15.30 | 6 Mar 7 | | 20.3 | l Jul | 19 1993 | | | TANEOUS L | | | | | | 205 | Sep 22 | | 1404000 | | | | ANNUAL | RUNOFF ( | AC-FT) | | 5157000 | - | | 1286000 | | | 1424000 | • | | | ANNUAL | RUNOFF ( | CrSM) | | 2.5 | | | .64 | 1 <u>1</u><br>2 | | .70<br>9.50 | | | | | RUNOFF () | | | 34.6<br>16100 | 4 | | 8.63<br>3750 | , | | 4910 | • | | | | CENT EXCE | | | 5110 | | | 1340 | | | 1000 | | | | | CENT EXCE | | | 1250 | | | 470 | | | 193 | | | | | | | | -200 | | | | | | | | | e Estimated. #### 05453510 CORALVILLE LAKE NEAR CORALVILLE, IA LOCATION.--Lat 41°43'29", long 91°31'40", in SW1/4 NE1/4 sec.22, T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080208, at outlet works at left end of Coralville Dam on Iowa River, 2.3 mi upstream from Rapid Creek, 4.3 mi northeast of Coralville Post Office and at mile 83.3 DRAINAGE AREA.--3,115 mi<sup>2</sup>. PERIOD OF RECORD.--October 1958 to current year. GAGE.--Water-stage recorder. Datum of gage is at sea level (levels by U.S. Army Corps of Engineers). REMARKS.--Reservoir is formed by earthfill dam completed in 1957. Storage began in September 1958. Releases controlled by three gates, 8.33 ft wide and 20 ft high, into forechamber of 23-ft diameter concrete conduit through dam. Inlet invert elevation at 646.0 ft. No dead storage. Maximum design discharge through gates is 20,000 ft<sup>2</sup>/s. Ungated spillway is concrete overflow section 500 ft in length at elevation 712 ft above sea level, contents, 469,000 acre-ft, surface area, 24,800 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Normal operation will maintain an elevation of 670 ft Feb. 15 to June 15, surface area, 1,820 acres; 680 ft June 15 to Sept. 25, surface area, 4,900 acres; 683 ft Sept. 25 to Dec. 15, and 680 ft December 15 to Feb. 1, with a minimum release of 150 ft<sup>2</sup>/s and maximum release of 10,000 ft<sup>2</sup>/s Dec. 15 to May 1 and 6,000 ft<sup>3</sup>/s May 1 to Dec. 15. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage. COOPERATION .-- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 586,000 acre-ft July 20, 1993, maximum elevation, 716.75 ft July 24, 1993; minimum daily contents, 456 acre-ft Jan. 15, 1975; minimum elevation, 658.77 ft Mar. 10, 1959. EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 91,900 acre-ft Oct. 1; maximum elevation, 690.20 ft Oct. 1; minimum daily contents, 26,300 acre-ft Mar. 13; minimum elevation, 678.55 ft Mar. 13. #### Capacity table (elevation, in feet, and contents, in acre-ft) | | 631 | 600 | 114 000 | 710 | 413.000 | |-----|--------|-----|---------|-----|---------| | 660 | 621 | 692 | 114,000 | | | | 665 | 2,760 | 696 | 160,000 | 712 | 461,000 | | 670 | 7,230 | 700 | 215,000 | 714 | 512,000 | | 675 | 15,100 | 702 | 251,000 | 716 | 566,000 | | 680 | 29.600 | 704 | 287,000 | 718 | 622,000 | | 684 | 52,800 | 706 | 326,000 | 720 | 681,000 | | 600 | 91 200 | 700 | 270 000 | | • | ### RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY OBSERVATION AT 24:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------| | 1 | 91900 | 70500 | 71200 | 47000 | 46000 | 27300 | 27700 | 28400 | 36200 | 59300 | 46200 | 47800 | | 2 | 87000 | 71200 | 71500 | 46300 | 46400 | 27400 | 27800 | 28100 | 37500 | 56600 | 45900 | 49000 | | 3 | 81100 | 71500 | 71700 | 45900 | 46700 | 27500 | 27500 | 28700 | 38500 | 55700 | 47000 | 50700 | | 4 | 75500 | 71800 | 71700 | 46200 | 46800 | 28200 | 27900 | 30200 | 39400 | 54400 | 47000 | 53100 | | 5 | 72000 | 71000 | 71600 | 46700 | 46900 | 29000 | 27800 | 29700 | 40100 | 50600 | 46500 | 55300 | | 6 | 69100 | 70500 | 70800 | 47000 | 47000 | 31700 | 28100 | 28900 | 40900 | 47800 | 46200 | 56400 | | 7 | 65500 | 70600 | 72200 | 46300 | 47000 | 32600 | 28200 | 27700 | 41800 | 50900 | 45900 | 55800 | | 8 | 64800 | 71000 | 73700 | 45600 | 47800 | 32600 | 28500 | 27400 | 42400 | 53300 | 45600 | 56100 | | 9 | 65000 | 71100 | 74100 | 45600 | 47800 | 33100 | 28400 | 27600 | 43500 | 51000 | 44700 | 56900 | | 10 | 64800 | 71200 | 72400 | 46300 | 47900 | 30700 | 28000 | 27600 | 44000 | 47900 | 47800 | 56500 | | 11 | 64800 | 71400 | 70100 | 46900 | 47900 | 28300 | 27500 | 27600 | 44000 | 46600 | 49500 | 55900 | | 12 | 66500 | 71400 | 69800 | 46800 | 47100 | 26400 | 27600 | 27600 | 43700 | 45500 | 50400 | 56200 | | 13 | 70900 | 72000 | 70600 | 46100 | 45800 | 26300 | 27500 | 27500 | 46800 | 45500 | 48300 | 56600 | | 14 | 76500 | 71900 | 70900 | 46800 | 44700 | 27300 | 27600 | 27800 | 46800 | 43900 | 46300 | 57000 | | 15 | 78200 | 71000 | 68900 | 48200 | 42900 | 27400 | 27400 | 27800 | 46800 | 45200 | 45900 | 57200 | | 16 | 77000 | 70700 | 65800 | 48200 | 41800 | 27300 | 27400 | 27700 | 46800 | 48700 | 45900 | 57800 | | 17 | 75000 | 70300 | 63200 | 47300 | 41000 | 28000 | 28200 | 27500 | 46900 | 49000 | 46300 | 57600 | | 18 | 73000 | 70600 | 59400 | 46800 | 42200 | 28300 | 28500 | 27400 | 46800 | 48100 | 47000 | 57700 | | 19 | 71300 | 71000 | 55200 | 47600 | 46100 | 28200 | 28000 | 27400 | 46300 | 46800 | 47200 | 57900 | | 20 | 71000 | 70800 | 50500 | 47600 | 53400 | 28200 | 27700 | 27600 | 47400 | 46200 | 46800 | 58000 | | 21 | 70400 | 70700 | 48600 | 47100 | 56300 | 27400 | 27700 | 27800 | 47400 | 45800 | 46700 | 58500 | | 22 | 70100 | 70200 | 47300 | 46500 | 51000 | 27100 | 27600 | 28000 | 46700 | 46500 | 46300 | 58900 | | 23 | 69800 | 69800 | 46100 | 46000 | 43100 | 27800 | 27400 | 28200 | 47300 | 46700 | 46300 | 59100 | | 24 | 69800 | 68600 | 44800 | 45500 | 40300 | 27700 | 27400 | 28200 | 45400 | 46700 | 46800 | 59900 | | 25 | 70000 | 69900 | 44600 | 45200 | 36100 | 27900 | 27300 | 28500 | 43500 | 46700 | 47000 | 60300 | | 26 | 69900 | 69600 | 45400 | 45100 | 32000 | 28100 | 27700 | 29000 | 43300 | 46500 | 47800 | 60600 | | 27 | 69400 | 70000 | 46800 | 44800 | 28800 | 28100 | 27600 | 30000 | 43700 | 46500 | 47700 | 60300 | | 28 | 69700 | 70500 | 46200 | 44400 | 27800 | 28000 | 28100 | 31300 | 45000 | 46000 | 47500 | 59400 | | 29 | 69600 | 70000 | 45200 | 44700 | | 28000 | 28200 | 32600 | 54300 | 46100 | 46800 | 58800 | | 30 | 69600 | 70100 | 45700 | 45200 | | 27900 | 28500 | 33700 | 60900 | 46400 | 47500 | 59200 | | 31 | 70000 | | 47400 | 45600 | | 27800 | | .35000 | | 46500 | 47200 | | | MEAN | 71900 | 70700 | 60400 | 46300 | 44200 | 28400 | 27800 | 28800 | 44800 | 48500 | 46900 | 56800 | | MAX | 91900 | 72000 | 74100 | 48200 | 56300 | 33100 | 28500 | 35000 | 60900 | 59300 | 50400 | 60600 | | MIN | 64800 | 68600 | 44600 | 44400 | 27800 | 26300 | 27300 | 27400 | 36200 | 43900 | 44700 | 47800 | #### 05453520 IOWA RIVER BELOW CORALVILLE DAM NEAR CORALVILLE, IA LOCATION.--Lat 41°43'23", long 91°31'47", in SW1/4 NE1/4 sec.22, T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080208, on left bank about 500 ft downstream of Coralville Dam control house, 2.3 miles upstream from Rapid Creek, 4.3 miles northeast of Coralville post office, and at mile 83.2. DRAINAGE AREA.--3,115 mi<sup>2</sup>. PERIOD OF RECORD.--October 1992 to September 1993. GAGE.--Water-stage recorder. Datum of gage is 600 feet above sea level (levels by U.S. Army Corps of Engineers). REMARKS.--Estimated daily discharges: Jan. 15-21, Jan. 28 to Feb. 11, Mar. 16, 17, Apr. 7-11, May 28 to June 6, and Sept. 3-5, 14-24. Records good. Periodic observations of water temperatures and specific conductance are published in this report as miscellaneous water-quality data. U.S. Army Corps of Engineers data collection platform at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994<br>DAILY MEAN VALUES | | | | | | | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|--------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 8420 | 1780 | 1040 | 1030 | e600 | 3520 | 1570 | 1500 | e600 | 4720 | 1510 | 529 | | 2 | 8350 | 1770 | 1280 | 1310 | e580 | 3110 | 1490 | 1610 | e590 | 5040 | 1350 | 215 | | 3 | 8260 | 1790 | 1410 | 1160 | e580 | 2890 | 1500 | 1230 | e590 | 4530 | 1240 | e160 | | 4 | 7720 | 2020 | 1550 | 1010 | e580 | 3200 | 1350 | 649 | e590 | 4280 | 1500 | e180 | | 5 | 6220 | 2240 | 1670 | 915 | e560 | 4380 | 1210 | 1580 | e600 | 4260 | 1350 | e210 | | 6 | 5520 | 2040 | 1660 | 915 | e540 | 5880 | 1220 | 1940 | e590 | 3950 | 1230 | 354 | | 7 | 5490 | 1710 | 983 | 937 | e540 | 7270 | e1100 | 2120 | 671 | 3700 | 1230 | 952 | | 8 | 4360 | 1580 | 314 | 940 | e580 | 7720 | e1150 | 1820 | 1200 | 4340 | 1260 | 625 | | 9 | 3420 | 1590 | 1150 | 751 | e600 | 7970 | e1200 | 1510 | 1640 | 4760 | 1460 | 400 | | 10 | 3570 | 1590 | 2110 | 630 | e620 | 8590 | e1250 | 1660 | 1810 | 4740 | 584 | 678 | | 11 | 3930 | 1590 | 2260 | 624 | e640 | 8470 | e1300 | 1770 | 1870 | 4240 | 574 | 760 | | 12 | 3520 | 1600 | 1430 | 814 | 721 | 7390 | 1320 | 1690 | 1710 | 3570 | 861 | 463 | | 13 | 2170 | 1740 | 874 | 939 | 7 <b>2</b> 5 | 5040 | 1350 | 1660 | 2170 | 2960 | 1820 | 358 | | 14 | 843 | 1930 | 1270 | 611 | 723 | 3570 | 1370 | 1590 | 3470 | 3370 | 1670 | e400 | | 15 | 2590 | 2170 | 2200 | e340 | 889 | 3360 | 1390 | 1520 | 3920 | 3550 | 1260 | e400 | | 16 | 4250 | 2000 | 2840 | e640 | 911 | e3200 | 1350 | 1520 | 3840 | 3170 | 1120 | e390 | | 17 | 4640 | 1830 | 2830 | e820 | 1060 | e2500 | 1340 | 1520 | 3290 | 3920 | 1190 | e380 | | 18 | 4620 | 1500 | 2810 | e700 | 1620 | 2590 | 1670 | 1420 | 2750 | 3680 | 1230 | e380 | | 19 | 4380 | 1360 | 2790 | e420 | 2750 | 2650 | 2080 | 1350 | 2610 | 2990 | 1300 | e380 | | 20 | 3520 | 1650 | 2750 | e550 | 3380 | 2640 | 1980 | 1190 | 2650 | 2740 | 1340 | e370 | | 21 | 3240 | 1660 | 2110 | e700 | 5090 | 2820 | 1830 | 1090 | 2640 | 2720 | 1180 | e320 | | 22 | 3060 | 1650 | 1610 | 756 | 7150 | 2580 | 1830 | 1090 | 2620 | 2510 | 1140 | e360 | | 23 | 2950 | 1790 | 1320 | 743 | 7360 | 2130 | 1750 | 1100 | 2890 | 2380 | 901 | e450 | | 24 | 2760 | 2000 | 1030 | 724 | 7270 | 1870 | 1630 | 1180 | 3710 | 2380 | 792 | e500 | | 25 | 2650 | 1330 | 647 | 721 | 7180 | 1870 | 1580 | 1070 | 4300 | 2380 | 796 | 765 | | 26<br>27<br>28<br>29<br>30<br>31 | 2630<br>2490<br>2390<br>2380<br>2170<br>1870 | 1340<br>1340<br>1330<br>1330<br>1100 | 343<br>257<br>669<br>917<br>627<br>396 | 707<br>711<br>715<br>e620<br>e580<br>e590 | 6810<br>6010<br>4340<br> | 1880<br>1860<br>1860<br>1720<br>1650<br>1670 | 1540<br>1410<br>1320<br>1270<br>1270 | 853<br>668<br>e700<br>e620<br>e620<br>e600 | 4280<br>4280<br>4290<br>2200<br>2490 | 2380<br>2270<br>2190<br>1890<br>1590<br>1520 | 813<br>784<br>774<br>771<br>797<br>784 | 1520<br>2440<br>2650<br>2310<br>1820 | | TOTAL | 124383 | 50350 | 45147 | 23623 | 70409 | 117850 | 43620 | 40440 | 70861 | 102720 | 34611 | 21719 | | MEAN | 4012 | 1678 | 1456 | 762 | 2515 | 3802 | 1454 | 1305 | 2362 | 3314 | 1116 | 724 | | MAX | 8420 | 2240 | 2840 | 1310 | 7360 | 8590 | 2080 | 2120 | 4300 | 5040 | 1820 | 2650 | | MIN | 843 | 1100 | 257 | 340 | 540 | 1650 | 1100 | 600 | 590 | 1520 | 574 | 160 | | AC-FT | 246700 | 99870 | 89550 | 46860 | 139700 | 233800 | 86520 | 80210 | 140600 | 203700 | 68650 | 43080 | | | | | | | | | • | ER YEAR (WY | | | | | | MEAN | 2409 | 2225 | 2843 | 1242 | 2099 | 5194 | 4615 | 5326 | 4783 | 11960 | 9810 | 6887 | | MAX | 4012 | 2771 | 4229 | 1723 | 2515 | 6587 | 7776 | 9347 | 7203 | 20610 | 18500 | 13050 | | (WY) | 1994 | 1993 | 1993 | 1993 | 1994 | 1993 | 1993 | 1993 | 1993 | 1993 | 1993 | 1993 | | MIN | 805 | 1678 | 1456 | 762 | 1684 | 3802 | 1454 | 1305 | 2362 | 3314 | 1116 | 724 | | (WY) | 1993 | 1994 | 1994 | 1994 | 1993 | 1994 | 1994 | 1994 | 1994 | 1994 | 1994 | 1994 | | SUMMAR | Y STATIST | ics | FOR | 1993 CAL | ENDAR YEAR | | FOR 1994 | WATER YEAR | | WATER Y | EARS 1992 | - 1994 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FF) 10 PERCENT EXCREDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 2867701<br>7857<br>25000<br>257<br>551<br>5688000<br>19500<br>6060<br>1320 | Jul 21<br>Dec 27<br>Dec 25 | | 745733<br>2043<br>8590<br>160<br>347<br>8890<br>55,<br>160<br>1479000<br>4280<br>1570 | Mar 10<br>Sep 3<br>Aug 31<br>Mar 10<br>76 Mar 10<br>Sep 3 | | 4976<br>7910<br>2043<br>25000<br>160<br>347<br>25800<br>63.9<br>510<br>3605000<br>13800<br>2370<br>699 | Sep<br>Aug<br>Jul<br>5 Jul | 1993<br>1994<br>21 1993<br>3 1994<br>31 1994<br>19 1993<br>19 1993<br>31 1992 | | e Estimated. #### **IOWA RIVER BASIN** #### 05454000 RAPID CREEK NEAR IOWA CITY, IA LOCATION.--Lat 41°41'19", long 91°29'15", in NE1/4 NE1/4 sec.36. T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on left bank 80 ft upstream from bridge on State Highway 1, 3.5 mi northeast of Iowa City, and 4.7 mi upstream from mouth. DRAINAGE AREA.--25.3 mi<sup>2</sup>. PERIOD OF RECORD.--October 1937 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1558: 1941 (M), 1943 (P), 1944 (M), 1946. WSP 1708: 1951 (P), 1952. WDR IA-67-1: Drainage area. GAGE.-Water-stage recorder and concrete control with sharp-crested weir. Datum of gage is 673.72 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 27-29, Dec. 22 to Mar. 5, May 3-11, 19-29, May 31 to June 14, June 16-27, and Sept. 20-24, 27-29. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S.G.S. Sutron 8200 with telephone modern in station. | • | DI | -<br>SCHARGE | , CUBIC I | FEET PER | | | | OBER 1993 | з то ѕерт | EMBER 19 | 94 | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | DAILY : | MEAN V<br>MAR | ALUES<br>APR | MAY | JUN | JUL | AUG | SEP | | | 1<br>2<br>3<br>4<br>5 | 44<br>39<br>36<br>33<br>30 | 10<br>9.9<br>9.9<br>10<br>9.9 | 6.9 | e4.7<br>e4.2<br>e3.7<br>e3.4<br>e3.0 | e5.0<br>e5.6<br>e5.2<br>e5.4<br>e5.8 | e11<br>e10<br>e13<br>e30<br>e54 | 11<br>11<br>10<br>9.9<br>9.5 | 7.7<br>6.5<br>e5.6<br>e5.2<br>e6.4 | e2.2<br>e2.5<br>e2.9<br>e2.8<br>e2.7 | 10<br>9.3<br>9.1<br>8.6<br>7.1 | 1.5<br>1.3<br>2.2<br>48<br>8.2 | 2.6<br>1.8<br>1.3<br>2.1<br>5.6 | | | 6<br>7<br>8<br>9 | 28<br>27<br>25<br>26<br>23 | 8.9<br>8.3<br>8.4<br>8.5<br>8.1 | 6.7<br>6.4<br>6.6<br>6.8<br>5.1 | | e6.4<br>e5.9<br>e4.6<br>e2.8<br>e2.3 | | 8.7<br>8.4<br>8.9<br>9.1<br>8.4 | e9.5<br>e8.0<br>e7.0<br>e6.0<br>e5.6 | e2.5<br>e2.4<br>e5.0<br>e6.0<br>e5.2 | 21<br>18<br>9.7<br>7.9<br>6.4 | 4.7<br>4.0<br>3.1<br>2.3<br>2.3 | 3.3<br>2.0<br>1.3<br>1.2<br>1.1 | | | 11<br>12<br>13<br>14<br>15 | 23<br>21<br>20<br>19<br>19 | 8.3<br>8.5<br>10<br>14<br>9.5 | 5.7<br>6.6<br>8.4<br>8.2<br>7.1 | e3.7<br>e3.4<br>e3.0<br>e2.5<br>e2.2 | e2.1<br>e2.1<br>e2.1<br>e2.3<br>e2.5 | 18<br>18<br>17<br>17<br>17 | 8.1<br>11<br>11<br>9.6<br>8.6 | e4.9<br>3.9<br>3.6<br>5.0<br>7.1 | e4.7<br>e6.0<br>e80<br>e20<br>6.7 | 5.6<br>5.0<br>5.4<br>6.7<br>4.9 | 4.4<br>3.3<br>3.9<br>3.5<br>2.5 | 1.1<br>1.1<br>1.2<br>1.1 | | | 16<br>17<br>18<br>19<br>20 | 18<br>17<br>16<br>16<br>16 | 9.3<br>8.4<br>8.4<br>7.8<br>8.5 | 7.1<br>9.5<br>10<br>9.9<br>8.8 | e2.4<br>e2.8<br>e2.5<br>e2.1<br>e2.3 | e3.9<br>e10<br>e26<br>e34<br>e80 | 15<br>15<br>16<br>18<br>18 | 7.5<br>7.3<br>7.4<br>6.9<br>6.3 | 5.6<br>5.2<br>4.7<br>e4.3<br>e4.0 | e4.6<br>e4.0<br>e3.6<br>e3.2<br>e13 | 6.2<br>6.4<br>4.1<br>3.8<br>8.2 | 1.9<br>1.6<br>3.5<br>2.8<br>1.7 | .91<br>.83<br>.84<br>.87<br>e.84 | | | 21<br>22<br>23<br>24<br>25 | 15<br>14<br>14<br>13<br>13 | 7.8<br>8.0<br>7.8<br>7.6<br>7.8 | 8.3<br>e6.0<br>e4.8<br>e3.8<br>e3.0 | e3.2<br>e4.8<br>e6.0<br>e7.7<br>e7.0 | e39<br>e22<br>e15<br>e11<br>e10 | 14<br>16<br>17<br>14<br>13 | | e3.7<br>e3.5<br>e3.9<br>e4.5<br>e4.3 | e9.0<br>e5.4<br>e13<br>e52<br>e35 | 6.4<br>4.4<br>3.6<br>2.9<br>2.6 | 1.3<br>1.7<br>2.4<br>3.5<br>3.7 | e.80<br>e.98<br>e.90<br>e.84<br>1.4 | | | 26<br>27<br>28<br>29<br>30<br>31 | 12<br>12<br>12<br>12<br>10<br>10 | 9.1<br>e7.0<br>e6.0<br>e7.4<br>6.5 | e2.6<br>e2.8<br>e2.4<br>e2.7<br>e3.1<br>e3.5 | e6.2<br>e6.0<br>e5.8<br>e5.2<br>e4.7<br>e4.5 | e8.0<br>e8.7<br>e10 | 14<br>15<br>13<br>12<br>11 | 6.7<br>5.3<br>6.0<br>6.4<br>7.0 | e3.6<br>e3.1<br>e2.8<br>e2.6<br>2.7<br>e2.4 | e26<br>e19<br>17<br>14<br>12 | 2.0 | 6.8<br>2.4<br>1.2<br>3.9<br>12<br>6.0 | 3.2<br>e2.5<br>e1.9<br>e1.3<br>.96 | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 633<br>20.4<br>44<br>10<br>1260<br>.81<br>.93 | 259.6<br>8.65<br>14<br>6.0<br>515<br>.34 | 192.6<br>6.21<br>10<br>2.4<br>382<br>.25 | 123.4<br>3.98<br>7.7<br>2.1<br>245<br>.16 | 337.7<br>12.1<br>80<br>2.1<br>670<br>.48<br>.50 | 602<br>19.4<br>54<br>10<br>1190<br>.77<br>.89 | 246.1<br>8.20<br>11<br>5.3<br>488<br>.32<br>.36 | 152.9<br>4.93<br>9.5<br>2.4<br>303<br>.19<br>.22 | 382.4<br>12.7<br>80<br>2.2<br>758<br>.50 | 193.3<br>6.24<br>21<br>1.3<br>383<br>.25 | 151.6<br>4.89<br>48<br>1.2<br>301<br>.19 | 46.97<br>1.57<br>5.6<br>.80<br>.93<br>.06 | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 1994, BY WATER YEAR (WY) | | | | | | | | | | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 6.92<br>36.5<br>1942<br>.000<br>1954 | 10.7<br>84.0<br>1993<br>.000<br>1956 | 9.60<br>66.6<br>1983<br>.000<br>1956 | 10.2<br>56.8<br>1946<br>.000<br>1940 | 22.5<br>77.5<br>1953<br>.22<br>1989 | 30.4<br>106<br>1979<br>.42<br>1956 | 23.4<br>98.6<br>1973<br>1.25<br>1956 | 25.5<br>167<br>1974<br>1.13<br>1977 | 24.1<br>134<br>1990<br>.21<br>1956 | 16.5<br>105<br>1969<br>.000<br>1957 | 12.6<br>176<br>1993<br>.032<br>1955 | 8.48<br>66.6<br>1965<br>.000<br>1955 | | | SUMMARY STATISTICS | | | FOR | FOR 1993 CALENDAR YEAR | | | FOR 1994 WATER YEAR | | | | WATER YEARS 1938 - 1994 | | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 20303.4<br>55.6<br>1710 Aug 10<br>2.4 Dec 28<br>2.9 Dec 25<br>40270<br>2.20<br>29.85<br>111<br>25<br>7.5 | | | 3321.57<br>9.10<br>80 Feb 20<br>.80 Sep 21<br>.87 Sep 17<br>237 Aug 4<br>6.92 Feb 18<br>.78 Sep 17<br>6590<br>.36<br>.4.88<br>18<br>6.5<br>2.0 | | | | 16.7 63.8 1.09 1720 May 17 1986 .00 Jan 1 1940 .00 Jan 1 1940 Aug 10 1993 15.61 Aug 10 1993 .00 12100 .66 8.97 34 5.0 .10 | | | e Estimated. 87 ### 05454300 CLEAR CREEK NEAR CORALVILLE, IA LOCATION.--Lat 41°40'36", long 91°35'55", in NE1/4 SE1/4 sec.1, T.79 N., R.7 W., Johnson County, Hydrologic Unit 07080209, on left bank about 15 ft upstream from bridge on county highway, 1.1 mi west of post office in Coralville, 1.5 mi downstream from Deer Creek and 2.7 mi upstream from mouth. DRAINAGE AREA.--98.1 mi<sup>2</sup>. PERIOD OF RECORD. -- October 1952 to current year. Monthly discharge only for some periods, published in WSP 1728. REVISED RECORDS.--WDR IA-93-1: 1974 (M), 1982 (M), 1990 (M). GAGE.--Water-stage encoder. Datum of gage is 647.48 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Jan. 7, 1957, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Nov. 13, 14, 28, 29, Dec. 21 to Mar. 5, and Mar. 9, 10, 18-20, 24-29. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. | | DIS | SCHARGE, | CUBIC F | EET PER | | VATER Y | EAR OCTO | BER 1993 ' | TO SEPT | EMBER 199 | 94 | | |---------------------------------------------------------------------------|------------------------|-----------------|--------------------|-------------|--------------|--------------|--------------|------------------|-------------|-----------------------|--------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 235 | 66 | 114 | e45 | e20 | e70 | 42 | 33 | 17 | 36 | 13 | 18 | | 2<br>3 | 200<br>184 | 65 | 45 | e40 | e22<br>e23 | e60 | 41 | 30<br>27 | 21<br>22 | 35<br>32 | 12<br>16 | 16<br>15 | | 4 | 169 | 63<br>62 | 41<br>41 | e34<br>e30 | e23<br>e21 | e66<br>e300 | 40<br>38 | 26 | 18 | 32<br>31 | 141 | 22 | | 5 | 148 | 59 | 41 | e28 | e24 | e430 | 39 | 25 | 17 | 30 | 36 | 48 | | 6<br>7 | 140 | 56 | 41 | e32<br>e28 | e27 | 350 | 37 | 42<br>38 | 17 | 27<br>35 | 22<br>19 | 28<br>22 | | 8 | 133<br>125 | 55<br>56 | 37<br>38 | e26 | e23<br>e20 | 187<br>126 | 35<br>35 | 32 | 16<br>61 | 215 | 17 | 18 | | 9 | 145 | 54 | 39 | e28 | e20 | e100 | 36 | 29 | 54 | 65 | 15 | 16 | | 10 | 126 | 53 | 39 | e30 | e18 | e86 | 34 | 26 | 39 | 44 | 32 | 14 | | 11<br>12 | 118<br>112 | 53<br>62 | 33<br>35 | e32<br>e30 | e25<br>e30 | 75<br>73 | 33<br>38 | 25<br>25 | 42<br>36 | 39<br>3 <b>3</b> | 169<br>41 | 12<br>12 | | 13 | 102 | e70 | 45 | e27 | e29 | 69 | 42 | 24 | 369 | 30 | 39 | 11 | | 14 | 101 | e64 | 49 | e21 | e37 | 67 | 37 | 24 | 154 | 41 | 36 | 11 | | 15 | 101 | 57 | 49 | e17 | <b>e4</b> 0 | 66 | 37 | 27 | 79 | 29 | 27 | 10 | | 16<br>17 | 102<br>98 | 53<br>52 | 44<br>42 | e20<br>e26 | e39<br>e64 | 61<br>60 | 33<br>30 | 24<br>22 | 60<br>49 | 32<br>36 | 24<br>20 | 9.4<br>9.3 | | 18 | 95 | 32<br>49 | 47 | e20 | e250 | e54 | 30 | 22 | 42 | 26 | 22 | 8.5 | | 19 | 92 | 50 | 47 | e16 | e500 | e52 | 28 | 20 | 37 | 23 | 18 | 8.4 | | 20 | 90 | 47 | 45 | e18 | e700 | e50 | 27 | 20 | 131 | 31 | 16 | 8.1 | | 21<br>22 | 88<br>85 | 46 | e36<br>e23 | e20<br>e22 | e200<br>e130 | 75<br>65 | 28<br>29 | 19<br>18 | 74<br>42 | 33<br>24 | 14<br>13 | 7.9<br>11 | | 23 | 85 | 45<br>44 | e23 | e35 | e100 | 61 | 31 | 19 | 228 | 21 | 13 | 10 | | 24 | 85 | 45 | e16 | e46 | e45 | e56 | 29 | 24 | 235 | 19 | 12 | 9.9 | | <b>2</b> 5 | 82 | 54 | <b>e</b> 15 | e40 | e46 | e74 | 28 | 22 | 93 | 18 | 19 | 13 | | 26<br>27 | 78<br>74 | 55<br><b>46</b> | e15<br>e16 | e35<br>e32 | e45<br>e44 | e80<br>e66 | 26<br>27 | 21<br>20 | 71<br>58 | 17<br>17 | 128<br>23 | 42<br>38 | | 28 | 74 | e42 | e14 | e30 | e60 | e54 | 26 | 19 | 49 | 16 | 18 | 22 | | 29 | 70 | e48 | e18 | e29 | | e48 | 29 | 18 | 43 | 15 | 16 | 18 | | 30<br>31 | 67<br>66 | 151 | e2 <b>6</b><br>e35 | e24<br>e19 | | 44<br>43 | | 18<br>18 | 39<br> | 15<br>13 | 27<br>24 | 17 | | TOTAL | 3470 | 1722 | 1143 | 880 | 2602 | 3068 | 994 | 756 | 2213 | 1078 | 1042 | 505.5 | | MEAN | 112 | 57.4 | 36.9 | 28.4 | 92.9 | 99.0 | 33.1 | 24.4 | 73.8 | 34.8 | 33.6 | 16.8 | | MAX | 235 | 151 | 114 | 46 | 700 | 430 | 42 | 42 | 369 | 215 | 169 | 48 | | MIN | 6 <b>6</b> | 42 | 14 | 16 | 18 | 43 | 26 | 18 | 16 | 13 | 12<br>2070 | 7.9<br>1000 | | AC-FT<br>CFSM | 6880<br>1.14 | 3420<br>.59 | 2270<br>.38 | 1750<br>.29 | 5160<br>.95 | 6090<br>1.01 | 1970<br>.34 | 1500<br>.25 | 4390<br>.75 | 2140<br>.35 | .34 | .17 | | IN. | 1.32 | .65 | .43 | .33 | .99 | 1.16 | .38 | .29 | .84 | .41 | .40 | .19 | | STATIST | ICS OF MC | NTHLY MEA | N DATA FO | OR WATER | YEARS 1953 | - 1994, | BY WATER | (EAR (WY) | | | | | | MEAN | 30.9 | 46.6 | 41.4 | 41.3 | 70.2 | 118 | 102 | 102 | 103 | 97.4 | 65.3 | 47.3 | | MAX | 143 | 246 | 162 | 206 | 229 | 402 | 452 | 589 | 566 | 991 | 759 | 337 | | (WY)<br>MIN | 1987<br>.55 | 1962<br>.95 | 1993<br>.54 | 1960<br>.10 | 1959<br>2.79 | 1979<br>4.49 | 1973<br>4.15 | 1974<br>3.79 | 1990<br>.83 | 1993<br>1 <b>.6</b> 9 | 1993<br>1.94 | 1965<br>.69 | | (WY) | 1958 | 1956 | 1956 | 1977 | 1954 | 1954 | 1956 | 1956 | 1956 | 1954 | 1953 | 1953 | | SUMMARY | STATISTI | ic <b>s</b> | FOR I | 1993 CALE | NDAR YEAR | F | OR 1994 WAT | ER YEAR | | WATER YE | ARS 1953 | - 1994 | | ANNUAL | TOTAL | | | 112160 | | | 19473.5 | | | | | | | ANNUAL | | | | 307 | | | 53.4 | | | 72.2 | | 1993 | | | ANNUAL M<br>ANNUAL ME | | | | | | | | | 327<br>6.57 | | 1957 | | | DAILY ME | | | 5760 | Jul 6 | | 700 | Feb 20 | | 7310 | | 17 1990 | | LOWEST | DAILY MEA | .N | | 14 | Dec 28 | | 7.9 | Sep 21 | | .00 | Jan | 18 1977 | | | SEVEN-DAY | | | 16 | Dec 23 | | 8.8 | Sep 15 | | .00<br>11700 | | 18 1977 | | | ANEOUS PE<br>ANEOUS PE | | | | | | 864<br>a9.19 | Jun 23<br>Feb 19 | | 16.36 | | 17 1990<br>17 1990 | | | ANEOUS LO | | | | | | 7.2 | Sep 21b | | .00 | many da | ys in 1977 | | ANNUAL | RUNOFF (A | C-FT) | | 222500 | | | 38630 | - | | 52290 | • | - | | | RUNOFF (C | | | 3.13 | | | .54 | | | .74 | | | | ANNUAL RUNOFF (INCHES) 42.53 7.38 10.00<br>10 PERCENT EXCEEDS 699 101 150 | | | | | | | | | | | | | | | ENT EXCEE | | | 129 | | | 36 | | | 27 | | | | | ENT EXCEE | | | 39 | | | 16 | | | 2.6 | | | e Estimated. a Ice affected. b Also Sept. 22. ### 05454500 IOWA RIVER AT IOWA CITY, IA LOCATION.--Lat 41°39'24", long 91°32'27", in SE1/4 SE1/4 sec.9, T.79 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on right bank 25 ft downstream from Hydraulics Laboratory of University of Iowa in Iowa City, 175 ft downstream from University Dam, 0.8 mi upstream from Ralston Creek, 3.6 mi downstream from Clear Creek, and at mile 74.2. DRAINAGE AREA.--3,271 mi<sup>2</sup>. PERIOD OF RECORD.--June 1903 to current year. Monthly discharge only for some periods, published in WSP 1308. GAGE.--Water-stage encoder. Datum of gage is 29.00 ft above Iowa City datum, and 617.27 ft above sea level. Oct. 1, 1934 to Sept. 30, 1972, at datum 10.00 ft higher. See WSP 1708 for history of changes prior to Oct. 1, 1934. REMARKS.--Estimated daily discharge: Dec. 27-30, Jan. 15-22, Feb. 1-15, and July 27 to Aug. 2. Records good except those for estimated daily discharges, which are poor. Slight fluctuation at low stages caused by powerplant above station. Flow regulated by Coralville Lake (station 05453510), 9.1 mi upstream, since Sept. 17, 1958. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 42,500 ft<sup>3</sup>/s June 8, 1918, gage height, 19.6 ft, from graph based on gage readings, site and datum then in use; minimum daily discharge, 29 ft<sup>3</sup>/s Oct. 21, 22, 1916, regulated. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 17, 1881, reached a stage of 21.1 ft, from floodmarks at site and datum in use 1913-21, from information by local resident, discharge, 51,000 ft<sup>3</sup>/s. Maximum stage known since at least 1850, about 3 ft higher than that of July 17, 1881, occurred in June 1851, discharge, 70,000 ft<sup>3</sup>/s, estimated a Post regulation. ### 05455010 SOUTH BRANCH RALSTON CREEK AT IOWA CITY, IA LOCATION.--Lat 41°39'05", long 91°30'27", in SW1/4 NE1/4 sec.14, T.79 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on right bank 60 ft downstream from bridge on Muscatine Avenue in Iowa City, and 1.2 mi upstream from mouth. DRAINAGE AREA.--2.94 mi<sup>2</sup>. PERIOD OF RECORD.--October 1963 to current year. REVISED RECORDS.--WDR IA-66-1: Drainage area. GAGE.--Water-stage recorder and V-notch sharp-crested weir. Datum of gage is 678.03 ft above sea level. REMARKS.--Estimated daily discharge: Dec. 24 to Feb. 16, Feb. 22 tp Mar. 1. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 14, 1962, reached a stage of 10.5 ft, from flood profile, discharge not determined. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | Di | SCHAROL | , COBIC I | BETTER | DAILY | MEAN V | | DEK 1993 | 10 5131 1 | EMIDER 1 | 774 | | |------------------|-----------------------|-----------------------------------------------------------|--------------|--------------|------------------------------------|---------------------------------|--------------|---------------------------------|---------------------------------|--------------------------|--------------------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2.2 | .74 | 1.3 | e.92 | e.20<br>e.17 | e1.3 | 1.3 | 1.2<br>1.1<br>.99 | .87 | .71 | .09 | .11 | | 2<br>3 | 2.2<br>2.2 | 1.5<br>.79 | .87<br>.72 | e.70<br>e.60 | e.17<br>e.16 | 1.5<br>5.1 | 1.2 | 1.1 | 2.6<br>.59 | .73<br>.51 | .03<br>.86 | .09 | | 4 | 2.0 | .76 | .74 | e.50 | e.15 | 12 | 1.6 | .94 | .54 | .84 | 7.8 | 1.9 | | 5 | 1.9 | .69 | .72 | e.46 | e.20 | 6.1 | 1.8 | 2.1 | .52 | .49 | .56 | .28 | | 6<br>7 | 1.7 | .72<br>.74 | .71 | e.52<br>e.50 | e1.5 | 3.9 | 1.3 | 4.7 | .45<br>.72 | .82<br>.64 | .46 | .15<br>.10 | | ,<br>8 | 1.6<br>1.7 | .79 | . 68<br>. 66 | e.30<br>e.44 | e.37<br>e.35 | 2.7<br>2.1 | 1.1<br>1.3 | 1.6<br>1.2 | 9.1 | .92 | .35 | .07 | | g | 2.4 | . 64 | .71 | e.47 | e.33<br>e.31 | 1.8 | 1.2 | 1.1 | . 65 | .30 | .27 | .08 | | 10 | 1.6 | .68 | . 64 | e.50 | e.31 | 1.6 | 1.1 | .90 | .97 | .25 | 5.1 | .03 | | 11<br>12 | 1.6<br>1.4 | .72<br>4.4 | .56 | e.52<br>e.40 | e.50<br>e.40 | 1.4 | 1.2<br>2.8 | .79<br>.72 | .58<br>.15 | .23<br>.19 | 1.4<br>2.0 | .04 | | 13 | 1.3 | 1.3 | .61<br>1.7 | e.35 | e1.5 | 1.3 | 1.6 | .63 | 12 | 2.4 | 1.9 | .00 | | 14 | 1.3 | 1.1 | 2.1 | e.26 | e6.0 | 1.4 | 1.1 | 1.9 | 12<br>.53 | .41 | .70 | .00 | | 15 | 1.5 | .98 | 1.0 | e.15 | e15 | 1.4<br>1.3<br>1.4<br>1.3 | | .63 | .35 | .23 | .52 | .00 | | 16 | 1.3 | .78 | .80 | e.17 | e30 | 1.3 | .89 | .47 | 3.9 | 2.1 | .25 | .00 | | 17<br><b>18</b> | 1.2 | .79 | 1.1 | e.20 | 36 | 1.4 | .87 | .47 | .55 | .29 | .25<br>.23<br>1.9<br>.48 | .00 | | 19 | 1.1<br>1.1 | .73<br>.75 | 2.5<br>1.3 | e.17<br>e.14 | 13 | 1.4 | 96 | 48 | .27 | .16 | - 48 | .00 | | 20 | 1.1 | .74 | 1.1 | | e30<br>36<br>15<br>11<br>17 | 2.0 | 1.7 | .47<br>.44<br>.48<br>.55 | 13 | 2.5 | .25 | .00 | | 21 | 1.1 | .74 | 1.0 | e.22 | 2.8 | 2.5<br>1.4<br>1.6<br>1.4<br>1.4 | 2.0 | .55 | 2.0 | .61<br>.24<br>.17<br>.14 | .12 | .00 | | 22<br><b>2</b> 3 | 1.0<br>1.1 | .63<br>.65 | .94 | e.40<br>el.5 | e1.9<br>e1.7 | 1.4 | 1.7 | .50<br>1.4 | .78 | •24<br>17 | .09 | .10 | | 24 | 1.1 | 1.5 | e.84 | e2.0 | e1.3 | 1.4 | 2.3 | 1.2 | 9.1<br>2.0 | .14 | .03 | .82 | | 25 | .85 | 2.1 | e.70 | e3.0 | | | 1.1 | .78 | | .12 | .55 | 1.7 | | 26 | .83 | .87 | e.56 | e1.2 | e1.1 | 2.5<br>1.6<br>1.4<br>1.5<br>1.5 | 1.0 | .38 | 1.5 | .10 | 1.7<br>.10 | 3.5 | | 27 | .82 | -77 | e.52 | e.70 | e1.2 | 1.6 | 1.4 | .30 | 1.1 | .10 | .10 | .36 | | 28 | .87 | .76 | e.54 | e.50 | e1.3 | 1.4 | 2.2 | .23 | .79 | .11 | .15 | .20 | | 29<br>30 | .72 | .67<br>.61 | e.50 | e.30 | | 1.5 | 1.1 | .22 | .68 | .12<br>.11 | 1 2 | .24<br>.26 | | 31 | .75<br>.73 | | e1.7<br>e2.3 | e.22<br>e.17 | | 1.5<br>1.5<br>1.3 | 2.9 | .38<br>.30<br>.23<br>.22<br>.22 | 1.5<br>1.1<br>.79<br>.68<br>.63 | .09 | .15<br>.04<br>1.3<br>.16 | | | TOTAL | 42.27 | 29.64 | 31.01 | 18.36 | 148.54<br>5.30<br>36<br>.15<br>295 | 70.4 | 43.42 | 28.91 | 89.21 | 16.81 | 29.00 | 12.58 | | MEAN | 1.36 | .99 | 1.00 | .59 | 5.30 | 2.27 | 1.45 | .93 | 2.97 | .54 | .96 | .42 | | MAX | 2.4 | 4.4 | 2.5 | 3.0 | 36 | 12 | 2.9 | 4.7 | 22 | 2.5 | 7.8 | 3.5 | | MIN | .72 | .61 | .50 | .14 | .15 | 1.3 | .87 | .22 | .15 | .09 | .03<br>59 | .00<br>25 | | AC-FT<br>CFSM | 84<br>.46 | .34 | .34 | .20 | 1.80 | 77 | .49 | .32 | 1.01 | 33<br>18 | | .14 | | IN. | .53 | .38 | .39 | .23 | 1.88 | .77<br>.89 | .55 | .37 | 1.13 | .18<br>.21 | .38 | .16 | | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1964 | - 1994, | BY WATER | YEAR (WY) | ı | | | | | WE3.17 | | 1 50 | | 1 00 | 2 (2 | 2 20 | 2 00 | 2.56 | 3.76 | 3.04 | 2.38 | 1.78 | | MEAN<br>MAX | 1.18<br>4.52 | 1.53<br>7.55 | 1.54<br>7.85 | 1.29<br>6.17 | 2.68<br>10.1 | 3.29<br>10.2 | 3.82<br>15.3 | 3.56<br>16.3 | 12.7 | 17.6 | 23.2 | 8.44 | | (WY) | 1985 | 1993 | 1983 | 1974 | 1982 | 1979 | 1973 | 1974 | 1990 | 1993 | 1993 | 1970 | | MIN | .000 | .007 | .002<br>1990 | .000 | .071 | .49 | .94 | .13 | .23 | .034 | .10 | .004 | | (WY) | 1964 | 1990 | 1990 | 1977 | 1989 | 1981 | 1990 | 1992 | 1992 | 1988 | 1964 | 1991 | | SUMMARY | Y STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER Y | EARS 1964 | - 1994 | | ANNUAL | | | | 2713.8 | | | 561.01 | | | | _ | | | ANNUAL | | ME B M | | 7.4 | 14 | | 1.54 | | | 2.48<br>8.19 | 3 | 1993 | | | FANNUAL M<br>ANNUAL M | | | | | | | | | .52 | 2 | 1964 | | | DAILY M | | | 230 | Aug 10 | | 36 | Feb 17 | | 230 | Aug | 10 1993 | | LOWEST | DAILY ME | an | | 230<br> | Aug 10<br>50 Dec 29<br>55 Dec 23 | | .00 | Feb 17<br>Sep 13 | | | | 1 1963<br>1 1963 | | | | MUMINIM Y | | . 6 | 55 Dec 23 | | .00 | sep 13 | | 1070 | Oct | 1 1963 | | INSTANT | TANEOUS PI | PAK STACE | | | | | 243 | Jun 13<br>Jun 13 | | 9.4 | JUL . | 17 1972<br>17 1972 | | INSTANT | CANEOUS IA | EAK STAGE<br>OW FLOW<br>AC-FT)<br>CFSM)<br>INCHES)<br>EDS | | | | | -00 | Sep 13- | | .00 | ) manv | years | | ANNUAL | RUNOFF ( | AC-FT) | | 5380 | | | 1110 | - | | 1800 | - | - | | ANNUAL | RUNOFF ( | CFSM) | | 2.5 | | | .52 | | | .07 | <u>!</u> | | | ANNUAL | RUNOFF ( | INCHES) | | 34.3 | 34 | | 7.10 | | | 11.4°<br>5.0 | ′ | | | 50 PERC | CENT EXCE | EDS | | 2.2 | , | | 2.3<br>.79 | | | 3.72 | 2 | | | | ENT EXCE | | | .7 | 6 | | .15 | | | .02 | | | | | | | | | | | | | | | | | e Estimated. ### 05455100 OLD MANS CREEK NEAR IOWA CITY, IA LOCATION .-- Lat. 41°36'23", long. 91°36'56", in SE1/4 SW1/4 NW1/4 sec. 36, T.79 N., R.7 W., Johnson County, Hydrologic Unit 07080209, on left bank 10 ft downstream from bridge on county highway W62, 5 miles southwest of Iowa City, 5.9 miles upstream of Dirty Face Creek, and 8.6 miles upstream from mouth. DRAINAGE AREA.--201 mi<sup>2</sup>. PERIOD OF RECORD.--October 1950 to September 1964, published in WSP 1914. Annual maximum, water years 1965-84. Occasional low-flow measurements, water years 1964-77; October 1984 to current year. GAGE.--Water-stage encoder. Datum of gage is 637.49 ft above sea level. Prior to Nov. 16, 1984, nonrecording gage at same site at datum 2.00 ft higher. Prior to Oct. 1, 1987, at datum 2.00 ft higher. REMARKS.--Estimated daily discharges: Oct. 24, 25, Nov. 27-30, Dec. 21 to Mar. 6, and Sept. 9-11. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. COOPERATION.—Gage height record and discharge measurements for water years 1951-64 were collected by the U.S. Army Corps of Engineers and computed by the U.S. Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum discharge, 13,500 ft<sup>3</sup>/s, on the basis of contracted-opening of peak flow, June 15, 1982, gage height, 17.25 ft, present datum. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN MAR JUN JUL AUG SEP 27 e58 e26 e92 22 27 e52 e29 e80 272 40 204 e28 e40 e28 e350 44 e36 e700 e31 57 57 e540 325 232 62 54 33 28 212 e43 e36 36 7 e35 e28 79 77 A e34 e23 47 78 30 e26 e39 e24 12 50 e41 e40 e19 e33 133 127 159 e39 446 37 17 42 e35 e38 e28 52 e23 e70 73 52 e26 e130 63 25 15 e26 e840 68 21 13 e24 e900 48 46 15 17 e50 19 e26 121 e30 e29 e22 e46 e130 25 36 e20 e60 69 16 e108 e19 e52 e70 e20 e60 28 e60 e50 e21 e18 e40 e38 78 43 46 33 34 e58 e80 30 95 e55 e25 e34 47 30 30 19 e60 e35 e32 e45 e25 TOTAL 48.9 49.2 MEAN 45.9 73 37 76.7 37.0 700 71 53.9 70 66.9 21 2270 18 13 MAY MIN AC-FT CFSM .84 .38 .18 1.00 . 91 .13 .97 .43 .28 .86 .30 -38 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 1994, BY WATER YEAR (WY) 66.8 765 907 1515 1190 MEAN 53.0 793 71.2 MAX (WY) 4.97 1.43 2.97 MIN -21 . 39 . 35 2.50 1.29 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1951 - 1994 ANNUAL TOTAL ANNUAL MEAN 90.9 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 10.3 HIGHEST DAILY MEAN 6 1993 Jun 24 Jul Dec Dec 14 LOWEST DAILY MEAN Sep 20 -10 Sep 6 1957 ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE Sep 16 Jun 23 13000 10 Sep a10.61 Feb 17.61 Jul INSTANTANEOUS LOW FLOW Sep 21 .01 h (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 2.77 37.58 - 64 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 1.3 Ice affected. b Several days in 1957, 1958, and 1964. ### 05455500 ENGLISH RIVER AT KALONA, IA LOCATION.-Lat 41°27'59", long 91°42'56", in SE1/4 SE1/4 sec.13, T.77 N., R.8 W., Washington County, Hydrologic Unit 07080209, on right bank 30 ft upstream from bridge on State Highway 1, 0.8 mi south of Kalona, 1.1 mi upstream from Camp Creek, 4.5 mi downstream from Smith Creek, and 14.5 mi upstream from mouth. DRAINAGE AREA.--573 mi<sup>2</sup>. PERIOD OF RECORD. -- September 1939 to current year. REVISED RECORDS.-WSP 1438: Drainage area. WSP 1558: 1940 (M), 1941. WSP 1708: 1956, 1957 (P), 1958 (P). GAGE.--Water-stage encoder. Datum of gage is 633.45 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Dec. 27, 1939, nonrecording gage 30 ft downstream at same datum. REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 1 and Dec. 21 to Mar. 2. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1930 reached a stage of 19.9 ft, from floodmark, from information by local residents, discharge, 18,500 ft<sup>3</sup>/s. DISCULABOR OF DED CROSSED WATER VEAR OUTCOMES 1002 TO CEDERADES 1004 | | DI | SCHARGE, | CUBIC | FEET <b>PER</b> | | | YEAR OCTO | BER 1993 | TO SEP | TEMBER 199 | 14 | | |-------------------|------------|----------------------|------------|---------------------|------------------------|------------|-----------------------|------------------|------------|--------------|------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1040 | 217 | e155 | e105 | e80 | e220 | 164 | 125 | 86 | 160 | 45 | 30 | | 2 | 862 | 214 | 174 | e95 | e84 | e240 | 162 | 133 | 89 | 215 | 41 | 27 | | 3 | 733 | 214 | 169 | e86 | e75 | 261 | 156 | 126 | 102 | 166 | 46 | 25 | | 4 | 671 | 212 | 165 | e82 | e78 | 1010 | 152 | 118 | 113 | 145 | 167 | 38 | | 5 | 599 | 207 | 166 | e76 | e72 | 3750 | 153 | 114 | 102 | 138 | 177 | 130 | | 6 | 538 | 196 | 159 | e80 | e84 | 2750 | 149 | 119 | 95 | 129 | 103 | 135 | | 7 | 505 | 187 | 150 | e76 | e74 | 1210 | 144 | 131 | 97 | 127 | 76 | 85 | | 8 | 480 | 185 | 143 | e72 | e70 | 702 | 142 | 136 | 425 | 213 | 65 | 56 | | 9 | 484 | 188 | 147 | e77 | e68 | 484 | 145 | 129 | 1080 | 208 | 59 | 42 | | 10 | 481 | 184 | 149 | e84 | e64 | 383 | 145 | 120 | 487 | 160 | 53 | 34 | | 11 | 447 | 183 | 139 | e90 | e74 | 328 | 141 | 114 | 382 | 123 | 52 | 29 | | 12 | 421 | 186 | 117 | e87 | e84 | 304 | 140 | 109 | 359 | 110 | 54 | 25 | | 13 | 397 | 235 | 137 | e80 | e78 | 300 | 155 | 106 | 369 | 103 | 64 | 23 | | 14 | 378 | 255 | 169 | e76 | e90 | 286 | 158 | 103 | 531 | 105<br>99 | 76 | 22<br>21 | | 15 | 371 | 218 | 167 | e74 | e110 | 280 | 150 | 110 | 367 | 99 | 64 | 21 | | 16 | 376 | 201 | 160 | e80 | e200 | 265 | 139 | 114 | 275 | 104 | 51 | 19 | | 17<br>18 | 372<br>351 | 192<br>188 | 152<br>163 | e89<br>e84 | e600<br>e1 <b>4</b> 00 | 248<br>242 | 131<br>128 | 103<br>96 | 235<br>214 | 129<br>119 | 45<br>43 | 19<br>18 | | 19 | 335 | 184 | 170 | e74 | e1900 | 230 | 128 | 92 | 206 | 94 | 42 | 16 | | 20 | 326 | 179 | 165 | e80 | e2600 | 219 | 120 | 90 | 207 | 100 | 36 | 15 | | 21 | 315 | 172 | e120 | e77 | e1800 | 234 | 119 | 89 | 842 | 112 | 32 | 15 | | 22 | 298 | 169 | e120 | e84 | e500 | 246 | 123 | 87 | 419 | 109 | 29 | 19 | | 23 | 288 | 166 | e60 | e98 | e300 | 232 | 120 | 87 | 540 | 88 | 28 | 20 | | 24 | 284 | 166 | e66 | e105 | e220 | 219 | 116 | 100 | 2310 | 77 | 26 | 20 | | 25 | 278 | 174 | e 64 | e115 | e260 | 198 | 119 | 136 | 1000 | 70 | 27 | 23 | | 26 | 270 | 192 | e66 | e130 | e240 | 189 | 121 | 145 | 443 | 66 | 59 | 49 | | 27 | 259 | 165 | e60 | e120 | e210 | 195 | 117 | 122 | 318 | 62 | 45 | 92 | | 28 | 248 | e150 | e56 | e100 | e200 | 189 | 109 | 105 | 244 | 59 | 38 | 71 | | 29 | 245 | e140 | e 62 | e92 | | 177 | 113 | 97 | 203 | 55 | 31 | 48 | | 30 | 232 | e140 | e70 | e83 | | 168 | 124 | 93 | 175 | 51 | 29 | 35 | | 31 | 221 | | e80 | e75 | | 165 | | 91 | | 49 | 30 | | | TOTAL | 13105 | 5659 | 3904 | 2726 | 11615 | 15924 | 4083 | 3440 | 12315 | 3545 | 1733 | 1201 | | MEAN | 423 | 189 | 126 | 87.9 | 415 | 514 | 136 | 111 | 410 | 114 | 55.9 | 40.0 | | MAX | 1040 | 255 | 174 | 130 | 2600 | 3750 | 164 | 145 | 2310 | 215 | 177 | 135 | | MIN | 221 | 140 | 56 | 72 | 64 | 165 | 109 | 87 | 86 | 49 | 26 | 15 | | AC-FT | 25990 | 11220 | 7740 | 5410 | 23040 | 31590 | 8100 | 6820 | 24430 | 7030 | 3440 | 2380 | | CFSM | .74 | .33 | .22 | .15 | .72 | .90 | .24 | .19 | .72 | .20 | .10 | .07 | | IN. | .85 | .37 | .25 | .18 | .75 | 1.03 | .27 | .22 | .80 | .23 | .11 | .08 | | STATIST | TICS OF M | ONTHLY MEAN | DATA E | OR WATER | <b>YEARS 1940</b> | - 1994 | , BY WATER Y | YEAR (WY) | | | | | | MEAN | 154 | 259 | 199 | 220 | 360 | 718 | 648 | 613 | 572 | 433 | 294 | 253 | | MAX | 1004 | 2060 | 1085 | 1429 | 1066 | 2957 | 2736 | 3529 | 2570 | 4207 | 3696 | 3169 | | (WY) | 1987 | 1962 | 1983 | 1946 | 1984 | 1979 | 1973 | 1974 | 1990 | 1993 | 1993 | 1965 | | MIN | 2.98 | 2.38 | 2.19 | .76 | 13.8 | 10.8 | 5.35 | 9.62 | 21.7 | 7.31 | 6.34 | 3.10 | | (WY) | 1954 | 1956 | 1956 | 1977 | 1954 | 1954 | 1956 | 1956 | 1940 | 1954 | 1955 | 1955 | | SUMMARY<br>ANNUAL | STATIST | ics | FOR | 1993 CALE<br>569380 | NDAR YEAR | I | FOR 1994 WAT<br>79250 | TER YEAR | | WATER YEA | RS 1940 | - 1994 | | ANNUAL | | | | 1560 | | | 217 | | | 393 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 1721 | | 1993 | | | ANNUAL M | | | | | | | | | 41.7 | | 1954 | | | DAILY M | | | 22300 | Jul 6 | | 3750 | Mar 5 | | 22300 | | 6 1993 | | | DAILY ME | | | 56 | Dec 28 | | 15 | Sep 20 | | .66 | Feb | 5 1977 | | | | Y MINIMUM | | 62 | Dec 23 | | 17 | Sep 16 | | .68<br>36100 | Feb<br>Jul | 1 1977<br>6 1993 | | | | EAK FLOW | | | | | 3870 | Mar 5 | | 22,55 | Jul | 6 1993 | | | ANEOUS P | EAK STAGE<br>OW FLOW | | | | | 15 | Feb 20<br>Sep 20 | | | Jui | 0 1773 | | | RUNOFF ( | | | 1129000 | | | 157200 | - | | 285000 | | | | | RUNOFF ( | | | 2.7 | | | .38<br>5.15 | | | .69<br>9.33 | | | | | ENT EXCE | | | 36.9<br>4560 | | | 382 | | | 860 | | | | | ENT EXCE | | | 651 | | | 129 | | | 122 | | | | | ENT EXCE | | | 160 | | | 45 | | | 11 | | | | | | | | | | | | | | | | | e Estimated. a Ice affected. ### 05455700 IOWA RIVER NEAR LONE TREE, IA LOCATION.--Lat 41°25'15", long 91°28'25", in NW1/4 NE1/4 sec.6, T.76 N., R.5 W., Louisa County, Hydrologic Unit 07080209, on left bank 2,000 ft downstream from tri-county bridge on county highway W66, 5 mi southwest of Lone Tree, 6.2 mi downstream from English River, and at mile 47.2. DRAINAGE AREA.--4,293 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1956 to current year. GAGE.--Water-stage encoder. Datum of gage is 588.16 ft above sea level. Prior to Dec. 28, 1956, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 24-31 and Jan. 6 to Feb. 24. Records good except those for estimated daily discharges, which are fair. Flow regulated by Coralville Lake (station 05453510), 36.1 mi upstream, since Sept. 17, 1958. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers gage height telemeter and data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of May 25, 1944, reached a stage of 19.94 ft, discharge not determined, from information by U.S. Army Corps of Engineers. | | Di | ISCHARG! | E, CUBIC | FEET PER | SECOND,<br>DAILY | WATER MEAN | YEAR OC<br>VALUES | TOBER 199 | 3 TO SEP | TEMBER 19 | 94 | | |-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 12800<br>12100<br>11700<br>11400<br>10500 | 2750<br>2710<br>2710<br>2740<br>3110 | 1570<br>1580<br>1820<br>1840<br>2040 | 901<br>1760<br>1790<br>1720<br>1480 | e790<br>e800<br>e800<br>e780<br>e820 | 4200<br>3860<br>3330<br>4310<br>9260 | 2300<br>2160<br>2110<br>2070<br>1840 | 1620<br>1890<br>1920<br>1240<br>1130 | 708<br>714<br>715<br>699<br>692 | 3900<br>5470<br>5320<br>4790<br>4700 | 1650<br>1630<br>1420<br>1790<br>2240 | 822<br>512<br>260<br>164<br>274 | | 6<br>7<br>8<br>9 | 8580<br>8090<br>7730<br>5970<br>5660 | 3150<br>2780<br>2470<br>2440<br>2420 | 2070<br>1930<br>1090<br>714<br>1890 | e1100<br>e900<br>e830<br>e900<br>e930 | e800<br>e740<br>e760<br>e780<br>e810 | 10400<br>9480<br>9300<br>9050<br>9130 | 1780<br>1580<br>1650<br>1700<br>1810 | 2120<br>2390<br>2560<br>1980<br>1860 | 675<br>660<br>1260<br>2930<br>2840 | 4630<br>4300<br>4320<br>5410<br>5180 | 1610<br>1430<br>1360<br>1550<br>1250 | 404<br>671<br>1010<br>575<br>396 | | 11<br>12<br>13<br>14<br>15 | 5910<br>6110<br>5000<br>2970<br>2530 | 2410<br>2420<br>2620<br>2770<br>2920 | 2500<br>2430<br>1400<br>1320<br>1920 | e870<br>e1000<br>e830<br>e640<br>e500 | e860<br>e1000<br>e1150<br>e1200<br>e1400 | 9490<br>9170<br>7670<br>5100<br>4430 | 1820<br>1830<br>1870<br>1870<br>1840 | 2050<br>2060<br>1960<br>1940<br>1880 | 2730<br>2590<br>2780<br>4160<br>4750 | 5010<br>4290<br>3740<br>3300<br>4130 | 816<br>808<br>1290<br>2070<br>1680 | 778<br>682<br>424<br>352<br>345 | | 16<br>17<br>18<br>19<br>20 | 5110<br>6320<br>6310<br>6230<br>5590 | 3020<br>2660<br>2560<br>2060<br>2240 | 2970<br>3170<br>3200<br>3200<br>3160 | e600<br>e800<br>e720<br>e600<br>e670 | e1800<br>e2300<br>e3400<br>e4500<br>e5900 | 4320<br>3900<br>3410<br>3480<br>3460 | 1790<br>1730<br>1730<br>2180<br>2550 | 1810<br>1790<br>1750<br>1570<br>1530 | 4550<br>4340<br>3590<br>3200<br>3140 | 3600<br>3740<br>4530<br>3620<br>3280 | 1280<br>1200<br>1300<br>1330<br>13 <b>9</b> 0 | 350<br>327<br>320<br>312<br>307 | | 21<br>22<br>23<br>24<br>25 | 4730<br>4580<br>4280<br>4210<br>3920 | 2320<br>2300<br>2260<br>2730<br>2300 | 3020<br>2150<br>1780<br>e1200<br>e800 | e900<br>e1100<br>e1050<br>e1000<br>e1050 | e7400<br>e8000<br>e8400<br>e8200<br>8090 | 3530<br>3760<br>3280<br>2830<br>2680 | 2270<br>2220<br>2200<br>2070<br>1 <b>9</b> 60 | 1300<br>1250<br>1250<br>1320<br>1450 | 4090<br>4060<br>3880<br>6670<br>6960 | 3190<br>3110<br>2760<br>2680<br>2650 | 1390<br>1160<br>1130<br>867<br>795 | 234<br>232<br>364<br>381<br>410 | | 26<br>27<br>28<br>29<br>30<br>31 | 3860<br>3800<br>3550<br>3510<br>3440<br>3080 | 2020<br>1970<br>1900<br>1860<br>1800 | e580<br>e500<br>e450<br>e500<br>e680<br>e750 | e990<br>e980<br>e950<br>e900<br>e800<br>e760 | 7720<br>6980<br>5890<br> | 2640<br>2660<br>2620<br>2560<br>2350<br>2300 | 1890<br>1750<br>1700<br>1560<br>1560 | 1350<br>1150<br>866<br>767<br>745<br>724 | 5650<br>5290<br>5080<br>4500<br>2620 | 2620<br>2590<br>2410<br>2360<br>1940<br>1700 | 1260<br>1110<br>866<br>819<br>842<br>903 | 975<br>1980<br>2750<br>2750<br>2240 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT | 189570<br>6115<br>12800<br>2530<br>376000 | 74420<br>2481<br>3150<br>1800<br>147600 | 54224<br>1749<br>3200<br>450<br>107600 | 30021<br>968<br>1790<br>500<br>59550 | 92070<br>3288<br>8400<br>740<br>182600 | 157960<br>5095<br>10400<br>2300<br>313300 | 57390<br>1913<br>2550<br>1560<br>113800 | 49222<br>1588<br>2560<br>724<br>97630 | 96523<br>3217<br>6960<br>660<br>191500 | 115270<br>3718<br>5470<br>1700<br>228600 | 40236<br>1298<br>2240<br>795<br>79810 | 21601<br>720<br>2750<br>164<br>42850 | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 195 | 9 - 1994 | , BY WATE | R YEAR (WY | ) a | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 1591<br>6115<br>1994<br>192<br>1989 | 2121<br>6347<br>1962<br>190<br>1967 | 2006<br>6678<br>1983<br>168<br>1989 | 1593<br>7814<br>1973<br>154<br>1977 | 2434<br>7205<br>1973<br>158<br>1977 | 4918<br>10410<br>1993<br>539<br>1977 | 5255<br>12230<br>1979<br>533<br>1 <b>989</b> | 4416<br>14030<br>1993<br>282<br>1977 | 4494<br>13150<br>1974<br>147<br>1977 | 4444<br>30320<br>1993<br>180<br>1977 | 3052<br>26150<br>1993<br>186<br>1989 | 2309<br>18150<br>1993<br>210<br>1988 | | SUMMAR | Y STATIST | ics | FOR | 1993 CAL | ENDAR YEAR | | FOR 1994 | WATER YEAR | | WATER YE | ARS 1959 | - 1994a | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN ANNUAL 10 PER 50 PER | TOTAL MEAN TANNUAL ANNUAL TOALLY ME DAILY ME TANEOUS P TANEOUS P TANEOUS P CENT EXCE CENT EXCE | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | l | 4239514<br>11620<br>55100<br>450<br>609<br>8409000<br>26700<br>9210<br>2130 | Jul 7<br>Dec 28<br>Dec 25 | | 978507<br>2681<br>12800<br>164<br>297<br>13200<br>14.<br>1941000<br>5610<br>1980<br>704 | Oct 1<br>Sep 4<br>Sep 16<br>Oct 1<br>49 Oct 1 | | 3222<br>11900<br>483<br>55100<br>69<br>75<br>57100<br>22_94<br>2334000<br>7650<br>1830<br>307 | Jul | 1993<br>1989<br>7 1993<br>4 1977<br>30 1977<br>7 1993<br>7 1993 | e Estimated. a Post-regulation period. ### 05457700 CEDAR RIVER AT CHARLES CITY, IA LOCATION.--Lat 43°03'45", long 92°40'23", in SE1/4 NE1/4, sec.12, T.95 N., R.16 W., Floyd County, Hydrologic Unit 07080201, on right bank 800 ft downstream from bridge on U.S. Highway 18 (Brantingham Street) in Charles City, 10.6 mi upstream from Gizzard Creek, and at mile 252.9 upstream from mouth of Iowa River. DRAINAGE AREA.--1,054 mi<sup>2</sup>. PERIOD OF RECORD.--October 1964 to current year. GAGE.--Water-stage encoder. Datum of gage is 973.02 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 23 to Mar. 7. Records good except those for estimated daily discharges, which are poor. Occasional minor regulation by dam 0.2 mi upstream from gage. Daily wire-weight gage readings available in district office for period Sept. 13, 1945 to June 30, 1954, at same site and datum. Discharge not published for this period because of extreme regulation of streamflow by power dam 0.2 mi upstream. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.-Flood of Mar. 27, 1961, reached a stage of 21.6 ft, from flood marks, discharge, 29,200 ft<sup>3</sup>/s. | | DI | SCHARGE | CUBIC | FEET PER | | VATER Y<br>MEAN V | | BER 1993 | TO SEP | ΓEMBER 19 | 94 | | |-----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------|------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|--------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4 | 883<br>834<br>813<br>769 | 478<br>473<br>463<br>462 | 376<br>422<br>403<br>411 | e350<br>e300<br>e330<br>e310 | e250<br>e270<br>e290<br>e300 | e370<br>e340<br>e320<br>e300 | 441<br>434<br>424<br>420 | 994<br>966<br>870<br>815 | 426<br>390<br>365<br>349 | 506<br>477<br>444<br>426 | 1410<br>1590<br>1170<br>2830 | 358<br>344<br>370<br>465 | | 5 | 733 | 462 | 400 | e300 | e320 | e1000 | 419 | 780 | 347 | 405 | 1780 | 482 | | 6<br>7<br>8<br>9<br>10 | 713<br>694<br>684<br>681<br>668 | 458<br>453<br>442<br>438<br>439 | 397<br>343<br>368<br>374<br>379 | e270<br>e240<br>e220<br>e260<br>e280 | e280<br>e310<br>e280<br>e250<br>e240 | e1700<br>e3300<br>3110<br>1850<br>1350 | 419<br>407<br>407<br>412<br>418 | 748<br>720<br>681<br>642<br>601 | 392<br>626<br>1850<br>2390<br>1590 | 426<br>492<br>580<br>572<br>565 | 1360<br>1230<br>1070<br>934<br>888 | 476<br>453<br>418<br>399<br>379 | | 11<br>12<br>13 | 665<br>662<br>633 | 435<br>431<br>441 | 272<br>267<br>392 | e250<br>e290<br>e260 | e260<br>e280<br>e300 | 1100<br>997<br>977 | 417<br>430<br>458 | 557<br>529<br>499 | 1260<br>1060<br>1180 | 500<br>460<br>469 | 1680<br>2810<br>2660<br>1930 | 372<br>344<br>330<br>514 | | 14<br>15 | 551<br>571 | 442<br>458 | 446<br>431 | e230<br>e200 | e310<br>e320 | 1070<br>1210 | <b>576</b><br>75 <b>8</b> | 484<br>478 | 1340<br>12 <b>9</b> 0 | 822<br>1280 | 1460 | 463 | | 16<br>17<br>18<br>19<br>20 | 582<br>588<br>583<br>569<br>562 | 453<br>444<br>434<br>431<br>427 | 465<br>497<br>511<br>547<br>566 | e220<br>e230<br>e235<br>e220<br>e200 | e330<br>e320<br>e330<br>e400<br>e450 | 1230<br>1040<br>887<br>797<br>648 | 782<br>970<br>944<br>844<br>773 | 458<br>437<br>419<br>396<br>384 | 1240<br>1250<br>1080<br>1040<br>1190 | 1250<br>1260<br>1200<br>1040<br>2640 | 1250<br>1110<br>894<br>803<br>727 | 392<br>355<br>358<br>375<br>443 | | 21<br>22<br>23<br>24<br>25 | 560<br>567<br>544<br>528<br>521 | 427<br>423<br>413<br>401<br>415 | 552<br>420<br>e370<br>e350<br>e330 | e220<br>e240<br>e280<br>e290<br>e280 | e900<br>e1000<br>e880<br>e780<br>e650 | 659<br>686<br>693<br>661<br>746 | 812<br>778<br>738<br>702<br>661 | 371<br>366<br>390<br>372<br>520 | 1210<br>1160<br>1140<br>1260<br>1230 | 4850<br>4140<br>2560<br>1870<br>1460 | 666<br>602<br>550<br>513<br>481 | 441<br>523<br>449<br>552<br>800 | | 26<br>27<br>28<br>29<br>30<br>31 | 517<br>513<br>510<br>497<br>492<br>489 | 401<br>289<br>303<br>336<br>339 | e300<br>e270<br>e290<br>e310<br>e330<br>e350 | e270<br>e280<br>e290<br>e280<br>e250<br>e240 | e520<br>e440<br>e410<br> | 693<br>642<br>587<br>499<br>470<br>454 | 672<br>791<br>934<br>894<br>937 | 665<br>668<br>594<br>531<br>498<br>471 | 1010<br>828<br>694<br>613<br>560 | 1250<br>1090<br>948<br>820<br>734<br>659 | 480<br>469<br>425<br>405<br>389<br>382 | 812<br>845<br>877<br>848<br>718 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 19176<br>619<br>883<br>489<br>38040<br>.59 | 12711<br>424<br>478<br>289<br>25210<br>.40<br>.45 | 12139<br>392<br>566<br>267<br>24080<br>.37 | 8115<br>262<br>350<br>200<br>16100<br>.25 | 11670<br>417<br>1000<br>240<br>23150<br>.40<br>.41 | 30386<br>980<br>3300<br>300<br>60270<br>.93 | 19072<br>636<br>970<br>407<br>37830<br>.60 | 17904<br>578<br>994<br>366<br>35510<br>.55 | 30360<br>1012<br>2390<br>347<br>60220<br>.96<br>1.07 | 36195<br>1168<br>4850<br>405<br>71790<br>1.11<br>1.28 | 34948<br>1127<br>2830<br>382<br>69320<br>1.07 | 14955<br>498<br>877<br>330<br>29660<br>.47 | | | | | | | YEARS 1965 | - | | | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 585<br>2339<br>1987<br>126<br>1977 | 525<br>1639<br>1983<br>97.7<br>1977 | 378<br>1396<br>1983<br>85.4<br>1990 | 276<br>888<br>1973<br>86.3<br>1990 | 367<br>1707<br>1984<br>127<br>1990 | 1276<br>3172<br>1983<br>176<br>1968 | 1524<br>5264<br>1965<br>251<br>1968 | 1030<br>3434<br>1991<br>197<br>1977 | 999<br>4071<br>1993<br>130<br>1977 | 834<br>3009<br>1993<br>159<br>1988 | 717<br>4704<br>1993<br>114<br>1988 | 550<br>1670<br>1965<br>116<br>1976 | | SUMMARY | STATIST: | ics | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1965 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT | MEAN ANNUAL MANNUAL MANNUAL MAILY MEA SEVEN-DAY ANEOUS PA | EAN<br>EAN<br>AN<br>Y MINIMUM<br>EAK FLOW | | 726618<br>1991<br>22100<br>190<br>211 | Aug 17<br>Feb 16<br>Feb 16 | | 247631<br>678<br>4850<br>200<br>218<br>5110 | Jul 21<br>Jan 15<br>Jan 15<br>Jul 21 | | 756<br>2048<br>159<br>22100<br>60<br>65<br>26400 | Nov<br>Dec<br>Aug | 23 1976<br>17 1989<br>16 1993 | | INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | ANEOUS LO | AC-FT)<br>CFSM)<br>INCHES)<br>EDS<br>EDS | | 1441000<br>1.8<br>25.6<br>4330<br>995<br>274 | | | 8.29<br>171<br>491200<br>.64<br>8.74<br>1230<br>492<br>290 | Dec 11 | | 21.64<br>45<br>547900<br>.72<br>9.75<br>1630<br>375<br>154 | Nov : | 2 1965<br>17 1989 | e Estimated. ### 05458000 LITTLE CEDAR RIVER NEAR IONIA, IA LOCATION.--Lat 43°02'05", long 92°30'05", in SW1/4 NE1/4 sec.21, T.95 N., R.14 W., Chickasaw County, Hydrologic Unit 07080201, on left bank 12 ft downstream from bridge on county highway B57, 2.4 mi west of Ionia, 6.4 mi upstream from mouth, and 7.6 mi downstream from Beaver Creek. DRAINAGE AREA .-- 306 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1954 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1708: 1959. GAGE.--Water-stage encoder. Datum of gage is 973.35 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 24-29. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 22, 1954, reached a stage of 11.37 ft, discharge, 4,600 ft<sup>3</sup>/s. | | DIS | CHARGE, | CUBIC F | EET PER S | | WATER Y<br>MEAN V | | BER 1993 | TO SEP | TEMBER 19 | 94 | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 138<br>135<br>131<br>128<br>124 | 97<br>95<br>95<br>95<br>94 | 83<br>81<br>77<br>82<br>80 | 66<br>67<br>67<br>67<br>67 | 57<br>5 <b>8</b><br>5 <b>8</b><br>57<br>57 | 102<br>96<br>93<br>113<br>453 | 145<br>142<br>138<br>136<br>136 | 162<br>155<br>149<br>142<br>139 | 105<br>98<br>93<br>89<br>88 | 119<br>109<br>102<br>100<br>101 | 302<br>880<br>724<br>599<br>506 | 163<br>161<br>163<br>186<br>200 | | 6<br>7<br>8<br>9<br>10 | 124<br>122<br>123<br>125<br>124 | 92<br>87<br>90<br>89<br>89 | 74<br>65<br>81<br>77<br>74 | 65<br>63<br>60<br>58<br>57 | 55<br>54<br>53<br>53<br>53 | 766<br>1020<br>867<br>463<br>353 | 131<br>127<br>127<br>127<br>127 | 136<br>133<br>128<br>125<br>121 | 89<br>102<br>138<br>345<br>290 | 100<br>102<br>131<br>121<br>107 | 534<br>399<br>341<br>301<br>303 | 199<br>193<br>184<br>174<br>173 | | 11<br>12<br>13<br>14<br>15 | 124<br>123<br>122<br>120<br>119 | 87<br>87<br>94<br>95<br>94 | 48<br>68<br>84<br>84<br>86 | 56<br>56<br>57<br>57<br>57 | 53<br>53<br>52<br>52<br>52 | 289<br>288<br>305<br>375<br>407 | 124<br>124<br>132<br>144<br>208 | 118<br>114<br>111<br>110<br>110 | 215<br>190<br>293<br>295<br>264 | 102<br>96<br>93<br>120<br>110 | 582<br>911<br>817<br>577<br>472 | 179<br>175<br>167<br>161<br>158 | | 16<br>17<br>18<br>19<br>20 | 119<br>118<br>117<br>114<br>114 | 93<br>90<br>87<br>87<br>87 | 89<br>89<br>89<br>91<br>92 | 55<br>54<br>54<br>54<br>53 | 52<br>53<br>56<br>156<br>362 | 383<br>321<br>288<br>262<br>246 | 249<br>253<br>230<br>206<br>188 | 108<br>102<br>96<br>93<br>89 | 217<br>189<br>167<br>152<br>140 | 156<br>157<br>175<br>205<br>1680 | 399<br>350<br>316<br>295<br>274 | 165<br>167<br>170<br>165<br>160 | | 21<br>22<br>23<br>24<br>25 | 113<br>112<br>111<br>109<br>107 | 85<br>84<br>84<br>83<br>84 | 74<br>71<br>56<br>e58<br>e57 | 53<br>53<br>53<br>53<br>53 | 374<br>273<br>186<br>151<br>131 | 245<br>242<br>233<br>218<br>200 | 175<br>169<br>161<br>158<br>155 | 86<br>84<br>90<br>98<br>104 | 135<br>124<br>177<br>209<br>225 | 1550<br>907<br>576<br>476<br>398 | 254<br>236<br>218<br>206<br>195 | 157<br>160<br>169<br>205<br>237 | | 26<br>27<br>28<br>29<br>30<br>31 | 105<br>104<br>102<br>101<br>99<br>98 | 78<br>69<br>81<br>74<br>68 | e56<br>e54<br>e56<br>e60<br>65<br>64 | 53<br>50<br>51<br>53<br>53<br>55 | 121<br>116<br>109<br> | 187<br>177<br>172<br>163<br>155<br>150 | 152<br>158<br>187<br>174<br>165 | 116<br>125<br>119<br>113<br>110<br>110 | 199<br>176<br>157<br>142<br>130 | 340<br>303<br>280<br>258<br>244<br>234 | 189<br>185<br>180<br>173<br>166<br>161 | 255<br>278<br>261<br>235<br>218 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 3625<br>117<br>138<br>98<br>7190<br>.38<br>.44 | 2614<br>87.1<br>97<br>68<br>5180<br>.28<br>.32 | 2265<br>73.1<br>92<br>48<br>4490<br>.24<br>.28 | 1770<br>57.1<br>67<br>50<br>3510<br>.19 | 2957<br>106<br>374<br>52<br>5870<br>.35<br>.36 | 9632<br>311<br>1020<br>93<br>19110<br>1.02<br>1.17 | 4848<br>162<br>253<br>124<br>9620<br>.53 | 3596<br>116<br>162<br>84<br>7130<br>.38<br>.44 | 5233<br>174<br>345<br>88<br>10380<br>.57 | 9552<br>308<br>1680<br>93<br>18950<br>1.01<br>1.16 | 12045<br>389<br>911<br>161<br>23890<br>1.27<br>1.46 | 5638<br>188<br>278<br>157<br>11180<br>.61 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | R WATER Y | EARS 1955 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 147<br>902<br>1987<br>9.64<br>1990 | 126<br>632<br>1983<br>12.4<br>1990 | 79.7<br>503<br>1983<br>4.93<br>1990 | 48.9<br>265<br>1973<br>4.20<br>1959 | 82.6<br>644<br>1984<br>3.40<br>1959 | 375<br>1056<br>1961<br>34.5<br>1964 | 356<br>1466<br>1965<br>47.3<br>1957 | 234<br>906<br>1991<br>30.5<br>1958 | 260<br>1136<br>1969<br>18.4<br>1989 | 173<br>959<br>1993<br>14.2<br>1964 | 183<br>1744<br>1993<br>7.23<br>1989 | 146<br>807<br>1965<br>12.7<br>1988 | | SUMMARY | STATISTI | CS | FOR 1 | 993 CALEN | DAR YEAR | F | OR 1994 WAT | TER YEAR | | WATER YE | ARS 1955 | - 1994 | | SUMMARY STATISTICS ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK STAGE INSTANTANEOUS PEAK STAGE INSTANTANEOUS (AC-FT) ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | | 204935<br>561<br>9140<br>44<br>46<br>406500<br>1.83<br>24.91<br>1410<br>176<br>60 | Aug 16<br>Feb 21<br>Feb 18 | | 63775<br>175<br>1680<br>48<br>52<br>2180<br>8.76<br>36<br>126500<br>.57<br>7.75<br>304<br>57 | Jul 20<br>Dec 11<br>Jan 22<br>Jul 20<br>Jul 20<br>Dec 11 | | 185<br>584<br>32.0<br>9930<br>3.0<br>3.0<br>14000<br>18.99<br>133800<br>60<br>8.20<br>387<br>70<br>17 | Feb<br>Feb<br>Aug 1 | 1993<br>1977<br>27 1961<br>4 1959<br>3 1959<br>6 1993<br>6 1993 | e Estimated. 95 ### 05458500 CEDAR RIVER AT JANESVILLE, IA LOCATION.--Lat 42°38'54", long 92°27'54", in NE1/4 SW1/4 sec.35, T.91 N., R.14 W., Bremer County, Hydrologic Unit 07080201, on left bank 300 ft downstream from bridge on county highway at Janesville, 3.6 mi upstream from West Fork Cedar River, and at mile 207.7 upstream from mouth of Iowa River. DRAINAGE AREA.--1,661 mi<sup>2</sup>. PERIOD OF RECORD.—October 1904 to Sept. 1906, October 1914 to September 1927, October 1932 to September 1942, October 1945 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as Red Cedar River at Janesville, 1905-06. REVISED RECORDS.—WSP 1438: Drainage area. WSP 1558: 1906 (M), 1915-16 (M), 1917, 1918-19 (M), 1920-27, 1933-37 (M), 1940-42 (M). GAGE.—Water-stage recorder. Datum of gage is 868.26 ft above sea level. Prior to July 26, 1919, nonrecording gage at site 1,000 ft downstream at datum 4.0 ft lower. July 26, 1919 to Sept. 30, 1927, Nov. 14, 1932 to Sept 30, 1942, and Apr. 26, 1946 to Nov. 10, 1949, nonrecording gage at courty bridge 300 ft presence of the cornel deturn. county bridge 300 ft upstream at same datum. REMARKS.—Estimated daily discharges: Oct. 20 to Dec. 7, Dec. 12, and Dec. 24 to Feb. 27. Records good except those for estimated daily discharges, which are poor. Diurnal fluctuation during low water caused by powerplant at Waverly, 10 mi upstream. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Mar. 17, 1945, reached a stage of 16.2 ft, from floodmark at site 300 ft upstream, discharge, 34,300 ft<sup>3</sup>/s. Flood of Mar. 16, 1929, reached a stage of about 16 ft, from information by City of Waterloo, discharge not determined. DIGGLAD OF OUDLO PEPE DED OPPONED WATER VEAD OPPONED 1000 TO SERVED ADD 1000 | | DI | SCHARGE | , CUBIC | FEET PER | SECOND,<br>DAILY | WATER Y<br>MEAN V | YEAR OCTO<br>VALUES | OBER 1993 | TO SEP | TEMBER 1 | 1994 | | |---------------|--------------|-----------------------|--------------------------------------|------------------------------------------------------|------------------|-------------------|----------------------|---------------------------------|--------------|----------------|-----------------------|-----------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1530 | e840 | e620 | e670 | e450 | 710 | 794 | 1390 | 843 | 1120 | 1180 | 720 | | 2 | 1420 | e800 | e600 | e600 | e470 | 674 | 746 | 1440 | 798 | 1050 | 1800 | 737 | | 3 | 1410 | e840 | e600 | e640 | e510 | 588 | 726 | 1360 | 742 | 969 | 2480 | 715 | | 4 | 1360 | e850 | e620 | e 620 | e540 | 606 | 772 | 1330 | 704 | 946 | 2120 | 716 | | 5 | 1320 | e850 | e640 | e600 | e560 | 896 | 811 | 1680 | 685 | 894 | 2810 | 781 | | 6<br>7 | 1250<br>1230 | e830<br>e <b>8</b> 20 | e660<br>e670 | e540<br>e500 | e520<br>e560 | 2290<br>2980 | 812<br>801 | 1220<br>910 | 674<br>668 | 857<br>814 | 2590<br>2150 | 825<br>868 | | 8 | 1220 | e840 | 651 | e450 | e540 | 4050 | 830 | 1110 | 764 | 1000 | 1750 | 826 | | 9 | 1340 | e820 | 667 | e570 | e480 | 4690 | 768 | 1120 | 1600 | 1140 | 1530 | 778 | | 10 | 1350 | e800 | 666 | e530 | e450 | 3230 | 747 | 1120 | 2690 | 936 | 1340 | 707 | | 11 | 1280 | e780 | 628 | e570 | e500 | 2160 | 762 | 1010 | 2110 | 943 | 1330 | 661 | | 12 | 1250 | e820 | e740 | e520 | e540 | 1980 | 794 | 942 | 1770 | 926 | 2070 | 674 | | 13 | 1220 | e880 | 751 | e430 | e500 | 1910 | 815 | 906 | 1620 | 892 | 3800 | 670 | | 14 | 1170 | e840 | 697 | e390 | e470 | 1860 | 833 | 872 | 1790 | 1260 | 3520 | 642 | | 15 | 1100 | e820 | 635 | e370 | e450 | 1920 | 984 | 838 | 1900 | 1400 | 2840 | 682 | | 16<br>17 | 1100<br>1180 | e790<br>e <b>8</b> 10 | 439<br>595 | e410<br>e420 | e480<br>e520 | 1980<br>1960 | 1330<br>1390 | 815<br>811<br>780<br>751<br>704 | 1810<br>1440 | 1800<br>1920 | 21 <b>8</b> 0<br>1900 | 753<br><b>732</b> | | îś | 1130 | e760 | 777 | e390 | e580 | 1840 | 1450 | 780 | 1360 | 1580 | 1640 | 646 | | 19 | 1130 | e760 | | | e800 | 1650 | 1590 | 751 | 1220 | 1860 | 1510 | 655 | | 20 | e1150 | e720 | 865 | e380<br>e360<br>e400<br>e460<br>e500<br>e540<br>e520 | e1500 | 1520 | 1450 | 704 | 1200 | 1980 | 1380 | 651 | | 21 | e1080 | e720 | 864 | e400 | e1150 | 1420 | 1350 | 705 | 1770 | 3460 | 1170 | 665 | | 22 | e1040 | e770 | 843 | e460 | e1000 | 1430 | 1320 | 656 | 1270 | 5080 | 1360 | 784 | | 23 | e1000 | e780 | 698 | e500 | e900 | 1400 | 1310 | 713 | 1420 | 5380 | 938 | 801 | | 24 | e940 | e740 | e580 | e540 | e840 | 1340 | 1280 | 753 | 2680 | 3790 | 975 | 792 | | 25 | e900 | e720 | | | e800 | 1160 | 1240 | 752 | 2070 | 2820 | 979 | 909 | | 26<br>27 | e880<br>e880 | e720<br>e700 | e540<br>e520<br>e500<br>e530<br>e610 | e470<br>e480<br>e440<br>e470<br>e420 | e760<br>e740 | 1250<br>1250 | 1190<br>1140 | 785<br>911 | 2080<br>1910 | 2380<br>2020 | 1190<br>926 | 1370<br>1590 | | 28 | e860 | e680 | e320 | e480 | 750 | 1170 | 1180 | 1000 | 1570 | 1720 | 860 | 1350 | | 29 | e840 | e680 | e500 | 0440 | | 1000 | 1340 | 986 | 1450 | 1580 | 853 | 1290 | | 30 | e840 | e630 | e530 | 0470 | | 877 | 1390 | 931 | 1240 | 1410 | 817 | 1260 | | 31 | e830 | | e640 | e440 | | 793 | | 885 | | 1290 | 743 | | | TOTAL | 35230 | 23410 | 20262 | 15100 | 18360 | 52584 | 31945 | 30186<br>974<br>1680 | 43848 | 55217 | 52731 | 25250 | | MEAN | 1136 | 780 | 654 | 487 | 656 | 1696 | 1065 | 974 | 1462 | 1781 | 1701 | 842 | | MAX | 1530 | 880 | 865 | 670 | 1500 | 4690 | | | 2690 | 5380 | 3800 | 1590 | | MIN | 830 | 630 | 439 | 360 | 450 | 588 | 726 | 656 | 668 | 814 | 743 | 642 | | AC-FT<br>CFSM | 69880 | 46430<br>.47 | 40190 | 29950 | 36420<br>.39 | 104300<br>1.02 | 63360 | 59 <b>8</b> 70<br>.59 | 86970<br>.88 | 109500<br>1.07 | 104600<br>1.02 | 500 <b>8</b> 0<br>.51 | | IN. | .68<br>.79 | .52 | .39<br>.45 | .29<br>.34 | .41 | 1.18 | .64<br>.72 | .68 | .98 | 1.24 | 1.18 | .57 | | STATIST | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 190 | 5 - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 607 | 576 | | | 543 | 1859 | 1801 | 1201 | 1253 | 956 | 785 | 637 | | MAX | 3793 | 2672 | 429<br>2404 | 340<br>1293 | 3393 | 4851 | 8966 | 5668 | 6223 | 6024 | 7762 | 2805 | | (WY) | 1987 | 1983 | 1983 | 1983 | 1984 | 1973 | 1993 | 1991 | 1993 | 1993 | 1993 | 1993 | | MIN | 101 | 121 | 75.2 | 80.3 | 61.2 | 124 | 247 | 134 | 95.2 | 84.7 | 83.6 | 117 | | (WY) | 1935 | 1934 | 1934 | 1917 | 1959 | 1934 | 1957 | 1934 | 1934 | 1934 | 1934 | 1934 | | SUMMAR | Y STATIST | ics | FOR | 1993 CALE | NDAR YEAR | E | OR 1994 W | ATER YEAR | | WATER Y | EARS 1905 | - 1994 | | ANNUAL | TOTAL | | | 1236450 | | | 404123 | | | | | | | ANNUAL | MEAN | | | 3388 | | | 1107 | | | 917 | | | | | r Annual i | | | | | | | | | 3454 | | 1993 | | | ANNUAL M | | | | | | | | | 187 | | 1934 | | | DAILY M | | | 33000<br>300 | Aug 18 | | 5380 | Jul 23 | | 34800 | Mar | 28 1961 | | | DAILY ME | | | 300<br>347 | Feb 18 | | 360 | Jan 20 | | 28 | Oct | 21 1922 | | | | Y MINIMUM<br>EAK FLOW | | 347 | Feb 17 | | 3 <b>8</b> 9<br>5690 | Jan 14<br>Jul 23 | | 50<br>37000 | | 1 1918<br>28 1961 | | | | EAK FLOW<br>EAK STAGE | | | | | 5690<br>6.29 | | | 16.3 | | 28 1961 | | | RUNOFF ( | | | 2452000 | | | 801600 | - Our 23 | | 664100 | mar | -3 17U1 | | ANNUAL | RUNOFF ( | CFSM) | | 2.0 | 4 | | .6 | 7 | | .5 | 5 | | | ANNUAL | RUNOFF ( | INCHES) | | 27.6 | | | 9.05 | 5 | | 7.5 | 0 | | | 10 PERC | CENT EXCE | EDS | | 7870 | | | 1900 | | | 2020 | | | | 50 PERC | CENT EXCE | EDS | | 1940 | | | 857 | | | 451 | | | | 90 PERC | ENT EXCE | EDS | | 516 | | | 526 | | | 158 | | | e Estimated. ### 05458900 WEST FORK CEDAR RIVER AT FINCHFORD, IA LOCATION.--Lat 42°37'50", long 92°32'24", in SW1/4 SE1/4 sec.6, T.90 N., R.14 W., Black Hawk County, Hydrologic Unit 07080204, on left bank 100 ft downstream from bridge on county highway C55 at Finchford, 3.2 mi upstream from Shell Rock River, and 5.0 mi upstream from mouth mouth. DRAINAGE AREA.--846 mi<sup>2</sup>. PERIOD OF RECORD.--October 1945 to current year. Prior to October 1955, published as West Fork Shell Rock River at Finchford. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946 (M), 1947. GAGE.--Water-stage recorder. Datum of gage is 867.54 ft above sea level. Prior to June 10, 1955, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Oct. 4-8, and Dec. 24 to Mar. 8. Records good except those for estimated daily discharges, which are poor. An authorized diversion of 2,100 acre-ft is made into Big Marsh, 16 mi upstream from gage, each year between September 1 and November 15. Net effect on daily flows at gage is unknown. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of about 14 ft, from information by local resident, discharge, about 12 800 ft<sup>3</sup>/s. about 12,800 ft<sup>3</sup>/s. | | DI | SCHARGI | E, CUBIC | FEET PER S | ECOND, V<br>DAILY | WATER Y<br>MEAN V | EAR OCTO | OBER 1993 | TO SEP | TEMBER 19 | 94 | | |-----------------------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--------------------------------------------| | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 885<br>840<br>801<br>e800<br>e780 | 425<br>424<br>424<br>427<br>426 | 431<br>415<br>386<br>394<br>387 | e360<br>e320<br>e300<br>e280<br>e240 | e180<br>e190<br>e200<br>e210<br>e215 | e520<br>e500<br>e480<br>e640<br>e1000 | 606<br>594<br>576<br>564<br>560 | 629<br>620<br>601<br>579<br>563 | 535<br>473<br>435<br>409<br>390 | 1580<br>1370<br>1250<br>1160<br>1120 | 597<br>582<br>616<br>598<br>614 | 567<br>531<br>509<br>508<br>508 | | 6 | e740 | 421 | 378 | e240<br>e210 | e215<br>e230 | e2000 | 557 | 564 | 380 | 1120 | 673 | 535 | | 7<br>8<br>9<br>10 | e720<br>e740<br>731<br>772 | 405<br>399<br>399<br>395 | 359<br>337<br>351<br>345 | e230<br>e200<br>e240<br>e230 | e250<br>e230<br>e210<br>e200 | e5800<br>e4500<br>4080<br>2710 | 548<br>542<br>549<br>562 | 594<br>655<br>610<br>669 | 378<br>387<br>398<br>372 | 1190<br>1160<br>1060<br>1000 | 629<br>599<br>577<br>567 | 575<br>565<br>550<br>544 | | 11<br>12<br>13<br>14<br>15 | 785<br>771<br>738<br>706<br>704 | 390<br>399<br>427<br>446<br>443 | 325<br>275<br>313<br>357<br>363 | e240<br>e220<br>e200<br>e180<br>e170 | e220<br>e240<br>e250<br>e240<br>e210 | 1520<br>1210<br>1130<br>1110<br>1110 | 555<br>549<br>583<br>664<br>811 | 617<br>571<br>530<br>497<br>478 | 361<br>353<br>396<br>600<br>892 | 925<br>838<br>766<br>856<br>1100 | 569<br>592<br>1640<br>3520<br>2970 | 520<br>501<br>486<br>475<br>465 | | 16<br>17<br>18<br>19<br>20 | 716<br>703<br>685<br>668<br>650 | 441<br>435<br>426<br>423<br>452 | 374<br>387<br>399<br>421<br>447 | e190<br>e200<br>e180<br>e160<br>e150 | e220<br>e230<br>e240<br>e600<br>e1100 | 1080<br>1030<br>969<br>922<br>884 | 923<br>956<br>926<br>860<br>799 | 468<br>450<br>427<br>408<br>392 | 810<br>658<br>579<br>524<br>510 | 1160<br>1220<br>1230<br>1270<br>1310 | 2480<br>1570<br>1260<br>941<br>865 | 468<br>492<br>488<br>473<br>463 | | 21<br>22<br>23<br>24<br>25 | 629<br>603<br>592<br>575<br>513 | 450<br>429<br>495<br>526<br>508 | 446<br>444<br>637<br>e440<br>e400 | e170<br>e190<br>e210<br>e230<br>e180 | e900<br>e860<br>e820<br>e760<br>e740 | 867<br>857<br>841<br>810<br>775 | 746<br>712<br>676<br>646<br>627 | 374<br>358<br>353<br>449<br>673 | 561<br>667<br>1020<br>2120<br>2710 | 1430<br>1410<br>1260<br>1090<br>928 | 868<br>860<br>788<br>730<br>776 | 462<br>482<br>517<br>579<br>642 | | 26<br>27<br>28<br>29<br>30<br>31 | 485<br>469<br>457<br>449<br>441<br>435 | 502<br>442<br>421<br>433<br>445 | e370<br>e330<br>e300<br>e330<br>e340<br>e350 | e200<br>e230<br>e210<br>e240<br>e200<br>e170 | e680<br>e640<br>e580<br> | 736<br>715<br>700<br>675<br>646<br>620 | 608<br>596<br>667<br>665<br>639 | 922<br>829<br>722<br>635<br>571<br>616 | 3540<br>3920<br>3630<br>2850<br>2050 | 787<br>737<br>729<br>688<br>656<br>625 | 1030<br>801<br>651<br>604<br>588<br>582 | 691<br>756<br>764<br>734<br>700 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 20583<br>664<br>885<br>435<br>40830<br>.78 | 13078<br>436<br>526<br>390<br>25940<br>.52<br>.58 | 11831<br>382<br>637<br>275<br>23470<br>.45 | 6730<br>217<br>360<br>150<br>13350<br>.26 | 11645<br>416<br>1100<br>180<br>23100<br>.49 | 41437<br>1337<br>5800<br>480<br>82190<br>1.58<br>1.82 | 19866<br>662<br>956<br>542<br>39400<br>.78<br>.87 | 17424<br>562<br>922<br>353<br>34560<br>.66 | 32908<br>1097<br>3920<br>353<br>65270<br>1.30<br>1.45 | 33065<br>1067<br>1580<br>625<br>65580<br>1.26<br>1.45 | 30737<br>992<br>3520<br>567<br>60970<br>1.17<br>1.35 | 16550<br>552<br>764<br>462<br>32830<br>.65 | | STATIST | TICS OF M | ONTHLY ME. | AN DATA F | OR WATER Y | EARS 1946 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 308<br>1412<br>1973<br>14.9<br>1990 | 310<br>1502<br>1973<br>22.3<br>1959 | 244<br>1165<br>1983<br>14.2<br>1959 | 166<br>995<br>1973<br>9.35<br>1959 | 299<br>2303<br>1984<br>6.37<br>1959 | 1028<br>2456<br>1961<br>86.2<br>1954 | 1044<br>4170<br>1965<br>81.8<br>1957 | 790<br>3434<br>1991<br>80.1<br>1957 | 943<br>3358<br>1984<br>39.5<br>1977 | 715<br>3995<br>1993<br>26.6<br>1977 | 385<br>3023<br>1993<br>15.2<br>1989 | 328<br>2149<br>1965<br>16.9<br>1989 | | | STATIST: | ICS | FOR | 1993 CALEN | DAR YEAR | F | OR 1994 WA | ATER YEAR | | WATER YE | ARS 1946 | - 1994 | | LOWEST<br>HIGHEST<br>LOWEST | MEAN ANNUAL MANNUAL ME DAILY ME DAILY ME | EAN<br>EAN<br>AN | | 16700<br>180 | Apr 1<br>Feb 27 | | 255854<br>701<br>5800<br>150 | Mar 7<br>Jan 20 | | 547<br>1800<br>65.5<br>25100<br>5.9 | Feb . | 1993<br>1956<br>27 1951<br>26 1959 | | INSTANT<br>INSTANT | | EAK FLOW<br>EAK STAGE | | 191<br>16.73<br>1268000<br>2.07 | Feb 23<br>Apr 1a | | 174<br>7500<br>b13.63<br>150<br>507500 | Jan 20 | | 6.1<br>31900<br>18.45<br>396400 | Jun . | 23 1959<br>27 1951<br>29 1990 | | ANNUAL<br>10 PERC<br>50 PERC | RUNOFF () ENT EXCES ENT EXCES | NCHES)<br>EDS<br>EDS | | 28.11<br>3780<br>1190<br>310 | | | 11.25<br>1120<br>571<br>236 | | | 8.79<br>1330<br>228<br>44 | | | e Estimated. a Revised. b Ice affected. ### 05459500 WINNEBAGO RIVER AT MASON CITY, IA LOCATION.--Lat 43°09'54", long 93°11'33", in NE1/4 NW1/4 sec.3, T.96 N., R.20 W., Cerro Gordo County, Hydrologic Unit 07080203, on right bank 650 ft upstream from Thirteenth Street Bridge in Mason City, 0.1 mi downstream from Calmus Creek, 1.0 mi upstream from Willow Creek, and at mile 275.8 upstream from mouth of Iowa River. DRAINAGE AREA.--526 mi<sup>2</sup>. PERIOD OF RECORD. --October 1932 to current year. Prior to December 1932, monthly discharge only, published in WSP 1308. Prior to October 1959, published as Lime Creek at Mason City. REVISED RECORDS.--WSP 825: 1935-36. WSP 1438: Drainage area. WSP 1558: 1933-37, 1943 (M), 1945, 1948. GAGE.--Water-stage encoder and concrete control. Datum of gage is 1,069.59 ft above sea level. Prior to Oct. 15, 1934, nonrecording gage at datum 6.47 ft lower. Oct. 15 to Nov. 6, 1934, nonrecording gage at different datum, and Nov. 7, 1934, to Mar. 22, 1935, nonrecording gage at present datum REMARKS.--Estimated daily discharges: Dec. 21 to Mar. 13, Aug. 26, 30, and Sept. 9, 10. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Service Limited Automatic Remote Collector at station. | | DIS | SCHARGE | , CUBIC I | EET PER | SECOND, V<br>DAILY | VATER Y<br>MEAN V | ZEAR OCTO | BER 1993 | TO SEP | TEMBER 19 | 94 | | |-------------|--------------------------|--------------------|--------------|---------------|--------------------|-------------------|----------------|--------------|---------------------|--------------------|--------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 228 | 190 | 165 | e170 | e72 | e180 | 219 | 420 | 192 | 455 | 509 | 151 | | 2 | 344 | 189 | 166 | e150 | e90 | e190 | 212 | 396 | 184 | 428 | 466 | 150 | | 3<br>4 | 467<br>448 | 187<br>187 | 161<br>172 | e140<br>e130 | e110<br>e100 | e200<br>e240 | 202<br>197 | 367<br>344 | 175<br>1 <b>6</b> 7 | 387<br>382 | 393<br>420 | 157<br>162 | | 5 | 408 | 184 | 175 | e140 | e120 | e1100 | 197 | 356 | 192 | 420 | 386 | 182 | | 6 | 294 | 179 | 157 | e150 | e130 | e940 | 193 | 381 | 249 | 431 | 342 | 178 | | 7 | 289 | 171 | 124 | e130 | e90 | e800 | 188 | 400 | 285 | 560 | 313 | 166 | | 8 | 289 | 165 | 166 | e90 | e64 | e700 | 182 | 392 | 287<br>256 | 657<br>686 | 289<br>282 | 156<br>e149 | | 9<br>10 | 331<br>332 | 171<br>169 | 178<br>167 | e100<br>e120 | e66<br>e56 | e500<br>e560 | 185<br>175 | 364<br>334 | 242 | 616 | 361 | e143 | | 11 | 315 | 167 | 95 | e130 | e58 | e520 | 164 | 307 | 235 | 563 | 513 | 137 | | 12 | 307 | 170 | 122 | e110 | e60 | e560 | 182 | 284 | 221 | 511 | 527 | 138 | | 13 | 289 | 192 | 185 | e120 | e62 | e600 | 289 | 267 | 603 | 651 | 578 | 132 | | 14 | 281 | 193 | 210 | e100 | e64 | 613 | 343 | 265 | 611 | 1280 | 561 | 128 | | 15 | 278 | 190 | 248 | e84 | e67 | 574 | 417 | 261 | 473 | 1090 | 512 | 136 | | 16<br>17 | 273<br>264 | 189<br>190 | 266 | e90 | e64<br>e80 | 558 | 449<br>409 | 243<br>229 | 372<br>298 | 1630<br>1960 | 453<br>400 | 141<br>140 | | 18 | 260 | 189 | 279<br>304 | e100<br>e88 | e84 | 514<br>459 | 377 | 229 | 280 | 1450 | 352 | 139 | | 19 | 251 | 186 | 312 | e82 | e100 | 402 | 335 | 206 | 487 | 1220 | 316 | 134 | | 20 | 248 | 183 | 305 | e88 | e500 | 369 | 300 | 199 | 507 | 1240 | 289 | 137 | | 21 | 249 | 180 | e180 | e84 | e400 | 357 | 291 | 187 | 424 | 1070 | 268 | 165 | | 22<br>23 | 243<br>238 | 180<br>181 | e200<br>e150 | e110<br>e100 | e330 | 343<br>334 | 277<br>260 | 186<br>217 | 330<br>968 | 931<br>845 | 251<br>226 | 215<br>245 | | 24 | 231 | 174 | e160 | e140 | e260<br>e200 | 323 | 248 | 313 | 1730 | 769 | 212 | 248 | | 25 | 228 | 180 | e150 | e110 | e160 | 296 | 250 | 330 | 1120 | 700 | 212 | 271 | | 26 | 219 | 147 | e100 | e96 | e170 | 283 | 376 | 305 | 907 | 645 | e181 | 307 | | 27 | 212 | 127 | e98 | e80 | e160 | 276 | 394 | 278 | 767 | 601 | 148 | 266 | | 28<br>29 | 211<br>206 | 133<br>172 | e80<br>e130 | e90<br>e84 | e170 | 262<br>245 | 365<br>411 | 247<br>230 | 643<br>546 | 556<br>506 | 130<br>116 | 236<br>213 | | 30 | 196 | 151 | e120 | e74 | | 232 | 431 | 223 | 474 | 455 | e127 | 197 | | 31 | 190 | | e150 | e66 | | 226 | | 207 | | 415 | 156 | | | TOTAL | 8619 | 5266 | 5475 | 3346 | 3887 | 13756 | 8518 | 8955 | 14225 | 24110 | 10289 | 5319 | | MEAN | 278 | 176 | 177 | 108 | 139 | 444 | 284 | 289 | 474 | 778 | 332 | 177 | | MAX<br>MIN | 467<br>190 | 193<br>127 | 312<br>80 | 170 | 500 | 1100 | 449 | 420 | 1730<br>167 | 1960<br>382 | 578<br>116 | 307<br>128 | | AC-FT | 17100 | 10450 | 10860 | 66<br>6640 | 56<br>7710 | 180<br>27290 | 164<br>16900 | 186<br>17760 | 28220 | 47820 | 20410 | 10550 | | CFSM | .53 | .33 | .34 | .21 | .26 | .84 | .54 | .55 | .90 | 1.48 | .63 | .34 | | IN. | .61 | .37 | .39 | .24 | .27 | .97 | .60 | .63 | 1.01 | 1.71 | .73 | .38 | | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1933 | - 1994 | , BY WATER | YEAR (WY) | | | | | | MEAN | 170 | 166 | 110 | 74.8 | 115 | 519 | 5 9 2 | 397 | 455 | 293 | 218 | 188 | | MAX | 840 | 811 | 724 | 378 | 1002 | 1707 | 2880 | 1807 | 2160 | 1915 | 2054 | 1073 | | (WY) | 1966 | 1942 | 1983 | 1983 | 1984 | 1973 | 1965 | 1991 | 1993 | 1993 | 1979 | 1938 | | MIN<br>(WY) | 11.3<br>1935 | 12.7<br>1934 | 7.45<br>1934 | 6.61<br>1977 | 7.50<br>1959 | 17.6<br>1934 | 61.0<br>1957 | 16.1<br>1934 | 21.9<br>1934 | 7.29<br>1934 | 4.89<br>1934 | 12.6<br>1933 | | SUMMAR | Y STATISTI | rcs | FOR | 1993 CALEN | MDAR YEAR | F | FOR 1994 WAT | TER YEAR | | WATER YE | EARS 1933 | - 1994 | | | | | | | | _ | | | | | | | | | | | | 335796<br>920 | | | 111765<br>306 | | | 275<br>947<br>28.1 | | 1993<br>1934 | | | T DAILY ME | | | 6130 | Apr 1 | | 1960 | Jul 17 | | 9370 | Mar | 27 1961 | | | DAILY MEA | | | 80 | Dec 28 | | 56 | Feb 10 | | 1.2 | Aug | 19 1989 | | | SEVEN-DAY | | | 100 | Feb 24 | | 61 | Feb 8 | | 3.1 | | 29 1933 | | | TANEOUS PE | | | | | | 2330 | Jul 16 | | 10800 | Mar | 30 1933 | | | TANEOUS PE<br>RUNOFF (A | AK STAGE<br>AC-FT) | | 666100 | | | 7.26<br>221700 | Jul 16 | | 15.70<br>199500 | mar | 30 1933 | | | | FSM) | | 1.75 | 5 | | .58 | | | .52 | 2 | | | ANNUAL | RUNOFF (I | NCHES) | | 23.75 | 5 | | 7.90 | | | 7.11 | Ļ | | | | CENT EXCEE | | | 2360 | | | 560 | | | 697<br>107 | | | | | CENT EXCEE<br>CENT EXCEE | | | 546<br>113 | | | 230<br>100 | | | 107<br>19 | | | | 20 E 2N | CONT BUCKE | | | 113 | | | 100 | | | | | | e Estimated. ### 05460000 CLEAR LAKE AT CLEAR LAKE, IA LOCATION.--Lat 43°08'01", long 93°22'57", in SE1/4 NE1/4 sec.13, T.96 N., R.22 W., Cerro Gordo County, Hydrologic Unit 07080203, at the public bathing beach in the town of Clear Lake near dam across Clear Creek. DRAINAGE AREA.--22.6 mi<sup>2</sup>. PERIOD OF RECORD.--May 1933 to current year. No winter records 1933-52. Record fragmentary November 1952 to June 1959. GAGE.--Water-stage recorder. Datum of gage is 1,222.24 ft above sea level, and 4.60 ft below crest of spillway of dam at outlet. See WSP 1708 for history of changes prior to June 25, 1959. REMARKS.--Lake is formed by concrete dam on Clear Creek with ungated overflow spillway 50 ft long at elevation 1,226.84 ft above sea level. Dam constructed in 1903. A previous outlet works had been constructed in 1887. Lake is used for conservation and recreation. Area of lake is approximately 3,600 acres. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 5.94 ft July 3, 1951; minimum observed, 0.76 ft Oct. 26, 1989. EXTREMES FOR CURRENT YEAR.--Maximum gage height, (a) 5.32 ft July 18; minimum, 4.53 ft Nov. 12. ### (a) Affected by wind ### GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------| | 1 | 4.83 | 4.63 | 4.62 | 4.71 | 4.84 | 4.97 | 4.94 | 4.90 | 4.79 | 5.00 | 5.18 | 4.79 | | 2 | 4.80 | 4.62 | 4.62 | 4.72 | 4.84 | 4.98 | 4.94 | 4.88 | 4.77 | 4.95 | 5.18 | 4.79 | | 3 | 4.80 | 4.63 | 4.62 | 4.73 | 4.84 | 4.98 | 4.91 | 4.88 | 4.77 | 4.94 | 5.18 | 4.79 | | 4 | 4.77 | 4.62 | 4.62 | 4.74 | 4.84 | 4.99 | 4.88 | 4.88 | 4.76 | 4.95 | 5.16 | 4.79 | | 5 | 4.76 | 4.62 | 4.62 | 4.73 | 4.84 | 5.02 | 4.89 | 4.89 | 4.82 | 4.96 | 5.13 | 4.84 | | 6<br>7<br>8<br>9<br>10 | 4.77<br>4.77<br>4.77<br>4.82<br>4.82 | 4.60<br>4.58<br>4.58<br>4.58 | 4.63<br>4.62<br>4.62<br>4.63<br>4.63 | 4.74<br>4.75<br>4.74<br>4.74<br>4.74 | 4.84<br>4.85<br>4.85<br>4.86<br>4.86 | 5.04<br>5.04<br>5.04<br>5.04<br>5.04 | 4.89<br>4.87<br>4.88<br>4.89<br>4.85 | 4.90<br>4.91<br>4.92<br>4.89<br>4.89 | 4.82<br>4.78<br>4.75<br>4.76<br>4.77 | 4.94<br>4.95<br>4.99<br>4.93<br>4.89 | 5.11<br>5.08<br>5.06<br>5.02<br>5.07 | 4.82<br>4.81<br>4.80<br>4.80<br>4.79 | | 11 | 4.81 | 4.58 | 4.62 | 4.75 | 4.86 | 5.04 | 4.82 | 4.88 | 4.79 | 4.90 | 5.06 | 4.77 | | 12 | 4.78 | 4.56 | 4.62 | 4.75 | 4.86 | 5.04 | 4.85 | 4.84 | 4.77 | 4.89 | 5.09 | 4.76 | | 13 | 4.77 | 4.65 | 4.63 | 4.76 | 4.86 | 5.03 | 4.92 | 4.82 | 4.85 | 4.94 | 5.10 | 4.76 | | 14 | 4.77 | 4.61 | 4.66 | 4.76 | 4.85 | 5.03 | 4.91 | 4.84 | 4.87 | 5.00 | 5.07 | 4.75 | | 15 | 4.77 | 4.63 | 4.67 | 4.76 | 4.86 | 5.03 | 5.01 | 4.85 | 4.86 | 5.00 | 5.05 | 4.75 | | 16<br>17<br>18<br>19<br>20 | 4.76<br>4.76<br>4.76<br>4.75<br>4.77 | 4.64<br>4.62<br>4.63<br>4.64<br>4.62 | 4.67<br>4.68<br>4.69<br>4.69<br>4.70 | 4.76<br>4.76<br>4.77<br>4.77 | 4.85<br>4.85<br>4.86<br>4.87<br>4.88 | 5.03<br>5.03<br>5.02<br>5.01<br>5.01 | 4.95<br>4.92<br>4.91<br>4.90<br>4.87 | 4.83<br>4.81<br>4.80<br>4.79<br>4.79 | 4.84<br>4.83<br>4.85<br>4.92<br>4.92 | 5.08<br>5.13<br>5.15<br>5.21<br>5.22 | 5.02<br>5.01<br>5.00<br>4.99<br>4.96 | 4.75<br>4.71<br>4.70<br>4.69<br>4.67 | | 21 | 4.78 | 4.62 | 4.70 | 4.77 | 4.89 | 5.01 | 4.87 | 4.78 | 4.91 | 5.22 | 4.94 | 4.69 | | 22 | 4.74 | 4.59 | 4.70 | 4.77 | 4.89 | 5.00 | 4.87 | 4.77 | 4.89 | 5.20 | 4.92 | 4.74 | | 23 | 4.75 | 4.59 | 4.69 | 4.78 | 4.94 | 5.02 | 4.88 | 4.82 | 4.97 | 5.19 | 4.90 | 4.74 | | 24 | 4.73 | 4.58 | 4.69 | 4.77 | 4.95 | 5.02 | 4.87 | 4.90 | 5.04 | 5.17 | 4.88 | 4.73 | | 25 | 4.72 | 4.64 | 4.70 | 4.78 | 4.97 | 4.99 | 4.86 | 4.90 | 5.05 | 5.14 | 4.87 | 4.74 | | 26<br>27<br>28<br>29<br>30<br>31 | 4.72<br>4.71<br>4.71<br>4.68<br>4.64<br>4.64 | 4.64<br>4.63<br>4.63<br>4.63<br>4.62 | 4.70<br>4.70<br>4.70<br>4.70<br>4.70<br>4.71 | 4.78<br>4.83<br>4.83<br>4.84<br>4.84 | 4.97<br>4.97<br>4.97<br> | 4.99<br>4.98<br>4.97<br>4.96<br>4.96 | 5.03<br>4.92<br>4.87<br>4.93<br>4.89 | 4.88<br>4.88<br>4.88<br>4.86<br>4.86<br>4.82 | 5.03<br>5.01<br>5.01<br>4.95<br>4.92 | 5.11<br>5.08<br>5.07<br>5.05<br>5.03<br>5.04 | 4.91<br>4.91<br>4.88<br>4.85<br>4.83<br>4.81 | 4.72<br>4.72<br>4.71<br>4.69<br>4.67 | | MEAN | 4.76 | 4.61 | 4.66 | 4.77 | 4.88 | 5.01 | 4.90 | 4.86 | 4.87 | 5.04 | 5.01 | 4.75 | | MAX | 4.83 | 4.65 | 4.71 | 4.84 | 4.97 | 5.04 | 5.03 | 4.92 | 5.05 | 5.22 | 5.18 | 4.84 | | MIN | 4.64 | 4.56 | 4.62 | 4.71 | 4.84 | 4.96 | 4.82 | 4.77 | 4.75 | 4.89 | 4.81 | 4.67 | 99 ### 05462000 SHELL ROCK RIVER AT SHELL ROCK, IA LOCATION.--Lat 42°42'43", long 92°34'58", in NW1/4 NE1/4 sec.11, T.91 N., R.15 W., Butler County, Hydrologic Unit 07080202 on right bank 400 ft upstream from bridge on county highway C45 in Shell Rock, 2.2 mi downstream from Curry Creek, and 10.4 mi upstream from mouth. DRAINAGE AREA.--1,746 mi<sup>2</sup>. PERIOD OF RECORD.--June 1953 to current year. Prior to July 1953, monthly discharge only, published in WSP 1728. REVISED RECORDS.--WSP 1438: Drainage area. GAGE.--Water-stage recorder. Rockfill dam since Oct. 19, 1957. Datum of gage is 885.34 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 26 to Mar. 7, June 21-23, and July 14-23. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in 1856 reached a stage of 17.7 ft at bridge 400 ft downstream, from information provided by U.S. Army Corps of Engineers, discharge, about 45,000 ft<sup>3</sup>/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | DI. | CHAROL | , CODIC | PERT LEN | | MEAN | VALUES | JDIM 199. | , TO SEE | I IMIDIAC I | 77 <del>4</del> | | |---------------|--------------------------|---------------------|--------------|--------------------------------------|-----------------------|---------------------|--------------|----------------------------|----------------|-----------------------|-----------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1640 | 917 | 722 | e620 | e410 | e730 | 914 | 1250 | 936 | 1640 | 1600 | 712 | | 2 | 1560 | 904 | 724 | e620 | e430 | e710 | 888 | 1230 | 869 | 1590 | 1890 | 718 | | 3 | 1480 | 887 | 744 | e600 | e480 | e720 | 862 | 1170 | 833 | 1480 | 1850 | 696 | | 4<br>5 | 1440<br>1370 | 886<br>894 | 742<br>744 | e590<br>e570 | e520 | e740 | 854<br>852 | 1110<br>1090 | 792<br>769 | 1370<br>1 <b>3</b> 10 | 1580<br>1490 | 714<br>770 | | , | 1370 | 094 | /44 | 6370 | e540 | e780 | 832 | 1030 | 703 | 1310 | 14 90 | ,,, | | 6 | 1320 | 877 | 744 | e540 | e500 | e2000 | 818 | 1110 | 813 | 1300 | 1360 | 771 | | 7 | 1290 | 858 | 680 | e500 | e520 | e5000 | 804 | 1190 | 979 | 1330 | 1240 | 756 | | 8<br>9 | 1270 | 829 | 639 | e450 | e510 | 3340 | 790 | 1190 | 1090 | 1590 | 1150 | 733<br>701 | | 10 | 1310<br>1370 | 835<br>827 | 680<br>719 | e510<br>e500 | e450<br>e430 | 3060<br>2820 | 790<br>780 | 1150<br>1090 | 1140<br>1090 | 1650<br>1690 | 1060<br>1070 | 675 | | | 13.0 | 927 | 743 | 2300 | 6450 | 2020 | ,,,, | 1000 | 1030 | 2050 | 20.0 | 0.0 | | 11 | 1380 | 824 | 654 | e490 | e470 | 2590 | 761 | 1040 | 1100 | 1570 | 1260 | 648 | | 12 | 1340 | 820 | 566 | e490 | e500 | 2490 | 748 | 973 | 1110 | 1450 | 1630 | 625 | | 13<br>14 | 1300<br>1260 | 859<br>878 | 576 | e480 | e470 | 2200<br>2210 | 810<br>984 | 92 <b>8</b><br>889 | 1260<br>2110 | 1510<br>e2640 | 1790<br>1700 | 609<br>593 | | 15 | 1230 | 893 | 731<br>790 | e435<br>e415 | e430<br>e <b>4</b> 20 | 2250 | 1180 | 885 | 2010 | e3570 | 1600 | 580 | | | | | | | | | | | | | | | | 16 | 1210 | 872 | 869<br>909 | e420 | e450 | 2160 | 1290 | 870 | 1670 | e3130 | 1480 | 583 | | 17 | 1190 | 864 | 909 | e430 | e480 | 1860 | 1360 | 825 | 1430 | e4140 | 1350 | 570 | | 18<br>19 | 1150<br>1130 | 840<br>849 | 943<br>991 | e410 | e500<br>e5 <b>4</b> 0 | 1710<br>1550 | 1270<br>1170 | 794<br>762 | 1260<br>1170 | e4640<br>e3730 | 1230<br>1130 | 575<br>572 | | 20 | 1110 | 829 | 1020 | e410<br>e390<br>e380 | e700 | 1440 | 1080 | 732 | 1680 | e3580 | 1060 | 558 | | | | <b>42</b> 2 | | | | | | | | | | | | 21 | 1090 | 827 | 972 | e410<br>e430<br>e490<br>e520<br>e490 | e1200 | 1380 | 1040 | 715 | e2400 | e4190 | 1000 | 552 | | 22 | 1080 | 823 | 802 | e430 | e1100 | 1350 | 981 | 696 | e3300<br>e4700 | e3910 | 946<br>886 | 578<br>633 | | 23<br>24 | 1080<br>1070 | 800<br>791 | 639<br>454 | e490 | e1050<br>e1020 | 1310<br>1270 | 931<br>912 | 741<br>873 | 5760 | e3390<br>3060 | 837 | 727 | | 25 | 1050 | 797 | 434 | e490 | e970 | 1200 | 886 | 1290 | 5930 | 2780 | 911 | 772 | | | | | | | | | | | | | | | | 26 | 1030 | 811 | e470 | e460 | e880 | 1130 | 884 | 1380 | 4180 | 2510 | 1000 | 857 | | 27<br>28 | 1000<br>997 | 7 <b>4</b> 4<br>651 | e480 | e470<br>e430 | e800<br>e730 | 1100<br>1070 | 1070<br>1150 | 1260<br>11 <b>4</b> 0 | 3020<br>2490 | 2280<br>2130 | 932<br>865 | 1030<br>928 | | 29 | 992 | 636 | e530<br>e600 | e450 | e/30 | 1020 | 1130 | 1040 | 2080 | 1960 | 799 | 840 | | 30 | 966 | 700 | e600 | e410 | | 971 | 1180 | 990 | 1830 | 1800 | 768 | 784 | | 31 | 951 | | e590 | e430 | | 934 | | 1050 | | 1660 | 738 | | | mom** | 27656 | 24022 | 01750 | 14040 | 17500 | F200F | 201.00 | 21452 | 59801 | 74500 | 20202 | 20860 | | TOTAL<br>MEAN | 37656<br>1215 | 24822<br>827 | 21758<br>702 | 14840<br>479 | 17500<br>625 | 53095<br>1713 | 29169<br>972 | 31453<br>1015 | 1993 | 74580<br>2406 | 38202<br>1232 | 20860<br>695 | | MAX | 1640 | 917 | 1020 | 620 | 1200 | 5000 | 1360 | 1380 | 5930 | 4640 | 1890 | 1030 | | MIN | 951 | 636 | 434 | 380 | 410 | 710 | 748 | 696 | 769 | 1300 | 738 | 552 | | AC-FT | 74690 | 49230 | 43160 | 29440 | 34710 | 105300 | 57860 | 62390 | 118600 | 147900 | 75770 | 41380 | | CFSM | .70 | .47 | .40 | .27 | .36 | .98 | .56 | .58 | 1.14 | | .71 | .40 | | IN. | .80 | .53 | .46 | .32 | .37 | 1.13 | . 62 | .67 | 1.27 | 1.59 | .81 | .44 | | STATIS: | rics of M | ONTHLY ME | AN DATA E | FOR WATER | YEARS 195 | 4 - 1994 | , BY WATER | YEAR (WY | ) | | | | | MEAN | 746 | 691 | 524 | 350 | 480 | 1647 | 1995 | 1546 | 1632 | 1229 | 910 | 742 | | MAX | 2544 | 2326 | 2381 | 1375 | 2833 | 5426 | 8540 | 5889 | 6239 | 6461 | 5 <b>63</b> 7 | 2816 | | (WY) | 1987 | 1983 | 1983 | 1983 | 1984 | 1992 | 1965 | 1991 | 1993 | 1993<br>11 <b>4</b> | 1979 | 1993<br>96.6 | | MIN<br>(WY) | 74.1<br>1990 | 77.7<br>1990 | 39.8<br>1990 | 45.6<br>1959 | 44.7<br>1959 | 193<br>19 <b>68</b> | 226<br>1957 | 243<br>1958 | 138<br>1977 | 1977 | 66.7<br>1989 | 1989 | | (11) | 1930 | 1990 | 1990 | 1939 | 1939 | 1900 | 1937 | 1936 | 1911 | 1911 | 1303 | 1,0, | | SUMMARY | Y STATIST | ics | FOR | 1993 CALE | NDAR YEAR | I | FOR 1994 W | ATER YEAR | | WATER Y | EARS 1954 | - 1994 | | ANNUAL | | | | 1164130 | | | 423736 | | | | | | | ANNUAL | | *** | | 3189 | | | 1161 | | | 1043 | | 1993 | | | ANNUAL M | | | | | | | | | 3231<br>171 | | 1077 | | | DAILY M | | | 20000 | Apr 1 | | 5930 | Jun 25 | | | Mar | 28 1961 | | LOWEST | DAILY ME | AN | | 350 | Feb 18 | | 380 | Jan 20 | | 27 | Dec | 22 1989 | | | | MUMINIM Y | | 390 | Feb 17 | | 408 | Jan 15 | | 29 | Dec<br>Mar | 16 1989 | | | PANEOUS PI | | | | | | 7900 | Mar 7<br>4 Mar 7<br>Dec 25 | | 33500 | Mar | 28 1961 | | | TANEOUS PI<br>TANEOUS LA | EAK STAGE | | | | | a13.3 | mar / | | 16.2 | o Mar | 28 1961 | | ANNUAL | | AC-FT) | | 2309000 | | | 840500 | Dec 23 | | 755400 | | | | ANNUAL | RUNOFF ( | CFSM) | | 1.8 | 3 | | .60 | 6 | | .60 | | | | ANNUAL | RUNOFF ( | INCHES) | | 1.8<br>24.8 | 0 | | 9.03 | 3 | | 8.1 | | | | | ENT EXCE | | | 7360 | | | 2000 | | | 2450 | | | | | ENT EXCE | | | 2160<br>513 | | | 917<br>496 | | | 515<br>142 | | | | JU PERC | CHI EACE | 203 | | 213 | | | 4 70 | | | 146 | | | e Estimated. a Ice affected. ### 05463000 BEAVER CREEK AT NEW HARTFORD, IA LOCATION.--Lat 42°34'22", long 92°37'04", in SE1/4 SE1/4 sec.28, T.90 N., R.15 W., Butler County, Hydrologic Unit 07080205, on right bank 5 ft from right end of bridge on county highway T55, 0.2 mi north of New Hartford, and 8 mi upstream from mouth. DRAINAGE AREA.--347 mi<sup>2</sup>. PERIOD OF RECORD. -- October 1945 to current year. Prior to April 1948, monthly discharge only, published in WSP 1308. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1948-49. WSP 1708: 1947 (M). GAGE.--Water-stage encoder. Datum of gage is 882.44 ft above sea level. Prior to July 14, 1959, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 23 to Mar. 7. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. | | DI | SCHARGE, | CUBIC I | FEET PER S | SECOND, V | WATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEP | TEMBER 19 | 94 | | |------------------------------------|-----------------------------------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 395<br>367<br>350<br>343<br>330 | 257<br>254<br>250<br>251<br>238 | 209<br>187<br>182<br>169<br>164 | e135<br>e140<br>e130<br>e120<br>e110 | e80<br>e74<br>e72<br>e80<br>e90 | e250<br>e230<br>e350<br>e600<br>e1100 | 161<br>156<br>151<br>153<br>152 | 155<br>154<br>151<br>148<br>146 | 134<br>130<br>126<br>122<br>119 | 371<br>340<br>286<br>461<br>1030 | 164<br>171<br>164<br>154<br>145 | 132<br>131<br>138<br>136<br>153 | | 6<br>7<br>8<br>9<br>10 | 327<br>318<br>315<br>614<br>695 | 223<br>218<br>217<br>208<br>204 | 160<br>152<br>155<br>152<br>151 | e120<br>e110<br>e100<br>e110<br>e115 | e96<br>e96<br>e88<br>e82<br>e76 | e2000<br>e980<br>655<br>470<br>389 | 149<br>148<br>152<br>158<br>153 | 153<br>178<br>200<br>200<br>185 | 121<br>112<br>106<br>103<br>99 | 533<br>451<br>1000<br>594<br>423 | 137<br>131<br>126<br>118<br>116 | 187<br>164<br>149<br>138<br>132 | | 11<br>12<br>13<br>14<br>15 | 584<br>521<br>467<br>441<br>455 | 203<br>202<br>236<br>231<br>220 | 129<br>164<br>174<br>154<br>165 | e120<br>e125<br>e120<br>e110<br>e98 | e84<br>e90<br>e88<br>e96<br>e100 | 334<br>318<br>317<br>324<br>324 | 145<br>152<br>185<br>201<br>275 | 174<br>161<br>153<br>146<br>147 | 98<br>94<br>319<br>468<br>290 | 355<br>303<br>360<br>1890<br>1320 | 117<br>125<br>838<br>1900<br>1420 | 125<br>118<br>113<br>110<br>107 | | 16<br>17<br>18<br>19<br>20 | 456<br>423<br>400<br>388<br>376 | 214<br>211<br>205<br>205<br>195 | 172<br>174<br>182<br>185<br>185 | e84<br>e100<br>e105<br>e96<br>e74 | e96<br>e92<br>e90<br>e110<br>e400 | 288<br>279<br>264<br>247<br>245 | 351<br>301<br>269<br>236<br>210 | 138<br>131<br>127<br>123<br>120 | 219<br>184<br>163<br>180<br>353 | 492<br>388<br>361<br>524<br>593 | 476<br>356<br>330<br>284<br>240 | 108<br>124<br>119<br>112<br>108 | | 21<br>22<br>23<br>24<br>25 | 358<br>337<br>345<br>334<br>321 | 193<br>188<br>187<br>184<br>189 | 162<br>155<br>e145<br>e110<br>e84 | e80<br>e92<br>e100<br>e105<br>e110 | e700<br>e550<br>e430<br>e340<br>e250 | 238<br>227<br>220<br>208<br>194 | 205<br>193<br>183<br>180<br>175 | 118<br>115<br>112<br>163<br>218 | 303<br>230<br>593<br>1670<br>1610 | 422<br>358<br>328<br>287<br>256 | 213<br>196<br>182<br>169<br>179 | 107<br>152<br>301<br>272<br>295 | | 26<br>27<br>28<br>29<br>30<br>31 | 311<br>295<br>295<br>282<br>267<br>258 | 197<br>186<br>228<br>227<br>223 | e64<br>e66<br>e64<br>e74<br>e100<br>e130 | e115<br>e105<br>e96<br>e94<br>e90<br>e82 | e180<br>e230<br>e265<br> | 191<br>189<br>180<br>172<br>166<br>162 | 172<br>154<br>147<br>152<br>148 | 296<br>227<br>194<br>174<br>162<br>148 | 993<br>784<br>593<br>473<br>387 | 229<br>213<br>200<br>188<br>178<br>170 | 218<br>187<br>165<br>153<br>145<br>139 | 398<br>430<br>346<br>291<br>256 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 11968<br>386<br>695<br>258<br>23740<br>1.11<br>1.28 | 6444<br>215<br>257<br>184<br>12780<br>.62<br>.69 | 4519<br>146<br>209<br>64<br>8960<br>.42<br>.48 | 3291<br>106<br>140<br>74<br>6530<br>.31<br>.35 | 5025<br>179<br>700<br>72<br>9970<br>.52 | 12111<br>391<br>2000<br>162<br>24020<br>1.13<br>1.30 | 5567<br>186<br>351<br>145<br>11040<br>.53 | 5017<br>162<br>296<br>112<br>9950<br>.47<br>.54 | 11176<br>373<br>1670<br>94<br>22170<br>1.07<br>1.20 | 14904<br>481<br>1890<br>170<br>29560<br>1.39<br>1.60 | 9458<br>305<br>1900<br>116<br>18760<br>.88<br>1.01 | 5452<br>182<br>430<br>107<br>10810<br>.52<br>.58 | | STATIS | TICS OF M | ONTHLY MEA | N DATA F | OR WATER Y | EARS 1946 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 115<br>495<br>1987<br>4.98<br>1957 | 123<br>673<br>1973<br>8.80<br>1957 | 85.8<br>514<br>1983<br>7.13<br>1990 | 73.3<br>403<br>1946<br>2.88<br>1956 | 150<br>651<br>1983<br>3.84<br>1956 | 476<br>1606<br>1993<br>28.1<br>1954 | 390<br>1578<br>1993<br>33.8<br>1954 | 317<br>1606<br>1991<br>23.2<br>1977 | 377<br>2213<br>1947<br>12.5<br>1956 | 261<br>1686<br>1993<br>4.47<br>1956 | 150<br>1368<br>1993<br>4.22<br>1989 | 114<br>1028<br>1965<br>6.02<br>1988 | | SUMMAR | Y STATIST | ics | FOR | 1993 CALEN | DAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1946 | - 1994 | | MIN 4.98 8.80 | | | | 319326<br>875<br>11500<br>62<br>73<br>633400<br>2.52<br>34.23<br>1910<br>544<br>108 | Mar 31<br>Feb 18<br>Feb 17 | | 94932<br>260<br>2000<br>64<br>80<br>4400<br>bll.46<br>188300<br>.75<br>10.18<br>455<br>184 | Mar 6<br>Dec 26a<br>Dec 24<br>Mar 6<br>Mar 6 | | 219<br>874<br>21.8<br>16300<br>2.0<br>2.3<br>18000<br>13.50<br>158900<br>.63<br>8.59<br>477<br>84<br>16 | Sep :<br>Jan :<br>Jun : | 1993<br>1956<br>13 1947<br>19 1956<br>13 1947<br>13 1947 | e Estimated. a Also Dec. 28. b Ice affected. ### 05463050 CEDAR RIVER AT CEDAR FALLS, IA (National stream-quality accounting network station) ### WATER-QUALITY RECORDS LOCATION.--Lat 42°32'20", Long 92°26'58", in NW1/4 NE1/4 sec.12, T.89N., R.14W., Black Hawk County, Hydrologic Unit 07080205, at bridge on U.S. Highway 20 at Cedar Falls, 1.1 mi upstream from Dry Run, and at mile 196.0 upstream from mouth of of Iowa River. DRAINAGE AREA.--4,734 mi<sup>2</sup>. 206 21 13 0.2 13 283 274 0.38 6330 0.97 PERIOD OF RECORD. --October 1975 to September 1979, May 1984 to September 1985, October 1986 to current year. REMARKS.--Water discharge estimated on basis of records at gaging station 8.1 mi downstream at Waterloo. No significant inflow between gaging station and sampling site. | | WATE | R-QUALIT | y data, w | ATER YE. | AR OCTO | BER 1993 | TO SEPTE | MBER 19 | 94 | | |-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------| | DATE | CHI<br>II<br>CI<br>I<br>TIME i | NST. CI<br>UBIC CO<br>FEET DU<br>PER AN<br>ECOND (US | FIC WHO<br>N- FIR<br>CT- (STA<br>CE AF<br>/CM) UNI | PER DLE ELD TEM AND- AT RD WA' LTS) (DEC | URE AT<br>FER A<br>G C) (DE | URE E<br>IR I<br>G C) (N | SID- D<br>TY SC<br>TU) (M | D SO<br>GEN, (P<br>IS- C<br>LVED SA<br>G/L) AT | IS- ME LVED PR ER- S ENT (I TUR- ION) H | RO- COLI-<br>TRIC FORM,<br>ES- FECAL,<br>URE 0.7<br>UM-MF<br>OF (COLS./<br>G) 100 ML)<br>025) (31625) | | OCT 22 | 1215 3 | 790 | 556 8 | 3.6 | 9.0 1 | 7.0 4 | .4 1 | 2.6 | 111 | 748 65 | | DEC | | | | | | | | | | 745 K26 | | 03<br>MAR | | | | | | | | | | | | 15<br>MAY | | | | | | | | 2.5 | | 742 K18 | | 05<br>Jun | | | | | | 4.0 32 | | | | 746 K40 | | 24<br>AUG | 1115 89 | 980 | 385 7 | 7.9 19 | 9.5 2 | 4.5 160 | • | 7.3 | 82 | 736 K16000 | | 16 | 1135 82 | 290 | 480 8 | 3.1 19 | 9.5 1 | 6.5 2 | .3 | 8.0 | 89 | 744 2300 | | OCT 22 DEC 03 MAR 15 MAY 05 JUN 24 AUG 16 | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673)<br><br>37<br>130<br>100<br>K26000 | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915)<br>78<br>80<br>64<br>63<br>48 | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)<br>23<br>25<br>17<br>23<br>13 | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930)<br>9.0<br>12<br>6.8<br>14<br>5.3<br>5.8 | SODIUM<br>PERCENT<br>(00932)<br>6<br>8<br>6<br>11<br>6 | | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)<br>2.4<br>2.3<br>3.2<br>2.8<br>3.3<br>4.1 | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086)<br>228<br>243<br>187<br>190<br>129<br>186 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | | DATE | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | | ост<br>22 | 264 | 33 | 18 | 0.2 | 9.4 | 336 | 334 | 0.46 | 3440 | 1.2 | | DEC 03 | 284 | 38 | 20 | 0.2 | 10 | 370 | 358 | 0.50 | 2410 | 0.26 | | MAR | 228 | 28 | 15 | 0.2 | 12 | 292 | 278 | 0.40 | 4800 | 0.75 | | 15<br>MAY | | | | | | | | | | | | 05<br>Jun | 204 | 50 | 20 | 0.3 | 4.3 | 304 | 309 | 0.41 | 3090 | 1.5 | | 24<br>AUG | 157 | 17 | 11 | 0.2 | - 13 | 241 | 220 | 0.33 | 5840 | 2.1 | ### 05463050 CEDAR RIVER AT CEDAR FALLS, IA--Continued | DATE | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM<br>(70331) | |-------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------| | ОСТ<br>22 | 5.5 | 0.02 | 0.01 | 1.2 | <0.01 | 0.05 | 0.44 | 91 | 931 | 79 | | DEC<br>03 | 5.6 | 0.01 | 0.04 | 0.3 | 0.03 | 0.03 | 0.04 | 78 | 508 | 60 | | MAR<br>15 | 4.3 | 0.04 | 0.25 | 1.0 | 0.13 | 0.15 | 0.18 | 44 | 723 | 97 | | MAY<br>05 | 4.1 | 0.02 | 0.02 | 1.5 | <0.01 | <0.01 | 0.11 | 52 | 528 | 100 | | JUN<br>24 | 7.1 | 0.06 | 0.16 | 2.3 | 0.15 | 0.15 | 0.62 | 739 | 17900 | 94 | | AUG<br>16 | 5.5 | 0.02 | 0.03 | 1.0 | 0.15 | 0.16 | 0.31 | 115 | 2570 | 99 | | | | | | | | | | | | | | DATE | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | ATRA-<br>ZINE<br>WATER<br>UNFLTRD<br>REC<br>(UG/L)<br>(39630) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>(81757) | METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030) | BUTY-<br>LATE<br>TOTAL<br>(UG/L)<br>(99901) | DEETHYL<br>ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L) | | OCT 22 | TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V) | ZINE<br>WATER<br>UNFLTRD<br>REC<br>(UG/L) | AZINE<br>TOTAL<br>(UG/L) | BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L) | CHLOR<br>TOTAL<br>RECOVER<br>(UG/L) | CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L) | FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L) | LATE<br>TOTAL<br>(UG/L) | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L) | | OCT<br>22<br>DEC<br>03 | TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | ZINE<br>WATER<br>UNFLTRD<br>REC<br>(UG/L)<br>(39630) | AZINE<br>TOTAL<br>(UG/L)<br>(81757) | BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030) | LATE<br>TOTAL<br>(UG/L)<br>(99901) | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | | OCT<br>22<br>DEC<br>03<br>MAR<br>15 | TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | ZINE<br>WATER<br>UNFLTRD<br>REC<br>(UG/L)<br>(39630) | AZINE<br>TOTAL<br>(UG/L)<br>(81757) | BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030) | LATE<br>TOTAL<br>(UG/L)<br>(99901) | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | | OCT 22 DEC 03 MAR 15 MAY 05 | TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | ZINE WATER UNFLTRD REC (UG/L) (39630) | AZINE<br>TOTAL<br>(UG/L)<br>(81757)<br><0.10 | BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030) | LATE<br>TOTAL<br>(UG/L)<br>(99901)<br><0.10 | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | | OCT<br>22<br>DEC<br>03<br>MAR<br>15 | TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080)<br>170<br><br>120 | DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | ZINE WATER UNFITRD REC (UG/L) (39630) 0.2 0.2 | AZINE<br>TOTAL<br>(UG/L)<br>(81757)<br><0.10<br><br><0.10 | BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408)<br><0.10 | CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825)<br><0.10 | CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356)<br><0.10 | FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030)<br><0.10 | LATE<br>TOTAL<br>(UG/L)<br>(99901)<br><0.10<br><br><0.10 | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | ### 05463500 BLACK HAWK CREEK AT HUDSON, IA LOCATION.--Lat 42°24'28", long 92°27'47", in SW1/4 NE1/4 sec.27, T.88 N., R.14 W., Black Hawk County, Hydrologic Unit 07080205, on left bank 35 ft downstream from bridge on State Highway 58, 0.2 mi northwest of Chicago and Great Western Railway tracks at the west edge of Hudson, 4.5 mi upstream from Prescotts Creek, and 9.6 mi upstream from mouth. DRAINAGE AREA.--303 mi<sup>2</sup>. PERIOD OF RECORD .-- April 1952 to current year. REVISED RECORDS.--WSP 1438: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 865.03 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 20 to Mar. 2, and June 13, 14, 19, 22, 23. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. | | r | DISCHARGE, ( | CUBIC F | EET PER | SECOND, V<br>DAILY | WATER Y<br>MEAN V | EAR OCTO<br>ALUES | BER 1993 | TO SEP | TEMBER 199 | 4 | | |------------------|--------------|--------------|--------------|---------------|--------------------|-------------------|-------------------|-----------------------|--------------------|--------------|--------------|--------------| | DAY | OCT | | DEC | JAN | FEB | MAR | APR | MAY . | JUN | JUL | AUG | SEP | | 1 | 438 | 238 | 126 | e115 | e62 | e230 | 171 | 149 | 135 | 338 | 181 | 74 | | 2 | 402 | 233 | 118 | e115 | e60 | e210 | 167 | 153 | 131 | 385 | 172 | 73 | | 3 | 379 | 225 | 110 | e110 | e68 | 233 | 160 | 152 | 125 | 296 | 168 | 75 | | 4 | 370 | 223 | 108 | e110 | e72 | 368 | 158 | 147 | 120 | 295 | 169 | 76 | | 5 | 351 | 210 | 106 | e98 | e80 | 1650 | 159 | 144 | 116 | 664 | 155 | 87 | | 6 | 344 | 197 | 104 | e110 | e88 | 3610 | 156 | 177 | 116 | 415 | 145 | 109 | | 7 | 338 | 192 | 141 | e96 | e74 | 1900 | 152 | 217 | 109 | 323 | 139 | 92 | | 8 | 350 | 189 | 151 | e88 | e68 | 690 | 152 | 231 | 110 | 895 | 133 | 82 | | 9 | 1030 | 182 | 149 | e96 | e64 | 470 | 151 | 227 | 104 | 1040 | 124 | 76 | | 10 | 993 | 180 | 148 | e100 | e62 | 387 | 148 | 206 | 100 | 529 | 124 | 72 | | 11<br>12 | 703<br>596 | 178<br>173 | 120<br>135 | e105<br>e96 | e82 | 328 | 141<br>139 | 193<br>180 | 99<br>96 | 415<br>345 | 129<br>133 | 69<br>66 | | 13 | 521 | 192 | 167 | e86 | e92<br>e88 | 317<br>321 | 141 | 169 | e500 | 314 | 173 | 65 | | 14 | 480 | 179 | 146 | e70 | e92 | 323 | 145 | 163 | e600 | 911 | 173 | 63 | | 15 | 469 | 170 | 149 | e58 | e96 | 324 | 191 | 161 | 368 | 1300 | 147 | 62 | | 16 | 524 | 165 | 152 | e70 | e92 | 296 | 284 | 147 | 269 | 1110 | 132 | 59 | | 17 | 485 | 162 | 153 | e84 | e88 | 268 | 242 | 139 | 220 | 681 | 122 | 58 | | 18 | 440 | 156 | 156 | e76 | e86 | 259 | 214 | 134 | 244 | 523 | 116 | 57 | | 19 | 415 | 154 | 158 | e58 | e250 | 242 | 196 | 130 | e600 | 436 | 110 | 56 | | 20 | 398 | 147 | e150 | e62 | e1200 | 235 | 178 | 126 | 380 | 735 | 103 | 55 | | 21 | 392 | 143 | e125 | e68 | e740 | 233 | 174 | 122 | 300 | 749 | 97 | 55 | | 22 | 364 | 140 | e88 | e96 | e480 | 236 | 165 | 118 | e <b>5</b> 50 | 526 | 93 | 66 | | 23 | 347 | 134 | e70 | e115 | e340 | 230 | 157 | 126 | e900 | 421 | 89 | 71 | | 24 | 334 | 130 | e54 | e125 | e220 | 222 | 153 | 279 | 1250 | 357 | 85 | 69 | | 25 | 322 | 127 | e50 | e120 | e150 | 207 | 156 | 308 | 1060 | 312 | 87 | 128 | | 26<br>27 | 310 | 128 | e52 | e120 | e145 | 202<br>200 | 158<br>143 | 232<br>197 | 702<br><b>5</b> 73 | 277<br>252 | 105<br>101 | 262<br>212 | | 28 | 291<br>288 | 119<br>133 | e54<br>e50 | e105<br>e98 | e140<br>e210 | 193 | 136 | 180 | 479 | 235 | 88 | 162 | | 29 | 271 | 137 | e62 | e94 | | 184 | 140 | 169 | 399 | 216 | 81 | 134 | | 30 | 254 | 131 | e94 | e80 | | 177 | 138 | 159 | 345 | 202 | 79 | 121 | | 31 | 245 | | e110 | e64 | | 173 | | 146 | | 190 | 78 | | | TOTAL | 13444 | 5067 | 3556 | 2888 | 5289 | 14918 | 4955 | 5381 | 11100 | 15587 | 3831 | 2706 | | MEAN | 434 | 169 | 115 | 93.2 | 189 | 481 | 165 | 174 | 370 | 503 | 124 | 90.2 | | MAX | 1030 | 238 | 167 | 125 | 1200 | 3610 | 284 | 308 | 1250 | 1300 | 181 | 262 | | MIN | 245 | 119 | 50 | 58 | 60 | 173 | 136 | 118 | 96 | 190 | 78 | 55 | | AC-FT | 26670 | 10050 . | 7050 | 5730 | 10490 | 29590 | 9830 | 10670 | 22020 | 30920 | 7600 | 5370 | | CFSM<br>IN. | 1.43<br>1.65 | .56<br>.62 | .38<br>.44 | .31<br>.35 | .62<br>.65 | 1.59<br>1.83 | .55<br>.61 | .57<br>.66 | 1.22<br>1.36 | 1.66<br>1.91 | .41 | .30<br>.33 | | CTATT CT | | MONTHLY MEAN | | | | | | | | | | | | | | | | | | | | | | | | | | MEAN | 99.2 | 112 | 88.1 | 71.6 | 144 | 387 | 322 | 273 | 330 | 260 | 128 | 91.8 | | MAX | 440 | 359 | 418 | 463 | 564 | 1280 | 1173 | 1036 | 1403 | 1705 | 1134 | 735 | | (WY) | 1966 | 1973 | 1983 | 1973 | 1984 | 1993 | 1991 | 1991 | 1990 | 1993 | 1993 | 1965 | | MIN<br>(WY) | 5.37<br>1990 | 7.45<br>1956 | 3.78<br>1990 | 2.34<br>1956 | 3.07<br>1956 | 15.9<br>1954 | 20.5<br>1956 | 22.9<br>19 <b>7</b> 7 | 10.2<br>1956 | 5.33<br>1989 | 2.38<br>1989 | 7.18<br>1989 | | CHMMADA | STATIS | om To c | FOD | 1002 CATE | NDAR YEAR | | OR 1994 WA | מגמע ממש | | WATER YEA | DC 1053 | - 1004 | | | | 11103 | FOR . | | WOUN IENK | £ | | IER IEAR | | MAILN IDA | E(5 1755 | 1,,,, | | ANNUAL<br>ANNUAL | | | | 255810<br>701 | | | 88722<br>243 | | | 192 | | | | | 'ANNUAL | MEAN | | 701 | | | 243 | | | 697 | | 1993 | | | ANNUAL | | | | | | | | | 18.4 | | 1956 | | | DAILY | | | 7140 | Jul 9 | | 3610 | Mar 6 | | 11300 | Jul | 9 1969 | | | DAILY M | | | 50 | Dec 25 | | 50 | Dec 25a | ı | .12 | | 26 1977 | | | | AY MINIMUM | | 56 | Dec 23 | | 56 | Dec 23 | | .32 | Jan : | 23 1977 | | | | PEAK FLOW | | | | | 4230 | Mar 6 | | 19300 | Ju1 | 9 1969 | | INSTANI | ANEOUS | PEAK STAGE | | | | | 15.32 | Mar 6 | | 18.23 | Jul | 9 1969 | | | RUNOFF | | | 507400 | | | 176000 | | | 139300 | | | | ANNUAL | RUNOFF | (CFSM) | | 2.3 | | | .80 | | | .63 | | | | | | (INCHES) | | 31.4 | 1 | | 10.89 | | | 8.62 | | | | | ENT EXC | | | 1490 | | | 479 | | | 440 | | | | | ENT EXC | | | 469 | | | 155 | | | 76 | | | | AO SEKC | ENT EXC | PENZ | | 105 | | | 73 | | | 14 | | | e Estimated. a Also Dec. 28. ### 05464000 CEDAR RIVER AT WATERLOO, IA LOCATION.--Lat 42°29'44", long 92°20'03", in NW1/4 NW1/4 sec.25, T.89 N., R.13 W., Black Hawk County, Hydrologic Unit 07080205, on left bank at foot of East Seventh Street, 0.3 mi upstream from Eleventh Avenue bridge in Waterloo, 1.1 mi downstream from Black Hawk Creek, and at mile 187.9 upstream from mouth of Iowa River. and at mile 187.9 upstream from mouth of lowa River. DRAINAGE AREA.--5,146 mi<sup>2</sup>. PERIOD OF RECORD.--October 1940 to current year. Prior to April 1941, monthly discharge only, published in WSP 1308. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1950. GAGE.--Water-stage encoder. Datum of gage is 824.14 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 25 to Feb. 27, and Mar. 22, 26. Records excellent except those for estimated daily discharges, which are fair. Slight diurnal fluctuation during low flow caused by powerplant upstream from station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter and U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 16, 1929, reached a stage of about 20 ft, determined by U.S. Army Corps of Engineers, from information by City of Waterloo, discharge, 65,000 ft<sup>3</sup>/s. Flood of Apr. 2, 1933, reached a stage of about 19.5 ft from information by City of Waterloo, discharge, 61,000 ft<sup>3</sup>/s. ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | D. | ISCHARGI | s, conc | LISE I LEK | DAILY | MEAN V | VALUES | OBIM: 1//. | . 10 | | | | |--------------|--------------|-----------------------------------------------------------------------------------------------|--------------|----------------|---------------------|--------------|--------------------------|-------------------|---------------|--------------------------|--------------|--------------------| | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5430 | 2920 | 2330 | e1700 | e1100 | 2970 | 2830 | 3870 | 3160 | 6070 | 4140 | 2390 | | 2 | 4960 | 2950 | 2350 | e1600 | e1150 | 2870 | 2720 | 3910 | 2860 | 5510 | 4210 | 2370 | | 3 | 4840 | 2880 | 2320 | e1700 | e1200 | 2810 | 2670 | 3950 | 2690 | 5080 | 5560 | 2340 | | 4 | 4740 | 2930 | 2350 | e1600 | e1200 | 2990 | 2610 | 3640 | 2560 | 5030<br>5200 | 5320<br>5010 | 2330<br>2370 | | 5 | 4560 | 2940 | 2350 | e1500 | e1300 | 4580 | 2690 | 3860 | 2460 | 3200 | 3010 | 2370 | | 6 | 4410 | 2820 | 2370 | e1400 | e1200 | 10500 | 2680 | 3960 | 2380 | 5180 | 5610 | 2570 | | 7 | 4210 | 2740 | 2340 | e1300 | e1100 | 16600 | 2620 | 3460 | 2420 | 4810 | 4810 | 2630 | | é | 4320 | 2750 | 2210 | e1200 | e1100 | 14500 | 2590 | 3740 | 2570 | 5270 | 4120 | 2600 | | 9 | 5250 | 2750 | 2190 | e1400 | e1200 | 12900 | 2610 | 3820 | 3040 | 6110 | 3670 | 2470 | | 10 | 5740 | 2700 | 2220 | e1500 | e1300 | 11000 | 2600 | 3770 | 4360 | 5330 | 3440 | 2360 | | | | | | 2.400 | - 2 4 2 2 | 0140 | 2530 | 3580 | 4430 | 4740 | 3300 | 2200 | | 11 | 5400<br>5090 | 2610<br>2700 | 2150<br>2040 | e1400<br>e1300 | e1400<br>e1500 | 8140<br>6540 | 2610 | 3350 | 3780 | 4530 | 3970 | 2150 | | 12<br>13 | 4810 | 2870 | 2320 | e1200 | e1700 | 6040 | 2670 | 3150 | 4090 | 4350 | 6840 | 2150 | | 14 | 4590 | 2820 | 2280 | e1000 | e1600 | 5890 | 2870 | 3070 | 5020 | 5880 | 9260 | 2070 | | 15 | 4460 | 2850 | 2380 | e1100 | e1700 | 5850 | 3640 | 2950 | 5760 | 8940 | 9680 | 2030 | | | | | | | | | | | 5200 | 8790 | 8070 | 2100 | | 16 | 4460 | 2780 | 2280 | e1100 | e1800 | 5900 | 4120<br>4500 | 2850<br>2790 | 5380<br>4660 | 8060 | 6210 | 2100 | | 17 | 4470 | 2770 | 2320 | e1000 | e1800 | 5670 | 4480 | 2670 | 4050 | 8800 | 5390 | 2080 | | 18 | 4300<br>4180 | 2770 | 2610<br>2820 | e940<br>e1000 | e1900<br>e2600 | 5220<br>4870 | 4410 | 2570 | 4310 | 8820 | 4510 | 2040 | | 19<br>20 | 4060 | 2770<br>2750 | 2900 | e1100 | e3800 | 4560 | 4220 | 2500 | 4090 | 8900 | 4110 | 2040 | | 20 | 1000 | 2,50 | 2,00 | 01100 | 00000 | •••• | | | | | | | | 21 | 3930 | 2740 | 2910 | e1200 | e6600 | 4340 | 3910 | 2350 | 5280 | 9790 | 3700 | 2040 | | 22 | 3710 | 2830 | 2690 | e1400 | e4300 | 4190 | 3730 | 2270 | 5120 | 11500 | 3470 | 2180<br>2380 | | 23 | 3760 | 2890 | 1870 | e1400 | e3800 | 4170 | 3660 | 2300 | 5610 | 12100 | 3180<br>2870 | 2700 | | 24 | 3820 | 2710 | 1660 | e1300 | e3100 | 4050 | 3560<br>3490 | 2670<br>3240 | 9430<br>12700 | 10700<br>8450 | 3500 | 3220 | | 25 | 3470 | 2600 | e1500 | e1200 | e2900 | 3820 | 3490 | 3240 | 12700 | 0430 | 3300 | 5225 | | 26 | 3450 | 2540 | e1300 | e1300 | e3000 | 3650 | 3410 | 3880 | 12800 | 7190 | 4120 | 3660 | | 27 | 3400 | 2390 | e1200 | e1200 | e3100 | 3660 | 3270 | 3950 | 11400 | 6270 | 3590 | 4270 | | 28 | 3250 | 2360 | e1200 | e1200 | 3110 | 3540 | 3480 | 3760 | 9840 | 5710 | 3070 | 4180 | | 29 | 3250 | 2210 | e1400 | e1100 | | 3090 | 3680 | 3550 | 8440 | 5070 | 2820 | 3870 | | 30 | 3160 | 2150 | e1500 | e1000 | | 3080 | 3800 | 3320 | 7010 | 4790<br>4420 | 2660<br>2550 | 3680 | | 31 | 3060 | | e1600 | e1100 | | 2890 | | 3190 | | 4420 | 2330 | | | TOTAL | 132540 | 81490 | 65960 | 39440 | 61560 | 180880 | 98660 | 101940 | 161700 | 211390 | 142760 | 77570 | | MEAN | 4275 | 2716 | 2128 | 1272 | 2199 | 5835 | 3289 | 3288 | 5390 | 6819 | 4605 | 2586 | | MAX | 5740 | 2950 | 2910 | 1700 | 6600 | 16600 | 4500 | 3960 | 12800 | 12100 | 9680 | 4270 | | MIN | 3060 | 2150 | 1200 | 940 | 1100 | 2810 | 2530 | 2270 | 2380 | 4350 | 2550 | 2030 | | AC-FT | 262900 | 161600 | 130800 | 78230 | 122100 | 358800 | 195700 | 202200 | 320700 | 419300 | 283200 | 153900 | | CFSM | .83 | .53 | .41 | .25 | .43 | 1.13 | . 64 | .64<br>.74 | 1.05 | 1.33<br>1.53 | .89<br>1.03 | .50<br>.56 | | IN. | .96 | .59 | .48 | .29 | .45 | 1.31 | .71 | . /4 | 1.17 | 1.55 | 1.03 | | | STATIS | TICS OF | MONTHLY ME | EAN DATA | FOR WATER | YEARS 1941 | L - 1994 | , BY WATE | R YEAR (W) | 0 | | | | | MEAN | 2105 | 2052 | 1544 | 1236 | 1749 | 5694 | 6184 | 4482 | 4968 | 3810 | 2715 | 2117 | | MAX | 8499 | 7434 | 6891 | 5479 | 9448 | 13760 | 24940 | 19010 | 18320 | 21210 | 18770 | 9258 | | (WY) | 1987 | 1973 | 1983 | 1973 | 1984 | 1973 | 1993 | 1991 | 1993 | 1993 | 1993 | 1993 | | MIN | 364 | 370 | 266 | 252 | 188 | 687 | 741 | 732 | 474 | 455 | 328 | 387 | | (WY) | 1990 | 1990 | 1990 | 1959 | 1959 | 1964 | 1957 | 1977 | 1977 | 1989 | 1989 | 1955 | | | RY STATIS | TICS | FOR | 1993 CAL | ENDAR YEAR | | FOR 1994 | WATER YEAR | l | WATER ' | YEARS 194 | 1 - 1994 | | A SINITI A T | TOTAL | | | 3796800 | | | 1355890 | | | | | | | ANNUAL | | | | 10400 | | | 3715 | | | 3226 | | | | | T ANNUAL | MEAN | | 10.00 | | | | | | 10580 | | 1993 | | | | | | | | | | | | 636 | | 1977 | | HIGHES | T DAILY | MEAN<br>MEAN<br>EAN<br>AY MINIMUN<br>PEAK FLOW<br>PEAK STAGN<br>(AC-FT)<br>(CFSM)<br>(INCHES) | | 67000 | Apr 2 | | 16600 | Mar 7 | | 74000 | | 29 1961<br>28 1959 | | LOWEST | DAILY M | EAN | | 1200 | Feb 24 | | 940 | Jan 18 | | 152 | Jan | 13 1959 | | ANNUAL | SEVEN-D | AY MINIMUN | 1 | 1280 | Feb 23 | | 1030 | Jan 14<br>Mar 7 | !<br>! | 173 | reD<br>Mar | 29 1961 | | INSTAN | TANEOUS | PEAK FLOW | , | 66100<br>20.0 | Apr 2a<br>60 Apr 2a | 1 | 17200<br>10.0<br>2689000 | mar 7<br>36 Mar 7 | , | 76700<br>21.0<br>2337000 | 86 Mar | 29 1961 | | INSTAR | RUNOFF | FEAN STAGE | 5 | 7531000 | no whr se | • | 2689000 | | | 2337000 | | <del>-</del> | | ANNUAL | RUNOFF | (CFSM) | | 2.0 | )2 | | • | 72 | | | 63 | | | ANNUAL | RUNOFF | (INCHES) | | | 15 | | 9.1 | 80 | | 8. | 52 | | | 10 PEF | CENT EXC | EEDS | | 24500 | | | 5960 | | | 7390 | | | | | CENT EXC | | | 7010 | | | 3090<br>1400 | | | 1740<br>539 | | | | 90 PEF | CENT EXC | EEDS | | 1710 | | | 1400 | | | 333 | | | e Estimated. a Revised. ### 05464500 CEDAR RIVER AT CEDAR RAPIDS, IA LOCATION.--Lat 41°58'14", long 91°40'01", in SE1/4 NW1/4 sec.28, T.83 N., R.7 W., Linn County, Hydrologic Unit 07080205, on right bank 400 ft upstream from bridge on Eighth Avenue in Cedar Rapids, 2.7 mi upstream from Prairie Creek, and at mile 112.7 upstream from mouth of Iowa River. DRAINAGE AREA.--6,510 mi<sup>2</sup>. PERIOD OF RECORD.—October 1902 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 955: 1924. WSP 1308: 1904, 1906-13, 1915, 1917, 1919-24, 1928, 1930, WSP 1438: Drainage area. WSP 1558: 1915-18 (M), 1920 (M), 1922 (M), 1929, 1933, 1943. GAGE .-- Water-stage encoder. Datum of gage is 700.47 ft above sea level. Prior to Aug. 20, 1920, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 26-30, Jan. 5 to Feb. 26, and Mar. 5-7. Records good except those for estimated daily discharges, which are poor. Flow affected by city hydroelectric dam 1/2 mile upstream since June 1979. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U. S. Army Corps of Engineers data collection platform at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1851 reached a stage of about 20 ft, discharge, 65,000 ft<sup>3</sup>/s, estimated. | | D | ISCHARG. | E, CUBIC | PEET PER | SECOND,<br>DAILY | MEAN V | YEAR OCT<br>VALUES | OBER 199 | 3 TO SEL | TEMBER I | 994 | | |-------------|-----------------------|------------------------------|--------------------------------------|-----------------------------------------|------------------|--------------------------------------|----------------------------------------|--------------|--------------|-------------------------------------------------|----------------------------------------------|-----------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 8130 | 4490 | 3370 | 1850 | e1600 | 4510 | 4280 | 4030 | 3580 | 8300 | 5290 | 3690 | | 2 | 7710 | 4380 | 3510 | 2190 | e1650 | 4450 | | 4050 | 3520 | 6800 | 4950 | 3590 | | 3 | 7180 | 4260 | 3470 | 2310 | e1700 | 4460 | 3990 | 4050 | 3300 | 6070 | 5050 | 3510 | | 4 | 6910 | 4250 | 3400 | 2210 | e1700 | 4810 | 3890 | 4030 | 3200 | 5980 | 5780 | 3580 | | 5 | 6610 | 4240 | 3420 | e2100 | e1900 | e5600 | 3830 | 3970 | 3100 | 6070 | 5900 | 3550 | | 6 | 6410 | 4210 | 3390 | e2050 | e1800 | e7400 | 3810 | 4030 | 2990 | 6190 | 5570 | 3540 | | 7 | 6240 | 4110 | 3400 | e2000 | e1600 | e8600 | 3780 | 4290 | 2910 | 7470 | 5930 | 3520 | | 8 | 5940 | 4030 | 3380 | e1800 | e1600 | 18200 | 3720 | 4100 | 3040 | 6250 | 5670 | 3680 | | 9 | 6310 | 3980 | 3320 | e2000 | e1700 | 21300 | 3670 | 4020 | 2990 | 6780 | 5130 | 3530 | | 10 | 7880 | 3990 | 3280 | e2200 | e1900 | 17000 | 3650 | 4120 | 3260 | 7120 | 4870 | 3450 | | 11 | 8450 | 3940 | 3230 | e2000 | e2000 | 14300 | 3550 | 4080 | 3860 | 6530 | 4740<br>4550<br>4700<br>6260<br>8390 | 3360 | | 12 | 8000 | 3930<br>4000 | 3100 | e1900 | e2200 | 11900 | 3550 | 3890 | 4340 | 5810 | 4550 | 3210 | | 13<br>14 | 7250<br><b>6</b> 840 | 4070 | 3130<br>3430 | e1800<br>e1600 | e2400<br>e2300 | 9030<br>8090 | 3580<br>3590 | 3790<br>3670 | 4460<br>4700 | 5440<br>5790 | 4700 | 31 <b>3</b> 0<br>3080 | | 15 | 6560 | 4040 | 3390 | e1700 | e2400 | 7760 | 3690 | 3580 | 4830 | 6450 | 83 90 | 3040 | | | | | | | | | | | | | | | | 16 | 6370 | 4010<br>3940<br>3930<br>3930 | 3430 | e1700 | e2300 | 7450<br>7420<br>7220<br>6840<br>6440 | 4150<br>4460<br>4760<br>4760<br>4720 | 3480 | 5480 | 8190 | 9520<br>9000<br>7230<br>6220<br>5470 | 2990 | | 17 | 6320 | 3940 | 3430 | e1600 | e2300 | 7420 | 4460 | 3360 | 5320 | 9380 | 9000 | 2950 | | 18 | 6150 | 3930 | 3390 | e1400 | e2400 | 7220 | 4760 | 3190 | 4970 | 8820 | 7230 | 2950 | | 19 | 6100 | 3930 | 3490 | e1600 | e3700 | 6840 | 4760 | 3180 | 4460 | 9090 | 6220 | 2940 | | 20 | 5870 | 3000 | 3710 | e1800 | | | | 3190 | 4950 | 9570 | | | | 21 | 5720 | 3830 | 3750<br>3760<br>3320<br>2740<br>2030 | e1900 | e8200 | 6160 | 4670 | 3010 | 4600 | 9850 | 4950 | 2890 | | 22 | 5560 | 3830 | 3760 | e2000 | e7600 | 5870 | 4670<br>4420<br>4140<br>4080<br>4080 | 2970 | 4870 | 9850 | 4700 | 2890 | | 23 | 5360 | 3830 | 3320 | e2000 | e6800 | 5690 | 4140 | 2800 | 5940 | 10500 | 4350 | 2970 | | 24 | 5280 | 3930 | 2740 | e1900 | e5600 | 5450 | 4080 | 2930 | 8120 | 11600 | 4290 | 3210 | | 25 | 5250 | 3860 | 2030 | e1700 | e4800 | 6160<br>5870<br>5690<br>5450<br>5400 | 4080 | 3030 | 10400 | | | 3650 | | 26 | 5060 | 3770 | e1800 | e1900 | e5000 | 5200 | 4010 | 3310 | 11900 | 10200 | 4310<br>6170<br>5080<br>4400<br>4170<br>3940 | 5710 | | 27 | 4920 | 3700 | e1700 | e1800 | 5060 | 5010 | 3850 | 3800 | 13500 | 8110 | 6170 | 6460 | | 28 | 4890 | 3580 | e1600 | e1700 | 4660 | 4900 | 3750 | 3970 | 13700 | 7080 | 5080 | 6020 | | 29 | 4760 | 3460 | e1600 | e1600 | | 4770 | 3750 | 3940 | 12100 | 6480 | 4400 | 5500 | | 30 | 4650 | 3080 | e1750 | e1500 | | 4530 | 3920 | 3930 | 10100 | 5880 | 4170 | 5090 | | 31 | 4520 | | 1800 | e1600 | | 4280 | | 3670 | | 5580 | 3940 | | | | | 118460 | 93520 | 57410<br>1852<br>2310<br>1400<br>113900 | 92470 | 240040 | 120130 | 113460 | 174490 | 239130 | 170570 | 110530 | | MEAN | 6232 | 3949 | 3017 | 1852 | 3302 | 7743 | 4004<br>4760<br>3550 | 3660 | 5816 | 7714 | 5502 | 3684 | | MAX | 8450 | 4490 | 3760 | 2310 | 8200 | 21300 | 4760 | 4290 | 13700 | 11900 | 9520 | 6460 | | MIN | 4520 | 3080 | 1600 | 1400 | 1600 | | 3550<br>238300 | 2800 | 2910 | 5440 | 3940 | 2850 | | | 383200 | 235000 | 185500 | 113900 | 183400 | 476100 | | 225000 | 346100 | 474300 | 338300 | 219200 | | CFSM<br>IN. | .96<br>1.10 | .61<br>.68 | .46<br>.53 | .28<br>.33 | .51<br>.53 | 1.19<br>1.37 | . 62<br>. 69 | .56<br>.65 | 1.00 | 1.18<br>1.37 | .85<br>.97 | .57<br>.63 | | | | | | | | | | | | | | | | STATIS | TICS OF I | MONTHLY ME | AN DATA | FOR WATER | YEARS 190 | 3 - 1994 | , BY WATER | YEAR (WY | ) | | | | | MEAN | 2318 | 2394 | 1840 | 1573 | 2447 | 6751 | 6722 | 5054 | 5499 | 4017 | 2963 | 2426 | | MAX | 10570 | 9327 | 8675 | 8529 | 12230 | 17420 | 35320 | 24500 | 23420 | 33910 | 28700 | 13990 | | (WY) | 1987 | 1973 | 1983 | 1973 | 1984 | 1929 | 1993 | 1991 | 1947 | 1993 | 1993 | 1993 | | MIN | 463 | 410 | 290 | 299 | 304 | 664 | 1045 | 527 | 350 | 533 | 377 | 466 | | (WY) | 1990 | 1990 | 1990 | 1911 | 1940 | 1934 | 1957 | 1934 | 1934 | 1989 | 1934 | 1934 | | SUMMAR | Y STATIST | rics | | | ENDAR YEAR | 1 | FOR 1994 W | ATER YEAR | | WATER Y | EARS 1903 | - 1994 | | ANNUAL | TOTAL | | | 5506540 | | | 1723410 | | | | | | | ANNUAL | | | | 15090 | | | 4722 | | | 3670 | | | | HIGHES | T ANNUAL | | | | | | | | | 15130 | | 1993 | | | ANNUAL N | 1EAN | I | | | | | | | 689 | | 1934 | | | T DAILY N | MEAN | | 70500 | Apr 4 | | 21300<br>1400<br>1620<br>22500<br>10.4 | Mar 9 | | 71500<br>140<br>224<br>73000<br>20.0<br>2659000 | Mar | 31 1961 | | | DAILY ME | SAN<br>V MTNTMIN | | 1600 | Feb 23 | | 1400 | Jan 18 | | 740 | VON | 18 1989<br>20 1989 | | TNOUAL | DEVENTUA<br>TANDOHE T | AY MINIMUM<br>PEAK FLOW | | T 020 | reb 22 | | 7.0∑0 | Jan 28 | | 73000 | nec | 31 1961 | | | | ENK STAGE | ! | | | | 10 4 | 3 Mar R | | ,5000 | 00 Mar | 18 1929 | | | RUNOFF | | | 10920000 | | | 3418000 | 0 | | 2659000 | - IMIL | | | | RUNOFF | (CFSM) | • | 2.3 | 32 | | 3418000<br>.7<br>9.8<br>7810<br>4030 | '3 | | .5 | 6 | | | | RUNOFF | (INCHES) | | 2.3<br>31.4 | 17 | | 9.8 | | | 7.6 | | | | 10 PER | CENT EXCE | EEDS | | 34700 | | | 7810 | | | 8150 | | | | | CENT EXCE | EEDS | ; | 10800 | | | 4030 | | | 2070 | | | | 90 PER | CENT EXCE | EEDS | | 2400 | | | 1960 | | | <b>6</b> 60 | | | e Estimated. ### 05465000 CEDAR RIVER NEAR CONESVILLE, IA LOCATION.--Lat 41 24'36", long 91 17'06", in SW1/4 SW1/4 sec.2, T.76 N., R.4 W., Muscatine County, Hydrologic Unit 07080206, on right bank 10 ft downstream from bridge on county highway G28, 3.4 mi northeast of Conesville, 5.2 mi downstream from Wapsinonoc Creek, 10.7 mi upstream from mouth, and at mile 39.8 upstream from mouth of Iowa River. DRAINAGE AREA. --7,785 mi<sup>2</sup>. PERIOD OF RECORD.--September 1939 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1708: 1956. GAGE.--Water-stage encoder. Datum of gage is 581.95 ft above sea level. Prior to Feb. 2, 1940, and Apr. 11, 1952, to July 1, 1954, nonrecording gage, Feb. 2, 1940, to Apr. 10, 1952, and July 2, 1954, to Sept. 16, 1963, water-stage recorder, at site 150 ft downstream on left bank at same datum. REMARKS.-- Estimated daily discharges: Nov. 1, Dec. 23 to Feb. 25, and Sept. 2, 27-30. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of 15.8 ft, from information by local residents to U.S. Army Corps of Engineers. | Corps of | f Engineer | ·S. | | | | | | | | | | | |-------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------| | | D | ISCHARG | E, CUBIC | FEET PER | | WATER Y | | TOBER 199 | 3 TO SEP | TEMBER 1 | 994 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 12300<br>11200<br>10300<br>9500<br>8920 | e5400<br>5250<br>5120<br>5040<br>5020 | 3720<br>3630<br>4020<br>4030<br>3930 | e2100<br>e1900<br>e1700<br>e1600<br>e1800 | e1300<br>e1300<br>e1300<br>e1350<br>e1450 | 5900<br>5420<br>5210<br>5460<br>7890 | 5070<br>4970<br>4850<br>4640<br>4520 | 4890<br>4940<br>4900 | 4020<br>3760<br>3660<br>3520<br>3230 | 11800<br>10100<br>8680<br>7760<br>7420 | 6220<br>5810<br>5360<br>5460<br>6100 | 4120<br>e3700<br>3420<br>3350<br>3340 | | 6<br>7<br>8<br>9<br>10 | 8470<br>8120<br>7890<br>7720<br>7890 | 4900<br>4830<br>4760<br>4650<br>4580 | 3810<br>3760<br>3790<br>3750<br>3710 | e1700<br>e1650<br>e1650<br>e1700<br>e1800 | e1600<br>e1600<br>e1500<br>e1450<br>e1500 | 11100<br>11100<br>11700<br>15800<br>19500 | 4410<br>4330<br>4290<br>4250<br>4160 | 4940<br>5140<br>5150 | 3090<br>2940<br>2970<br>3370<br>3590 | 7470<br>7450<br>9240<br>8220<br>8170 | 6400<br>5850<br>6000<br>5940<br>5280 | 3450<br>3340<br>3270<br>3260<br>3410 | | 11<br>12<br>13<br>14<br>15 | 9420<br>10700<br>10400<br>9410<br>8830 | 4590<br>4610<br>4780<br>4900<br>4910 | 3600<br>3460<br>3440<br>3510<br>3620 | e1850<br>e1750<br>e1600<br>e1500<br>e1600 | e1600<br>e1600<br>e1700<br>e1650<br>e1800 | 20100<br>17100<br>14500<br>11300<br>9750 | 4080<br>4100<br>4160<br>4150<br>4230 | | 3240<br>3590<br>4600<br>5520<br>6020 | 8280<br>7930<br>7050<br>6950<br>7050 | 4780<br>4600<br>4280<br>4240<br>5290 | 3230<br>3070<br>2990<br>2810<br>2740 | | 16<br>17<br>18<br>19<br>20 | 8440<br>8130<br>7980<br>7780<br>7660 | 4850<br>4760<br>4710<br>4640<br>4630 | 3810<br>3750<br>3880<br>3880<br>3860 | e1500<br>e1400<br>e1200<br>e1200<br>e1350 | e2100<br>e2500<br>e2800<br>e3200<br>e5600 | 9110<br>8660<br>8560<br>8400<br>8040 | 4360<br>4510<br>5040<br>5340<br>5550 | 4120<br>3910<br>3710<br>3520<br>3370 | 5590<br>6140<br>6270<br>5910<br>5210 | 7420<br>8770<br>10100<br>9970<br>9910 | 7790<br>9110<br>9500<br>8660<br>7360 | 2720<br>2620<br>2550<br>2530<br>2540 | | 21<br>22<br>23<br>24<br>25 | 7400<br>7130<br>6880<br>6670<br>6510 | 4540<br>4490<br>4450<br>4420<br>4570 | 4000<br>4190<br>e3500<br>e3000<br>e2500 | e1500<br>e1500<br>e1600<br>e1500<br>e1400 | e10000<br>e13000<br>e10500<br>e9400<br>e8600 | 7710<br>7550<br>7120<br>6870<br>6530 | 5540<br>5510<br>5300<br>5020<br>4850 | 3350<br>3290<br>3230<br>3140<br>3080 | 6010<br>6020<br>5820<br>7950<br>10200 | 10600<br>10700<br>10700<br>11000<br>11900 | 6480<br>5650<br>5030<br>4590<br>4300 | 2510<br>2490<br>2500<br>2500<br>2610 | | 26<br>27<br>28<br>29<br>30<br>31 | 6460<br>6330<br>5960<br>5930<br>5820<br>5540 | 4620<br>4470<br>4340<br>4210<br>4040 | e2000<br>e1500<br>e1300<br>e1350<br>e1700<br>e1900 | e1400<br>e1350<br>e1350<br>e1300<br>e1250<br>e1250 | 8180<br>6690<br>6460<br> | 6420<br>6290<br>6000<br>5790<br>5630<br>5440 | 4890<br>4810<br>4630<br>4500<br>4480 | 3110<br>3260<br>3650<br>4190<br>4220<br>4220 | 11700<br>12800<br>14100<br>14700<br>13800 | 12400<br>11300<br>9410<br>8240<br>7440<br>6790 | 3990<br>3870<br>5940<br>5930<br>4910<br>4410 | 3120<br>e4700<br>e7400<br>e7100<br>e6500 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 251690<br>8119<br>12300<br>5540<br>499200<br>1.04<br>1.20 | 141080<br>4703<br>5400<br>4040<br>279800<br>.60 | 101900<br>3287<br>4190<br>1300<br>202100<br>.42<br>.49 | 47950<br>1547<br>2100<br>1200<br>95110<br>.20<br>.23 | 111730<br>3990<br>13000<br>1300<br>221600<br>.51<br>.53 | 285950<br>9224<br>20100<br>5210<br>567200<br>1.18<br>1.37 | 140540<br>4685<br>5550<br>4080<br>278800<br>.60 | 129720<br>4185<br>5150<br>3080<br>257300<br>.54<br>.62 | 18 93 40<br>63 11<br>14 700<br>29 40<br>37 5 6 00<br>.81<br>.90 | 280220<br>9039<br>12400<br>6790<br>555800<br>1.16<br>1.34 | 179130<br>5778<br>9500<br>3870<br>355300<br>.74<br>.86 | 103890<br>3463<br>7400<br>2490<br>206100<br>.44<br>.50 | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 194 | 0 - 1994 | , BY WATE | ER YEAR (WY | ) | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 3099<br>12380<br>1987<br>599<br>1957 | 3315<br>10240<br>1973<br>590<br>1956 | 2605<br>11110<br>1983<br>429<br>1990 | 2431<br>11860<br>1973<br>365<br>1977 | 3168<br>12000<br>1984<br>359<br>1940 | 9181<br>17590<br>1948<br>1056<br>1954 | 9454<br>36790<br>1993<br>1244<br>1957 | 7151<br>24440<br>1991<br>1219<br>1940 | 7654<br>27780<br>1993<br>768<br>1977 | 6167<br>42110<br>1993<br>815<br>1989 | 4237<br>34190<br>1993<br>700<br>1989 | 3394<br>19530<br>1993<br>620<br>1955 | | SUMMAR | reitate y | rics | FOR | 1993 CAL | ENDAR YEAR | | FOR 1994 | WATER YEAR | | WATER Y | EARS 194 | 0 - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC | MEAN I ANNUAL ANNUAL M I DAILY M DAILY ME SEVEN-DA IANEOUS P IANEOUS P RUNOFF ( RUNOFF ( | MEAN MEAN MAN MAN MEAN MAN MEAN MEAN MEA | | 6702810<br>18360<br>69800<br>1300<br>1750<br>13300000<br>2<br>32<br>38800<br>15000<br>2900 | | | 1963140<br>5378<br>20100<br>1200<br>20700<br>12.<br>3894000<br>90<br>4710<br>1650 | Mar 11<br>Jan 18<br>Jan 28<br>Mar 11<br>93 Mar 11<br>69<br>38 | | 5076<br>18710<br>1176<br>69800<br>250<br>329<br>74000<br>17.1<br>3677000<br>.6<br>8.0<br>11600<br>3080<br>886 | Nov<br>Jan<br>Apr<br>1 Apr | | e Estimated. ### 05465500 IOWA RIVER AT WAPELLO, IA (National stream-quality accounting network station) LOCATION.-Lat 41°10'48", long 91°10'57", in NW 1/4 SE1/4 sec.27, T.74N., R.3 W., Louisa County, Hydrologic Unit 07080209, on right bank 30 ft downstream from bridge on State Highway 99 at east edge of Wapello, 13.0 mi downstream from Cedar River, and at mile 16.0. DRAINAGE AREA.--12,499 mi<sup>2</sup>. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --October 1914 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1917, 1923-30, 1932. WSP 1438: Drainage area. WSP 1558: 1918, 1923-25 (M), 1929. WSP 1708: 1955(P), 1956. GAGE.--Water-stage encoder. Datum of gage is 538.17 ft above sea level; Oct. 1, 1914 to Apr. 15, 1934, nonrecording gage and Apr. 16, 1934 to Sept. 30, 1972, water-stage recorder at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 3, 4, 16, Dec. 24 to Mar. 3, Mar. 13, 17, 24-28, Apr. 6-10, and Sept. 2-5, 15-20. Records good except those for estimated daily discharges, which are poor. Flow partially regulated by Coralville Lake (station 05453510) 67.3 mi upstream, since Sept. 17, 1958. U.S. Army Corps of Engineers data collection platform at station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN MAY AUG SEP e3500 e2100 e10000 e5450 e5200 e4950 15400 e9700 e3100 e2100 6580 e2900 e2700 e2200 e2300 e9400 e14000 7330 7580 e8600 4 5 e2900 e2400 e4700 7 e2700 8210 17400 17500 7960 4830 e2700 e2800 e6700 5530 e2600 e2400 5780 e2700 e6600 e3000 e2500 e6400 e2900 e2600 13 14 15 e27000 4280 16200 6490 7360 e2800 e2600 e2900 e2700 e3000 e3750 e8600 e2500 e3400 e3600 e2300 e4000 e14500 14700 e3550 7540 e4500 e3500 7490 e2200 e7200 e3450 e2500 e10000 7360 6740 11800 14600 e2400 3450 e2600 e19000 e4500 e2300 e18000 e10500 e10000 e3600 e2300 e14000 6370 7790 e2800 e2200 e12000 e9850 29 6840 e9450 9120 10500 e2200 e2200 e11000 e2500 e2100 ---e2900 e2000 e3200 e2100 TOTAL MEAN MAX 28800 9080 7540 3500 20000 27900 8490 8070 19200 16400 11500 10500 2950 7800 4490 MIN MED AC-FT CFSM 1.20 .64 .46 .20 .52 1.17 .57 .50 .78 1.10 .63 .38 .87 IN. STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1915 - 1994, BY WATER YEAR (WY) 61750 1993 37270 1993 77320 17200 18150 17080 31210 MAX (WY) MIN 718 774 503 497 1231 1967 604 1019 (WY) SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1915 - 1994 ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Jul 8 1993 Nov 28 1955 Jan 19 1956 Jul Oct LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 3100 Jan 18a Jan 27 Dec 28 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE Jul 19.76 29.53 Oct Jul ANNUAL RUNOFF ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 2.40 32.57 9.25 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 2760 1190 e Estimated. a Also Jan. 19, 30. ### 05465500 IOWA RIVER AT WAPELLO, IA--Continued (National stream-quality accounting network station) ### WATER-QUALITY RECORDS PERIOD OF RECORD .-- January 1978 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: January 1978 to current year. WATER TEMPERATURE: January 1978 to current year. SUSPENDED-SEDIMENT DISCHARGE: April 1978 to current year. REMARKS.--During periods of ice effect samples are collected in open water channel or through ice cover. Records of specific conductance are obtained from suspended-sediment samples at time of analysis. ### EXTREMES FOR PERIOD OF RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 920 microsiemens Dec. 17, 1988; minimum daily, 168 microsiemens June 21, 1990. WATER TEMPERATURES: Maximum daily, 33.0°C July 25, 1987; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,970 mg/L June 25, 1981; minimum daily mean, 1 mg/L Jan. 21, 22, 1981. SEDIMENT LOADS: Maximum daily 604,000 tons June 20, 1990; minimum daily, 4.7 tons Dec. 23, 24, 1989. ### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 618 microsiemens Dec. 26; minimum daily, 322 microsiemens Mar. 10. WATER TEMPERATURES: Maximum daily, 29.0°C, June 28; minimum daily, 0.5°C Dec. 26, 27, Jan. 1-3, 6, 7. SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,430 mg/L Mar. 6; minimum daily mean, 26 mg/L May 24. SEDIMENT LOADS: Maximum daily, 66,500 tons Mar. 6; minimum daily, 243 tons Jan. 30. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | | • • • | m m Q | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1111 | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | |-----------------|-------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------| | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>WATE<br>WHOLI<br>FIELI<br>(STANI<br>ARD<br>UNIT:<br>(0040) | E<br>D TEMP<br>D- ATU<br>WAT<br>S) (DEG | RE AT<br>ER A | PER-<br>URE<br>IR<br>G C) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>PRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | | OCT | | | | | | | | | | | | | | | DEC | 9 | 1330 | 13600 | 524 | 8.7 | 13. | 5 17 | .0 | 22 | 11.4 | 111 | 750 | 120 | | MAR | 1 | 1330 | 6480 | 612 | 8.0 | 1. | 0 2 | .0 | 2.1 | 14.0 | 100 | 752 | 50 | | | 0 | 1315 | 25100 | 303 | 8.0 | 1. | 5 3 | .0 | 78 | 13.6 | 98 | 752 | 590 | | 1 | 0 | 1445 | 7200 | 434 | 8.4 | 17. | 5 23 | .0 | 23 | 13.8 | 146 | 753 | K68 | | AUG<br>1 | 7 | 1410 | 10600 | 524 | 8.4 | 24. | 0 27 | .0 | 1.3 | 8.8 | 107 | 747 | 270 | | | DATE | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE<br>SIUS-<br>SOLVE<br>(MG/I<br>AS MG | A, SODI<br>- DIS<br>ED SOLV<br>- (MG | -<br>ED<br>/L SO<br>NA) PER | DIUM<br>CENT<br>932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | | OCT<br>1<br>DEC | 9 | K48 | 280 | 75 | 22 | 11 | | 8 | 0.3 | 1.9 | 229 | 5 | 268 | | 0 | 1 | 59 | 290 | 77 | 24 | 15 | | 10 | 0.4 | 2.0 | 229 | 0 | 279 | | | 0 | 770 | 130 | 37 | 10 | 6 | .1 | 9 | 0.2 | 4.2 | 107 | 0 | 130 | | | 0 | K44 | 190 | 43 | 21 | 15 | | 14 | 0.5 | 2.1 | 146 | 15 | 147 | | AUG<br>1 | 7 | 400 | 240 | 64 | 19 | 13 | | 10 | 0.4 | 2.9 | 195 | 0 | 238 | | | D | DI<br>SC<br>ATE (M<br>AS | FATE RIST DIST | IDE, RI<br>IS- I<br>OLVED SO<br>IG/L (N | IDE,<br>DIS-<br>DLVED<br>MG/L<br>S F) | ILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOL | OF SOLUTION DO SOLUTION OF SOL | IS- D<br>LVED SO<br>ONS (T<br>ER P<br>-FT) D | IS- G<br>LVED ORG<br>ONS TO<br>ER (M<br>AY) AS | TRO- G<br>EN, NO2<br>ANIC D<br>TAL SO<br>G/L (M<br>N) AS | TRO-<br>EN,<br>+NO3<br>IS-<br>LVED<br>G/L<br>N)<br>631) | | | OCT<br>19.<br>DEC | 3 | 1 1 | .8 | 0.30 | 10 | 331 | | 333 | 0.45 1220 | 0 | 0.78 5 | .90 | | | 01. | 3 | 8 2 | :3 | 0.10 | 10 | 366 | | 350 | 0.50 640 | 0 | 0.54 5 | .30 | | | MAR<br>10. | | 8 1 | .2 | 0.20 | 8.1 | 189 | | 177 | 0.26 1280 | 0 : | 1.1 3 | .70 | | | MAY<br>10. | 3 | 7 2 | :5 | 0.20 | 0.26 | 252 | | 244 | 0.34 490 | o : | 2.0 2 | .90 | | | AUG<br>17. | 3 | 0 2 | 1 | 0.20 | 9.4 | 311 | | 297 | 0.42 890 | o : | 1.1 4 | .40 | # 05465500 IOWA RIVER AT WAPELLO, IA--Continued (National stream-quality accounting network station) | DATE | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>* FINER<br>THAN<br>.062 MM<br>(70331) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>FINER<br>THAN<br>.062 MM<br>(70342) | |-----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | OCT | 0.00 | 0.00 | | | 0.05 | | | | | | | 19<br>DEC | 0.02 | 0.02 | 0.8 | 0.05 | 0.05 | 0.17 | | | | | | 01<br>MAR | <0.01 | 0.06 | 0.6 | 0.06 | 0.05 | 0.11 | 75 | 1310 | 45 | | | 10<br>May | 0.06 | 0.37 | 1.5 | 0.14 | 0.20 | 0.36 | 380 | 25800 | | 83 | | 10 | 0.02 | 0.02 | 2.0 | <0.01 | <0.01 | 0.26 | 110 | 2140 | 98 | | | 17 | 0.01 | 0.02 | 1.1 | 0.12 | 0.14 | 0.39 | 199 | 5700 | 89 | | | DATE | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145) | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | | OCT | -3.0 | | | _ | _ | | | | | -20 | | 19<br>DEC | <10 | 100 | <3 | 6 | 6 | 4 | <10 | <1 | <1 | <10 | | 01<br>MAR | | | | | | | | | | | | 10<br>May | 40 | 68 | <3 | 54 | <4 | 10 | <10 | 17 | <1 | <1 | | 10<br>AUG | <10 | 64 | <3 | 11 | 7 | 3 | <10 | 1 | <1 | <1 | | 17 | 20 | 91 | <3 | 10 | 5 | 1 | 10 | 1 | <1 | <1 | | DATE | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | ATRA-<br>ZINE<br>WATER<br>UNFLTRD<br>REC<br>(UG/L)<br>(39630) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>(81757) | METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030) | BUTY-<br>LATE<br>TOTAL<br>(UG/L)<br>(99901) | DEETHYL<br>ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | | OCT<br>19 | 160 | <6 | 0.2 | <0.10 | <0.1 | <0.1 | <0.10 | <0.1 | <0.1 | 0.14 | | DEC | | | | | | | | | | | | 01<br>MAR | | | | | | | | | | - <del>-</del> | | 10<br>MAY | 81 | <6 | 0.3 | <0.10 | <0.1 | <0.1 | 0.18 | <0.1 | <0.1 | | | 10<br>AUG | 130 | <6 | 0.3 | 0.23 | <0.1 | <0.1 | 0.31 | <0.1 | <0.1 | 0.11 | | 17 | 150 | <6 | | | | | | | | | ### 05465500 IOWA RIVER AT WAPELLO, IA--Continued (National stream-quality accounting network station) # SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----| | 1 | 488 | | 471 | 479 | | | 474 | | | | 531 | 485 | | Ž | 492 | 443 | 461 | 486 | | | 488 | | | | | 478 | | 3 | 488 | 474 | 465 | 497 | | 368 | 500 | 438 | 517 | | 532 | 442 | | 4 | | 481 | | | | | 464 | 448 | ~~~ | 479 | | | | 5 | | 474 | 494 | | | | 453 | | | 476 | 465 | | | 6 | | 456 | 461 | 491 | | 350 | 478 | 448 | | 488 | 467 | 492 | | 7 | 498 | | | 511 | | | 4 95 | 436 | | 496 | | | | 8 | 503 | | | | | | | 432 | | 496 | | 460 | | 9 | | 507 | | | | | | 431 | 455 | 501 | 532 | 452 | | 10 | 517 | 429 | 473 | | | 322 | | 456 | 429 | | | 451 | | 11 | | 457 | 475 | | | | | | 442 | | 527 | | | 12 | 520 | 464 | 462 | | | | | | 463 | | 526 | 486 | | 13 | 474 | 493 | 461 | | | | | | 462 | 498 | | 488 | | 14 | 459 | 456 | 471 | | | 324 | | | 450 | 504 | 524 | 490 | | 15 | | 463 | | | | 331 | | | 454 | 503 | | 509 | | 16 | | 465 | | | | 447 | | | | | 470 | | | 17 | | | | | | 441 | 484 | | | | 517 | | | 18 | 477 | | | | | | 480 | 452 | | | | | | 19 | 516 | 462 | | | | | | 455 | 448 | 521 | | 522 | | 20 | | 466 | | | | | | 462 | 452 | 515 | | 508 | | 21 | | | | | | | | | 460 | | | 512 | | 22 | | 504 | | | | | | | | | 549 | | | 23 | | | | | | 407 | | 465 | | 513 | 473 | | | 24 | | | | | 370 | 381 | 438 | 483 | | 508 | 475 | | | 25 | 466 | | | | | 451 | 436 | 485 | 453 | 499 | | 528 | | 26 | 481 | | 618 | | 378 | | | | | 490 | 485 | | | 27 | | | 516 | | 471 | | | | 462 | | 486 | | | 28 | | | | | 443 | | | | 475 | | 485 | 532 | | 29 | 496 | | | | | | 432 | 505 | 477 | 563 | | | | 30 | | | | | | 506 | 420 | 507 | | 560 | | | | 31 | | | | | | 491 | | 506 | | 550 | | | ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | 1 | 15.0 | | 2.0 | .5 | | | 7.0 | | | | | 24.0 | | 2 | 14.5 | 4.0 | 2.0 | .5 | | | 7.0 | | | | | 23.0 | | 3 | 14.5 | 4.0 | 2.0 | .5 | | 2.0 | | 16.0 | 21.0 | | 26.0 | 23.0 | | 4 | | 4.0 | 2.0 | | | | 8.0 | 17.0 | | 27.0 | | | | 5 | | 4.0 | 2.0 | | | | 9.0 | | | 27.0 | 25.0 | | | 6 | | 4.0 | 2.0 | .5 | | 4.0 | 10.0 | 18.0 | | 28.0 | 25.0 | 19.0 | | 7 | 11.5 | | | .5 | | | 11.0 | 18.0 | | 28.0 | | | | 8 | 11.0 | | | | | | | 19.0 | | 28.0 | | 21.0 | | ğ | | 4.0 | | | | | | 19.0 | 24.0 | 28.0 | 24.0 | 23.0 | | 10 | 11.0 | 4.0 | 1.0 | | | | | | 24.0 | | | 24.0 | | 11 | | 4.0 | | | | | | | 24.0 | | 24.0 | | | 12 | 10.0 | 4.0 | 1.5 | | | | | | 24.0 | | 24.0 | 26.0 | | 13 | 10.0 | 4.0 | 1.5 | | | | | | 24.0 | 27.0 | | 27.0 | | 14 | 10.0 | 4.0 | 1.0 | | | 6.0 | | | 26.0 | 28.0 | 24.0 | 25.0 | | 15 | | 3.0 | | | | 6.0 | | | 26.0 | 28.0 | | | | 16 | | | | | | 6.0 | | | | | 22.0 | | | 17 | | | | | | 6.5 | 14.0 | | | | 24.0 | | | 18 | 10.0 | | | | | | 14.0 | 17.0 | | | | | | 19 | 9.0 | 2.5 | | | | | | 17.0 | 27.0 | 27.0 | | 27.0 | | 20 | | 2.0 | | | | | | 20.5 | 28.0 | 28.0 | | 27.0 | | 21 | | | | | | | | | 27.0 | | | 26.0 | | 22 | | 5.5 | | ~ | | | | | | | 24.0 | | | 23 | | | | | | 6.0 | | 21.0 | | 26.0 | 26.0 | | | 24 | | | | | 1.0 | 6.0 | 16.0 | 22.0 | | 26.0 | 27.0 | | | 25 | 7.0 | | | | | 6.0 | 16.0 | 23.0 | 28.0 | 26.0 | | | | 26 | 7.0 | | .5 | | 1.0 | | | | | 24.5 | 27.5 | | | 27 | | | .5 | | 2.0 | | | | | | 27.0 | | | 28 | | | | | 2.0 | | | | 29.0 | | 26.0 | 17.0 | | 29 | 4.0 | | | | | | 17.0 | 22.0 | 28.0 | 26.0 | 20.0 | | | 30 | | | | | | 6.5 | 17.0 | 22.0 | 20.0 | 26.0 | | | | 31 | | | | | | 7.0 | 17.0 | 23.0 | | 26.0 | | | | 3.4 | | | | | | 7.0 | | 23.0 | | 20.0 | | | # 05465500 IOWA RIVER AT WAPELLO, IA--Continued (National stream-quality accounting network station) ### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | 2 101 6 930 82 1940 92 1490 94 787 48 255 162 42 134 4 96 570 85 1350 96 1650 102 789 48 285 137 34 4 96 570 85 1360 111 1280 110 802 57 13 31 31 315 31 15 5 15 91 5220 772 1160 135 2390 112 877 53 313 771 310 6 99 487 287 287 287 287 287 287 287 287 287 2 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|-------------------------------|--------------------------------------|--------------------------|--------------------------------------|----------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|----------------------------------------------| | 2 101 6 930 82 1940 92 1490 94 787 48 255 162 42 134 4 96 570 85 1350 96 1650 102 789 48 285 137 34 4 96 570 85 1360 111 1280 110 802 57 13 31 31 315 31 15 5 15 91 5220 772 1160 135 2390 112 877 53 313 771 310 6 99 487 287 287 287 287 287 287 287 287 287 2 | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU | ARY | MARC | н | | 7 97 4470 43 997 1566 2780 104 758 59 446 663 304 8 8 91 4050 51 1120 137 2300 96 700 55 386 488 229 9 33 3820 55 1190 121 1810 103 779 51 330 406 1120 101 3870 53 1130 119 1770 108 875 52 351 374 224 11 100 3990 60 1260 98 1710 101 791 55 386 380 267 12 94 4160 77 1650 76 1370 94 711 57 416 433 329 13 71 3110 106 2340 77 1300 87 611 59 462 371 270 14 57 2210 96 2150 84 1280 81 547 56 408 220 117 15 51 1600 88 1940 91 1430 83 605 157 416 433 329 114 57 2210 96 2150 84 1280 81 547 56 408 220 117 15 51 1600 88 1940 91 1430 83 605 59 478 248 112 17 18 13 130 57 1270 169 3350 60 373 68 734 140 54 18 18 18 18 18 18 18 18 18 18 18 18 18 | 2<br>3<br>4 | 101<br>96<br>94 | 6930<br>6170<br>5700 | 82<br>99<br>85 | 1940<br>2300<br>1960 | 92<br>96<br>111 | 1490<br>1630<br>1980 | 94<br>102<br>110 | 787<br>799<br>802 | 45<br>48<br>51 | 255<br>2 <b>8</b> 5<br>317 | 162<br>137<br>135 | 6210<br>4240<br>3480<br>5100<br>31000 | | 12 | 7<br>8<br>9 | 97<br>91<br>93 | 4470<br>4090<br>3820 | 43<br>51<br>55 | 997<br>1120<br>1190 | 156<br>137<br>121 | 2780<br>2300<br>1810 | 104<br>96<br>103 | 758<br>700<br>779 | 59<br>55<br>51 | 446<br>386<br>330 | 663<br>488<br><b>4</b> 0 <b>6</b> | 66500<br>30400<br>22900<br>19200<br>23400 | | 17 | 12<br>13<br>14 | 94<br>71<br>57 | 4160<br>3110<br>2210 | 77<br>106<br>96 | 1650<br>2340<br>2150 | 76<br>77<br>84 | 1370<br>1300<br>1280 | 94<br>87<br>81 | 711<br>611<br>547 | 57<br>59<br>56 | 416<br>462<br>408 | 433<br>371<br>280 | 26700<br>32900<br>27000<br>15700<br>11200 | | 22 | 17<br>18<br>19 | 81<br>97<br>72 | 3130<br>3780<br>2740 | 57<br><b>54</b><br>51 | 1270<br>1180<br>1080 | 169<br>146<br>146 | 3350<br>2920<br>2960 | 60<br>51<br>51 | 373<br>275<br>2 <b>7</b> 5 | 68<br>73<br>79 | 734<br>887<br>1110 | 140<br>104<br>90 | 7770<br>5480<br>3800<br>3220<br>2990 | | 27 86 2430 73 1420 135 1020 51 303 245 7940 104 277 28 93 2530 71 1340 117 695 49 291 298 8850 101 251 29 93 2470 70 1290 119 803 47 266 97 244 30 90 2360 72 1310 124 971 45 243 93 222 31 87 2200 128 1110 45 255 77 17 TOTAL 110850 43617 62319 17048 60103 3769 APRIL MAY JUNE JULY AUGUST SEPTEMBER 1 101 2210 97 1770 85 1220 236 10200 112 2640 73 117 2 86 1810 127 2420 99 1380 209 9260 105 2350 90 133 3 100 2660 167 3290 113 1550 185 7700 97 2040 103 144 4 103 2030 86 1680 107 1410 176 6610 101 2080 100 133 5 95 1810 46 797 98 1220 177 6180 150 3460 93 114 6 115 2100 88 1690 91 1080 131 4590 146 3520 90 117 7 140 2530 220 4630 83 957 114 3980 124 2790 90 117 8 145 2580 280 6100 147 1890 96 3610 116 2490 88 111 91 142 2460 116 2290 816 16800 170 6840 113 2440 85 100 11 140 2410 108 2090 560 1097 180 185 7700 128 2800 91 116 117 140 126 118 2400 88 111 110 142 2460 116 2290 816 16800 170 6840 113 2440 85 100 11 140 2410 108 2090 560 1020 182 7320 102 1840 112 131 151 167 3020 78 1420 770 67 1130 592 1700 180 150 3460 95 115 167 3020 78 1420 770 6840 173 2440 85 100 11 140 2410 108 2090 560 1020 182 7320 102 1840 112 131 151 167 3020 78 1420 770 67 1130 592 17000 156 6200 179 3870 115 116 116 148 2680 71 1250 617 18000 157 4990 232 5470 108 105 117 154 2770 67 1130 592 17000 156 6200 137 3400 67 62 1180 151 177 154 2770 67 1130 592 17000 156 6200 137 3400 67 62 1180 105 104 98 117 1180 119 1140 1170 32 476 495 12200 165 6200 130 3400 67 62 1180 101 101 101 101 101 101 101 101 10 | 22<br>23<br>24 | 78<br>83<br>88 | 2510<br>2590<br>2680 | 43<br>43<br>52 | 877<br>863<br>1030 | 181<br>151<br>132 | 3550<br>2750<br>1920 | 56<br>59<br>58 | 363<br>414<br>391 | 97<br>104<br>112 | 3670<br>5340<br>6050 | 74<br>76<br>90 | 2550<br>2490<br>2410<br>2670<br>3010 | | APRIL MAY JUNE JULY AUGUST SEPTEMBER 1 101 2210 97 1770 85 1220 236 10200 112 2640 73 117 2 86 1810 127 2420 99 1380 209 9260 105 2350 90 133 3 100 2060 167 3290 113 1530 185 7700 97 2040 103 144 4 103 2030 86 1680 107 1410 176 6610 101 2080 100 134 5 95 1810 46 797 98 1220 177 6180 150 3460 93 116 6 115 2100 88 1690 91 1080 131 4590 146 3520 90 117 7 140 2530 220 4630 83 957 114 3980 124 2790 90 116 8 145 2580 280 6100 147 1890 96 3610 116 2490 88 119 9 143 2520 172 3770 438 6990 146 5940 128 2800 91 111 10 142 2460 116 2290 816 16800 170 6840 113 2440 85 104 11 140 2410 108 2090 560 10200 182 7320 102 1840 112 131 12 139 2410 105 2090 429 7780 195 7130 84 1450 159 199 13 137 2400 91 1760 399 7970 200 6460 72 1180 151 17 14 136 2400 82 1520 726 17900 180 5450 119 2140 126 131 15 167 3020 78 14420 713 20600 160 4880 199 3870 115 116 16 148 2680 71 1250 617 18000 157 4990 232 5470 108 105 17 154 2770 67 1130 592 17000 156 5220 187 5380 104 95 18 117 2230 64 1040 576 16500 176 79300 190 5450 199 3870 115 16 148 2680 71 1250 617 18000 157 4990 232 5470 108 105 17 154 2770 67 1130 592 17000 156 5220 187 5380 104 95 18 117 2230 64 1040 576 16500 176 7000 174 5400 103 99 19 121 2470 51 802 617 16800 179 7340 150 4540 98 99 20 141 3170 32 476 495 12200 165 6200 130 3400 67 62 21 138 3160 31 452 559 13800 166 6480 112 2660 53 492 21 138 3160 31 452 559 13800 166 6480 112 2660 55 550 | 27<br>28<br>29<br>30 | 86<br>93<br>93<br>90 | 2430<br>2530<br>2470<br>2360 | 73<br>71<br>70<br>72 | 1420<br>1340<br>1290 | 135<br>117<br>119<br>124 | 1020<br>695<br>803<br>971 | 51<br>49<br>47<br>45 | 303<br>291<br>266<br>243 | 2 <b>45</b><br>298<br> | 7940<br>8850 | 104<br>101<br>97<br>93 | 2890<br>2770<br>2580<br>2400<br>2220<br>1760 | | 1 101 2210 97 1770 85 1220 236 10200 112 2640 73 117 2 86 1810 127 2420 99 1380 209 9260 105 2350 90 133 3 100 2060 167 3290 113 1530 185 7700 97 2040 103 144 4 103 2030 86 1680 107 1410 176 6610 101 2080 100 134 5 95 1810 46 797 98 1220 177 6180 150 3460 93 116 6 115 2100 88 1690 91 1080 131 4590 146 3520 90 117 7 140 2530 220 4630 83 957 114 3980 124 2790 90 116 8 145 2580 280 6100 147 1890 96 <t< td=""><td>TOTAL</td><td></td><td>110850</td><td></td><td>43617</td><td></td><td>62319</td><td></td><td>17048</td><td></td><td>60103</td><td></td><td>376940</td></t<> | TOTAL | | 110850 | | 43617 | | 62319 | | 17048 | | 60103 | | 376940 | | 1 101 2210 97 1770 85 1220 236 10200 112 2640 73 117 2 86 1810 127 2420 99 1380 209 9260 105 2350 90 133 3 100 2060 167 3290 113 1530 185 7700 97 2040 103 144 4 103 2030 86 1680 107 1410 176 6610 101 2080 100 134 5 95 1810 46 797 98 1220 177 6180 150 3460 93 116 6 115 2100 88 1690 91 1080 131 4590 146 3520 90 117 7 140 2530 220 4630 83 957 114 3980 124 2790 90 116 8 145 2580 280 6100 147 1890 96 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | 2 86 1810 127 2420 99 1380 209 9260 105 2350 90 133 3 100 2060 167 3290 113 1530 185 7700 97 2040 103 141 4 103 2030 86 1680 107 1410 176 6610 101 2080 100 134 5 95 1810 46 797 98 1220 177 6180 150 3460 93 116 6 115 2100 88 1690 91 1080 131 4590 146 3520 90 117 7 140 2530 220 4630 83 957 114 3980 124 2790 90 116 8 145 2580 280 6100 147 1890 96 3610 116 2490 88 111 9 143 2520 172 3770 438 6990 146 < | | | IL | | | | E | | | AUGUS | | | | | 7 140 2530 220 4630 83 957 114 3980 124 2790 90 116 8 145 2580 280 6100 147 1890 96 3610 116 2490 88 111 10 142 2460 116 2290 816 16800 170 6840 113 2440 85 104 11 140 2410 108 2090 560 10200 182 7320 102 1840 112 139 12 139 2410 105 2090 429 7780 195 7130 84 1450 159 196 13 137 2400 91 1760 399 7970 200 6460 72 1180 151 175 14 136 2400 82 1520 726 17900 180 5450 119 2140 126 | 2<br>3<br>4 | 86<br>100<br>1 <b>0</b> 3 | 1810<br>2060<br>2030 | 127<br>167<br>86 | 2420<br>3290<br>1680 | 99<br>113<br>107 | 1380<br>1530<br>1410 | 209<br>185<br>176 | 9260<br>7700<br>6610 | 105<br>97<br>101 | 2350<br>2040<br>2080 | 9 <b>0</b><br>103<br>100 | 1170<br>1320<br>1450<br>1340<br>1180 | | 12 139 2410 105 2090 429 7780 195 7130 84 1450 159 196 13 137 2400 91 1760 399 7970 200 6460 72 1180 151 175 14 136 2400 82 1520 726 17900 180 5450 119 2140 126 138 15 167 3020 78 1420 713 20600 160 4880 199 3870 115 116 16 148 2680 71 1250 617 18000 157 4990 232 5470 108 105 17 154 2770 67 1130 592 17000 156 5220 187 5380 104 93 18 117 2230 64 1040 576 16500 176 7000 174 5400 103 97 19 121 2470 51 802 617 16800 179 7340 150 4540 98 91 20 141 3170 32 476 495 12200 < | 7<br>8<br>9 | 140<br>145<br>143 | 2530<br>25 <b>8</b> 0<br>2520 | 220<br>280<br>172 | 4630<br>6100<br>3770 | 83<br>147<br>438 | 957<br>1890<br>6990 | 114<br>96<br>146 | 3980<br>3610<br>5940 | 124<br>116<br>128 | 2790<br>2490<br>2 <b>8</b> 00 | 90<br><b>88</b><br>91 | 1110<br>1100<br>1150<br>1180<br>1040 | | 17 154 2770 67 1130 592 17000 156 5220 187 5380 104 95 18 117 2230 64 1040 576 16500 176 7000 174 5400 103 97 19 121 2470 51 802 617 16800 179 7340 150 4540 98 91 20 141 3170 32 476 495 12200 165 6200 130 3400 67 62 21 138 3160 31 452 559 13800 166 6480 112 2660 53 49 22 119 2670 36 494 654 19600 162 6410 98 2080 55 50 | 12<br>13<br>14 | 139<br>137<br>136 | 2410<br>2400<br>2400 | 105<br>91<br>82 | 2090<br>1760<br>1520 | 429<br>399<br>726 | 7780<br>7970<br>17900 | 195<br>200<br>180 | 7130<br>6460<br>5 <b>4</b> 50 | 84<br>72<br>119 | 1450<br>1180<br>2140 | 159<br>151<br>126 | 1350<br>1980<br>1750<br>1350<br>1160 | | 22 119 2670 36 494 654 19600 162 6410 98 2080 55 50 | 17<br>18<br>19 | 154<br>117<br>121 | 2770<br>2230<br>2470 | 67<br>64<br>51 | 1130<br>1040<br>802 | 592<br>576<br>617 | 17000<br>16500<br>16800 | 156<br>176<br>179 | 5220<br>7000<br>7340 | 187<br>174<br>150 | 5380<br>5400<br>4540 | 104<br>103<br>98 | 1050<br>997<br><b>973</b><br>913<br>624 | | 24 91 1910 26 346 474 16200 12 <b>5 4</b> 870 145 2560 55 51 | 22<br>23<br>24 | 119<br>103<br>91 | 2670<br>2270<br>1910 | 36<br>39<br>26 | 494<br>517<br>346 | 654<br>452<br>474 | 19600<br>12300<br>1 <b>6</b> 200 | 162<br>148<br>125 | 6410<br>5830<br>4870 | 98<br>112<br>145 | 2080<br>2150<br>2560 | 55<br>55<br>55 | 493<br>506<br>508<br>516<br>556 | | 27 95 1820 40 532 346 16700 142 5900 97 1600 96 139 28 100 1860 44 582 323 16100 121 4440 112 1940 154 368 29 98 1760 49 695 300 15500 106 3430 162 3420 161 456 30 87 1540 67 979 266 12600 100 2900 130 2430 132 348 | 27<br>28<br>2 <b>9</b><br>30 | 95<br>100<br>98<br>87 | 1820<br>1860<br>1760<br>1540 | 40<br>44<br>49<br>67 | 532<br>582<br>695<br>979 | 346<br>323<br>300<br>266 | 16700<br>16100<br>15500<br>12600 | 142<br>121<br>106<br>100 | 5900<br>4440<br>3430<br>2900 | 97<br>112<br>162<br>130 | 1600<br>1940<br>3420<br>2430 | 96<br>154<br>161<br>132 | 669<br>1390<br>3680<br>4560<br>3480 | | | TOTAL | | 68580 | | 48643 | | 345527 | | 183500 | | 86000 | | 40545 | | <del>-</del> | | <br>443672 | 68580 | | 48643 | | 345527 | | 183500 | | 86000 | | 40545 | YEAR 1443672 ### SKUNK RIVER BASIN ### 05470000 SOUTH SKUNK RIVER NEAR AMES, IA LOCATION.--Lat 42°04'06", long 93°37'09", in NW1/4 SW1/4 sec.23, T.84 N., R.24 W., Story County, Hydrologic Unit 07080105, on left bank 2.5 mi north of Ames, 3.5 mi downstream from Keigley Branch, 5.2 mi upstream from Squaw Creek, and at mile 228.1 upstream from mouth of Skunk River. DRAINAGE AREA.--315 mi<sup>2</sup>. PERIOD OF RECORD.--July 1920 to September 1927, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308. Prior to October 1966, published as Skunk River near Ames. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1921, 1925-26, 1934-35 (M), 1937 (M), 1939 (M), 1947-50 (M). WDR IA-67-1: 1965. WDR IA-74-1: 1973 (P). GAGE.--Water-stage encoder. Concrete control since July 21, 1934. Datum of gage is 893.61 ft above sea level (Iowa Highway Commission benchmark). Prior to Aug. 25, 1921, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 24-30 and Jan. 3 to Mar. 3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. | | DIS | CHARGE | CUBIC F | EET PER | SECOND, V | WATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEP | TEMBER 199 | 94 | | |-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 340<br>306<br>289<br>279<br>256 | 176<br>172<br>170<br>170<br>170 | 101<br>100<br>98<br>97<br>96 | 65<br>64<br>e60<br>e52<br>e50 | e32<br>e34<br>e35<br>e36<br>e38 | e110<br>e120<br>e140<br>840<br>1370 | 92<br>90<br>83<br>82<br>81 | 83<br>82<br>81<br>81<br>84 | 64<br>72<br>74<br>68<br>77 | 277<br>238<br>204<br>367<br>603 | 47<br>44<br>61<br>118<br>67 | 26<br>25<br>24<br>78<br>102 | | 6<br>7<br>8<br>9<br>10 | 249<br>240<br>245<br>444<br>498 | 161<br>154<br>146<br>139<br>134 | 94<br>89<br>85<br>86<br>87 | e52<br>e52<br>e45<br>e46<br>e48 | e38<br>e34<br>e35<br>e33<br>e34 | 889<br>575<br>429<br>336<br>288 | 76<br>73<br>73<br>74<br>71 | 111<br>158<br>181<br>183<br>165 | 79<br>317<br>776<br>328<br>239 | 385<br>292<br>663<br>476<br>328 | 48<br>39<br>36<br>32<br>37 | 77<br>60<br>49<br>41<br>35 | | 11<br>12<br>13<br>14<br>15 | 423<br>377<br>337<br>315<br>315 | 127<br>124<br>123<br>126<br>126 | 73<br>69<br>85<br>93<br>90 | e42<br>e44<br>e40<br>e36<br>e33 | e35<br>e33<br>e34<br>e36<br>e34 | 256<br>246<br>243<br>244<br>245 | 65<br>72<br>81<br>87<br>129 | 153<br>142<br>130<br>128<br>145 | 191<br>160<br>838<br>917<br>538 | 259<br>214<br>208<br>240<br>178 | 39<br>108<br>280<br>181<br>118 | 32<br>28<br>27<br>25<br>25 | | 16<br>17<br>18<br>19<br>20 | 312<br>295<br>277<br>263<br>256 | 126<br>126<br>124<br>122<br>121 | 87<br>87<br>90<br>96<br>100 | e37<br>e34<br>e32<br>e35<br>e36 | e35<br>e34<br>e80<br>e600<br>e520 | 225<br>206<br>183<br>156<br>148 | 147<br>135<br>127<br>116<br>104 | 134<br>123<br>114<br>107<br>103 | 377<br>289<br>242<br>222<br>313 | 153<br>137<br>120<br>108<br>102 | 91<br>73<br>63<br>55<br>49 | 33<br>32<br>31<br>27<br>24 | | 21<br>22<br>23<br>24<br>25 | 248<br>239<br>222<br>208<br>198 | 121<br>119<br>115<br>113<br>111 | 94<br>80<br>66<br>e62<br>e60 | e39<br>e40<br>e42<br>e39<br>e37 | e430<br>e320<br>e240<br>e190<br>e170 | 145<br>142<br>140<br>131<br>119 | 103<br>98<br>94<br>93<br>93 | 98<br>93<br>97<br>102<br>98 | 421<br>322<br>1510<br>1400<br>940 | 88<br>81<br>73<br>66<br>61 | 43<br>38<br>34<br>31<br>27 | 60<br>512<br>334<br>239<br>257 | | 26<br>27<br>28<br>29<br>30<br>31 | 198<br>189<br>196<br>189<br>182<br>177 | 108<br>100<br>103<br>113<br>105 | e58<br>e52<br>e56<br>e60<br>e64<br>64 | e34<br>e36<br>e35<br>e34<br>e32<br>e31 | e140<br>e120<br>e110<br> | 116<br>116<br>109<br>103<br>95<br>92 | 88<br>79<br>75<br>79<br>80 | 92<br>85<br>79<br>76<br>74<br>69 | 727<br>575<br>465<br>382<br>315 | 55<br>58<br>51<br>44<br>40<br>37 | 31<br>36<br>31<br>27<br>36<br>39 | 304<br>284<br>227<br>188<br>167 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 8562<br>276<br>498<br>177<br>16980<br>.88<br>1.01 | 3945<br>131<br>176<br>100<br>7820<br>.42<br>.47 | 2519<br>81.3<br>101<br>52<br>5000<br>.26<br>.30 | 1302<br>42.0<br>65<br>31<br>2580<br>.13<br>.15 | 3510<br>125<br>600<br>32<br>6960<br>.40 | 8557<br>276<br>1370<br>92<br>16970<br>.88<br>1.01 | 2740<br>91.3<br>147<br>65<br>5430<br>.29<br>.32 | 3451<br>111<br>183<br>69<br>6850<br>.35<br>.41 | 13238<br>441<br>1510<br>64<br>26260<br>1.40<br>1.56 | 6206<br>200<br>663<br>37<br>12310<br>.64<br>.73 | 1959<br>63.2<br>280<br>27<br>3890<br>.20 | 3373<br>112<br>512<br>24<br>6690<br>.36<br>.40 | | STATIST | TICS OF MC | NTHLY MEA | N DATA FO | R WATER ! | YEARS 1921 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 95.0<br>723<br>1987<br>.12<br>1954 | 96.1<br>726<br>1973<br>.14<br>1956 | 69.0<br>537<br>1983<br>.000<br>1977 | 49.8<br>315<br>1973<br>.000<br>1977 | 115<br>623<br>1984<br>.31<br>1956 | 317<br>1034<br>1979<br>6.35<br>1981 | 276<br>1208<br>1965<br>6.67<br>1956 | 269<br>1193<br>1944<br>2.28<br>1934 | 371<br>1900<br>1947<br>.011<br>1977 | 225<br>2628<br>1993<br>.017<br>1977 | 118<br>1782<br>1993<br>.087<br>1934 | 101<br>577<br>1926<br>.081<br>1976 | | SUMMAR | STATISTI | cs | FOR 1 | 993 CALEN | NDAR YEAR | F | OR 1994 WA | TER YEAR | • | WATER YE | RS 1921 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY PANEOUS PE PANEOUS PE PANEOUS PE PANEOUS PE PANEOUS (ARUNOFF (ARUNOFF (ARUNOFF (CARUNOFF)) | AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) DS | | 275870<br>756<br>8980<br>30<br>51<br>547200<br>2.40<br>32.58<br>1510<br>406<br>64 | | | 59362<br>163<br>1510<br>24<br>28<br>2340<br>6.20<br>23<br>117700<br>.52<br>7.01<br>328<br>100 | Jun 23<br>Sep 3<br>Sep 14<br>Jun 7<br>Jun 7<br>Sep 20 | | 175<br>752<br>5.58<br>8980<br>.00<br>11200<br>14.23<br>126900<br>7.56<br>425<br>56<br>2.1 | Jun 2<br>Jun 2<br>Aug 1 | 1993<br>1956<br>9 1993<br>00 1934<br>06 1993<br>16 1993 | e Estimated. ### 05470500 SQUAW CREEK AT AMES, IA - LOCATION.-Lat 42°01'21", long 93°37'45", in NE1/4 NW1/4 sec.10, T.83 N., R.24 W., Story County, Hydrologic Unit 07080105, on left bank 65 ft downstream from Lincoln Way Bridge in Ames, 0.2 mi downstream from College Creek, and 2.4 mi upstream from mouth. DRAINAGE AREA. --204 mi<sup>2</sup>. - PERIOD OF RECORD .-- May 1919 to September 1927, May 1965 to current year. Monthly discharge only for some periods, published in WSP 1308. - REVISED RECORDS.--WSP 1308: Drainage area, 1920-22 (M), 1923, 1924-25 (M), 1926, 1927 (M), WDR IA-66-1: 1965, WDR IA-71-1: 1970 - GAGE.--Water-stage recorder and concrete control. Datum of gage is 881.00 ft above sea level (levels by Iowa State University). Prior to Mar. 11, 1925, nonrecording gage at site 0.6 mi upstream at different datum. Mar. 11, 1925 to Apr. 30, 1927, nonrecording gage at site 65 ft upstream at datum about 4 ft higher. - at datum about 4 ft higher. REMARKS.-- Estimated daily discharges: Dec. 23 to Jan. 2, Jan. 11-22, Jan. 29 to Feb. 4, and Feb. 7 to Mar. 3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 4, 1918, reached a stage of 14.5 ft, from floodmarks, site and datum used 1919-25, discharge, 6,900 ft<sup>3</sup>/s. Flood of Mar. 1, 1965, reached a stage of 10.7 ft, from graph based on gage readings, at present site and datum, discharge, 4,200 ft<sup>3</sup>/s. DISCULARCE CURIC PEET BED SECOND WATER MEAN COTONER 1002 TO SERVEMBER 1004 | | DIS | SCHARGE, | CUBIC F | EET PER S | SECOND, W<br>DAILY I | VATER Y<br>MEAN V | EAR OCTO<br>ALUES | BER 1993 | TO SEP | TEMBER 199 | 4 | | |-------------|------------------------|-------------|-------------|-------------|----------------------|-------------------|-------------------|------------------|--------------|----------------|--------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 252 | 105 | 61 | e44 | e17 | e34 | 46 | 56 | 34 | 279 | 72 | 15 | | 2<br>3 | 224<br>212 | 104<br>102 | 62 | e43 | e17 | e40<br>e90 | 44 | 52 | 43 | 239<br>206 | 31<br>46 | 14<br>13 | | 4 | 200 | 102 | 60<br>59 | 43<br>40 | e18<br>e19 | 980 | 41<br>40 | 52<br>52 | 41<br>36 | 206<br>324 | 49 | 98 | | 5 | 186 | 95 | 59 | 40 | 20 | 714 | 39 | 59 | 61 | 328 | 30 | 71 | | 6<br>7 | 177 | 86 | 58 | 37 | 18 | 460 | 36 | 76 | 50 | 222 | 24 | 46 | | é | 170<br>189 | 86<br>86 | 50<br>56 | 36<br>36 | e17<br>e18 | 296<br>224 | 35<br>34 | 85<br>86 | 162<br>978 | 184<br>696 | 21<br>20 | 33<br>24 | | وَ | 267 | 83 | 60 | 35 | e17 | 169 | 34 | 86 | 464 | 431 | 17 | 23 | | 10 | 263 | 78 | 55 | 33 | e19 | 143 | 32 | 86 | 308 | 288 | 28 | 21 | | 11<br>12 | 239<br>219 | 78<br>89 | 36<br>59 | e28<br>e30 | e21<br>e20 | 116<br>111 | 28<br>43 | 83<br>79 | 229<br>186 | 219<br>178 | 22<br>68 | 18<br>16 | | 13 | 199 | 97 | 68 | e30<br>e28 | e21 | 104 | 43 | 75 | 246 | 197 | 120 | 15 | | 14 | 189 | 83 | 61 | e26 | e22 | 105 | 52 | 83 | 219 | 154 | 105 | 14 | | 15 | 205 | 83 | 57 | e24 | e22 | 103 | 76 | 83 | 174 | 128 | 64 | 13 | | 16 | 207<br><b>19</b> 1 | 78 | 54 | e25 | e21 | 94<br>90 | 62 | 71 | 144<br>126 | 111<br>97 | 45<br>37 | 13<br>14 | | 17<br>18 | 179 | 78<br>75 | 56<br>58 | e24<br>e23 | e21<br>e70 | 88 | 54<br>54 | 63<br>59 | 634 | 86 | 31 | 14 | | 19 | 171 | 74 | 60 | e24 | e240 | 86 | 50 | 57 | 484 | 80 | 27 | 14 | | 20 | 165 | 72 | 61 | e26 | e200 | 86 | 55 | 54 | 321 | 73 | 23 | 18 | | 21 | 164 | 72 | 53 | e27 | e100 | 85 | 62 | 53 | 547 | 60 | 19 | 29 | | 22<br>23 | 155<br>141 | 69<br>66 | 42<br>e40 | e27<br>27 | e50<br>e37 | 81<br>79 | 60<br>54 | 51<br>59 | 430<br>2020 | 58<br>55 | 17<br>16 | 19<br>12 | | 24 | 135 | 67 | e39 | 27 | e35 | า๋ว์ | 54 | 69 | 2110 | 50 | 15 | 22 | | 25 | 128 | 82 | e38 | 27 | e33 | 63 | 57 | 57 | 1020 | 47 | 16 | 29 | | 26 | 127 | 55 | e38 | 27 | e33 | 61 | 53 | 52 | 767 | 42 | 17<br>15 | 25 | | 27<br>28 | 115<br>122 | 71<br>71 | e35<br>e36 | 26<br>26 | e33<br>e32 | 61<br>58 | 45<br>45 | 48<br>44 | 603<br>467 | 55<br>40 | 17 | 24<br>23 | | 29 | 115 | 69 | e39 | e24 | | 52 | 48 | 44 | 373 | 34 | 13 | 21 | | 30 | 107 | 60 | e41 | e20 | | 48 | 54 | 42 | 316 | 31 | 36 | 20 | | 31 | 107 | | e42 | e16 | | 47 | | 37 | | 40 | 16 | | | TOTAL | 5520 | 2417 | 1593 | 919 | 1191 | 4840 | 1430 | 1953 | 13593 | 5032 | 1077 | 731 | | MEAN<br>MAX | 178<br>267 | 80.6<br>105 | 51.4<br>68 | 29.6<br>44 | 42.5<br>240 | 156<br>980 | 47.7<br>76 | 63.0 | 453<br>2110 | 162<br>696 | 34.7<br>120 | 24.4<br>98 | | MIN | 107 | 55 | 3 <b>5</b> | 16 | 17 | 34 | 28 | 86<br>37 | 34 | 31 | 13 | 12 | | AC-FT | 10950 | 4790 | 3160 | 1820 | 2360 | 9600 | 2840 | 3870 | 26960 | 9980 | 2140 | 1450 | | CFSM | .87 | .39 | .25 | .15 | .21 | .77 | .23 | .31 | 2.22 | .80 | .17 | .12 | | IN. | 1.01 | .44 | .29 | .17 | .22 | .88 | .26 | .36 | 2.48 | .92 | . 20 | .13 | | STATIST | rics of MC | NTHLY MEA | N DATA FO | OR WATER | YEARS 1920 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 88.7 | 85.1 | 63.0 | 42.4 | 93.1 | 219 | 216 | 223 | 295 | 182 | 92.4 | .92.1 | | MAX<br>(WY) | 505<br>1974 | 491<br>1973 | 372<br>1983 | 275<br>1973 | 465<br>1973 | 777<br>1979 | 773<br>1991 | 817<br>1990 | 1107<br>1975 | 2128<br>1993 | 1177<br>1993 | 568<br>1926 | | MIN | .36 | .63 | .001 | .000 | .093 | 2.51 | 4.32 | 1.42 | 2.97 | 3.61 | .95 | .071 | | (WY) | 1989 | 1967 | 1977 | 1977 | 1977 | 1981 | 1977 | 1981 | 1977 | 1927 | 1989 | 1971 | | SUMMARY | Y STATISTI | cs | FOR 1 | 1993 CALEN | DAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | RS 1920 | - 1994 | | ANNUAL | | | | 193235 | | | 40296 | | | | | | | ANNUAL | | IC AN | | 529 | | | 110 | | | 142<br>528 | | 1993 | | | 'ANNUAL M<br>ANNUAL ME | | | | | | | | | 13.6 | | 1981 | | | DAILY ME | | | 12200 | Jul 9 | | 2110 | Jun 24 | | 12200 | Jul | 9 1993 | | LOWEST | DAILY MEA | LN . | • | 27 | Feb 23 | | 12 | Sep 23 | | .00 | Jul : | 31 1925 | | | SEVEN-DAY | | | 29 | Feb 20 | | 14 | Sep 13 | | .00<br>24300 | | 7 1971 | | | TANEOUS PE | | | | | | 2920<br>8.66 | Jun 24<br>Jun 24 | | 24300<br>18.54 | Jul<br>Jul | 9 1993<br>9 1993 | | ANNUAL | | C-FT) | | 383300 | | | 79930 | Jun 24 | | 102500 | 041 | > 1333 | | ANNUAL | | FSM) | | 2.60 | ) | | .54 | | | .69 | | | | ANNUAL | RUNOFF (I | NCHES) | | 35.24 | | | 7.35 | | | 9.43 | | | | | ENT EXCEE | | | 1200 | | | 223 | | | 350 | | | | | ENT EXCER | | | 268<br>41 | | | 56<br>20 | | | 46<br>1.5 | | | | 30 FERC | GACSE | | | 4T | | | 20 | | | 1.5 | | | e Estimated. ### SKUNK RIVER BASIN ### 05471000 SOUTH SKUNK RIVER BELOW SQUAW CREEK NEAR AMES, IA LOCATION.--Lat 42°00'31", long 93°35'57", in SE1/4 NW1/4 sec.13, T.83 N., R.24 W., Story County, Hydrologic Unit 07080105, on right bank 500 ft downstream from bridge on county highway, 0.2 mi downstream from Squaw Creek, 200 ft upstream from bridge on U.S. Highway 30, 2 mi southeast of Ames, and at mile 222.6 upstream from mouth of Skunk River. DRAINAGE AREA.--556 mi<sup>2</sup>. PERIOD OF RECORD.—October 1952 to September 1979, October 1991 to current year. Prior to October 1966, published as Skunk River below Squaw Creek near Ames. GAGE.--Water-stage encoder. Datum of gage is 857.10 ft above sea level. Prior to Oct. 1, 1973, at datum 10.00 ft higher. Prior to Oct. 1991, at site 500 ft upstream at same datum. REMARKS.--Estimated daily discharges: Oct. 10-17, 19-27, 31, Dec. 23 to Mar. 4, June 30, and July 2-4, 6, 7. Records fair except those for estimated daily discharges, which are poor. Low flows are affected by pumpage by City of Ames from surficial aquifer and do not represent the natural flow of the stream. Several observations of water temperature were made during the year. City of Ames gage height telemeter at station EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of May 19, 1944, reached a stage of 13 ft, from floodmarks, discharge, 10,000 ft<sup>3</sup>/s, datum then in use. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | DI | SCHARGE | , CUBIC I | EET PER | | MEAN V | | JBER 1993 | TO SEP | TEMBER 199 | <del>)</del> 4 | | |------------------|--------------|-----------------------|-------------|----------------------------------|-------------|--------------|---------------|------------------|--------------|----------------|----------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 710 | 253 | 198 | e110 | e50 | e145 | 165 | 138 | 111 | 610 | 162 | 42 | | 2 | 622 | 247 | 186 | e110 | e52 | e160 | 156 | 137 | 118 | e550 | 86 | 37 | | 3 | 585 | 246 | 177 | e105 | e53 | e200 | 149 | 135 | 109 | e440 | 122 | 38 | | 4 | 562 | 247 | 173 | e95 | e55 | e1400 | 144 | 134 | 109 | e720 | 181 | 197 | | 5 | 512 | 235 | 169 | e90 | e58 | 2500 | 148 | 136 | 132 | 954 | 106 | 195 | | 6<br>7 | 500<br>478 | 221<br>217 | 162<br>151 | e90<br>e88 | e56<br>e51 | 1530<br>1020 | 135<br>131 | 171<br>203 | 123<br>214 | e650<br>e520 | 76<br>62 | 142<br>111 | | 8 | 478 | 217 | 147 | e82 | e53 | 759 | 129 | 233 | 1750 | 1420 | 53 | 97 | | 9 | 700 | 210 | 147 | e81 | e50 | 609 | 127 | 241 | 751 | 927 | 42 | 84 | | 10 | e840 | 204 | 142 | e84 | e53 | 521 | 123 | 221 | 551 | 650 | 62 | 74 | | 11 | e760 | 203 | 107 | e70 | e56 | 458 | 114 | 202 | 447 | 524 | 47 | 66 | | 12 | e700 | 216 | 137 | e74 | e53 | 430 | 136 | 191 | 356 | 436 | 146 | 62 | | 13<br>14 | e650 | 228 | 161 | e68 | e55 | 395<br>379 | 138 | 179 | 891 | 440<br>433 | 327<br>260 | 60<br>58 | | 15 | e580<br>e560 | 215<br>212 | 156<br>158 | e62<br>e57 | e58<br>e56 | 360 | 143<br>212 | 177<br>186 | 1130<br>698 | 348 | 180 | 58<br>52 | | | | | | | | | | - | | | | | | 16 | e540 | 210 | 143 | e62 | e56 | 333 | 213 | 177 | 517 | 311 | 140 | 55 | | 17<br>18 | e510<br>480 | 209<br>207 | 160<br>173 | e58<br>e55 | e55<br>e150 | 305<br>288 | 205<br>199 | 166<br>157 | 421<br>711 | 289<br>257 | 114<br>101 | 57<br>56 | | 19 | e450 | 211 | 182 | e59 | e840 | 271 | 182 | 150 | 621 | 238 | 86 | 53 | | 20 | e430 | 199 | 181 | e62 | e720 | 260 | 172 | 140 | 561 | 219 | 69 | 56 | | 21 | e425 | 188 | 147 | e66 | e530 | 255 | 182 | 135 | 863 | 190 | 59 | 91 | | 22 | e405 | 175 | 155 | e67 | e370 | 245 | 167 | 128 | 659 | 179 | 52 | 420 | | 23 | e385 | 170 | e110 | e69 | e280 | 240 | 159 | 134 | 3410 | 162 | 49 | 348 | | 24 | e355 | 166 | e105 | e66 | e230 | 226 | 157 | 151 | 4170 | 145 | 48 | 275 | | 25 | e340 | 200 | e100 | e64 | e210 | 210 | 156 | 138 | 2320 | 131 | 44 | 296 | | 26 | e335 | 176 | e96 | e61 | e180 | 199 | 148 | 128 | 1620 | 112 | 53 | 311 | | 27 | e315 | 195 | e87 | e62 | e160 | 195 | 137 | 117 | 1300 | 133 | 52 | 307 | | 28<br>29 | 330<br>300 | 206 | e92<br>e100 | e61 | e150 | 185<br>178 | 129 | 110 | 1110<br>998 | 108<br>89 | 49<br>38 | 264<br>230 | | 30 | 280 | 201<br>196 | e100 | e58<br>e52 | | 170 | 131<br>137 | 108<br>111 | e820 | 79 | 104 | 214 | | 31 | e260 | | e120 | e47 | | 166 | | 107 | | 74 | 64 | 214 | | TOTAL | 15377 | 6280 | 4432 | 2235 | 4740 | 14592 | 4624 | 4841 | 27591 | 12338 | 3034 | 4348 | | MEAN | 496 | 209 | 143 | 72.1 | 169 | 471 | 154 | 156 | 920 | 398 | 97.9 | 145 | | MAX | 840 | 253 | 198 | 110 | 840 | 2500 | 213 | 241 | 4170 | 1420 | 327 | 420 | | MIN | 260 | 166 | 87 | 47 | 50 | 145 | 114 | 107 | 109 | 74 | 38 | 37 | | MED<br>AC-FT | 480<br>30500 | 209<br>12460 | 147<br>8790 | 66<br>4430 | 56<br>9400 | 271<br>28940 | 148<br>9170 | 140<br>9600 | 678<br>54730 | 311<br>24470 | 69<br>6020 | 87<br>8620 | | CFSM | .89 | .38 | .26 | .13 | .30 | .85 | .28 | .28 | 1.65 | .72 | .18 | .26 | | IN. | 1.03 | .42 | .30 | .15 | .32 | .98 | .31 | .32 | 1.85 | .83 | .20 | .29 | | STATIST | TICS OF M | ONTHLY MEA | N DATA F | OR WATER ! | YEARS 1953 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 181 | 179 | 122 | 86.1 | 162 | 571 | 537 | 486 | 730 | 532 | 326 | 190 | | MAX | 1079 | 1270 | 426 | 599 | 919 | 2026 | 2037 | 1421 | 2380 | 5220 | 3921 | 1157 | | (WY) | 1974 | 1973 | 1973 | 1973 | 1973 | 1979 | 1965 | 1974 | 1993 | 1993 | 1993 | 1993 | | MIN | .000 | .005 | .003 | -000 | .000 | 8.71 | 3.62 | 6.71 | .000 | .000 | .032 | .16 | | (WY) | 1957 | 1977 | 1977 | 1956 | 1956 | 1956 | 1956 | 1967 | 1977 | 1956 | 1956 | 1976 | | | STATIST: | ICS | FOR : | 1993 CALEN | IDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | RS 1953 | - 1994 | | ANNUAL<br>ANNUAL | | | | 5390 <b>9</b> 7<br>1 <b>4</b> 77 | | | 104432<br>286 | | | 342 | | | | | ANNUAL I | MEAN | | 4411 | | | 200 | | | 1475 | | 1993 | | | ANNUAL ME | | | | | | | | | 5.95 | | 1956 | | HIGHEST | DAILY ME | EAN | | 20500 | Jul 9 | | 4170 | Jun 24 | | 20500 | | 9 1993 | | | DAILY ME | | | 77 | Feb 23 | | 37 | Sep 2 | | .00 | | 17 1953 | | | | Y MINIMUM | | 82 | Feb 21 | | 48 | Aug 23 | | .00 | | 11 1954 | | | ANEOUS PE | EAK FLOW<br>EAK STAGE | | 25.53 | Jul 9a | | 5170<br>19 96 | Jun 24<br>Jun 24 | | 26500<br>25.57 | | 9 1993<br>27 1975 | | | ANEOUS LO | | | 23.53 | , our 9a | | 32 | Aug 29 | | .00 | | years | | ANNUAL | RUNOFF (7 | AC-FT) | : | 1069000 | | | 207100 | = | | 247800 | 1 | | | | RUNOFF ( | CFSM) | | 2.66 | 5 | | .51 | | | . 62 | | | | | RUNOFF () | | | 36.07 | ? | | 6.99 | | | 8.36 | | | | | ENT EXCES | | | 3270<br>856 | | | 621<br>169 | | | 824<br>105 | | | | | ENT EXCE | | | 118 | | | 56 | | | .80 | | | | | | <del>-</del> | | | | | | | | | | | e Estimated. a Revised ### 05471050 SOUTH SKUNK RIVER AT COLFAX, IA LOCATION.--Lat 41°40'55", long 93°14'47", in NE1/4 NE1/4 SW1/4 sec.1, T.79 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on left bank 15 ft downstream of bridge on State Highway 117 at north edge of Colfax, 1 mi downstream from Sugar Creek, 2.8 mi upstream from Indian Creek, and at mile 191 upstream from mouth of Skunk River. ### WATER-DISCHARGE RECORDS DRAINAGE AREA.--803 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1985 to current year. GAGE.--Water-stage encoder. Datum of gage is 770.00 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 27-30, Dec. 24 to Mar. 3, and Mar. 21. Records good except those for estimated daily discharges, which are poor. U.S. National Weather Service Limited Automatic Remote Collector at station. | | DI | SCHARGE | , CUBIC F | EET PER | | WATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEPT | TEMBER 19 | 94 | | |------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1260<br>1160<br>1080<br>1030<br>984 | 568<br>554<br>540<br>530<br>512 | 314<br>322<br>315<br>311<br>312 | e210<br>e200<br>e180<br>e160<br>e170 | e130<br>e140<br>e120<br>e130<br>e140 | e300<br>e350<br>e400<br>1170<br>2480 | 290<br>275<br>255<br>241<br>247 | 292<br>277<br>272<br>257<br>259 | 133<br>138<br>136<br>130<br>132 | 784<br>714<br>638<br>596<br>825 | 259<br>285<br>166<br>206<br>263 | 107<br>88<br>81<br>150<br>378 | | 6<br>7<br>8<br>9<br>10 | 939<br>912<br>884<br>1160<br>1260 | 486<br>468<br>464<br>450<br>437 | 306<br>299<br>288<br>310<br>323 | e160<br>e150<br>e160<br>e170<br>e180 | e150<br>e140<br>e125<br>e120<br>e110 | 1930<br>1380<br>1050<br>856<br>747 | 256<br>237<br>232<br>227<br>221 | 296<br>363<br>408<br>435<br>434 | 154<br>163<br>1290<br>1160<br>784 | 874<br>701<br>733<br>1200<br>878 | 180<br>145<br>129<br>117<br>115 | 292<br>203<br>156<br>141<br>121 | | 11<br>12<br>13<br>14<br>15 | 1200<br>1100<br>1020<br>967<br>1000 | 429<br>431<br>476<br>464<br>445 | 269<br>220<br>303<br>346<br>337 | e170<br>e150<br>e140<br>e130<br>e140 | e130<br>e150<br>e140<br>e130<br>e140 | 675<br>632<br>604<br>591<br>586 | 201<br>209<br>258<br>265<br>404 | 402<br>380<br>352<br>327<br>343 | 683<br>568<br>600<br>1160<br>1000 | 696<br>611<br>567<br>612<br>563 | 120<br>121<br>237<br>436<br>383 | 107<br>97<br>89<br>82<br>76 | | 16<br>17<br>18<br>19<br>20 | 1030<br>974<br>924<br>904<br>869 | 430<br>418<br>406<br>402<br>395 | 317<br>314<br>314<br>322<br>329 | e160<br>e130<br>e110<br>e120<br>e140 | e150<br>e180<br>e500<br>e1100<br>e1500 | 562<br>535<br>516<br>494<br>472 | 427<br>414<br>402<br>386<br>354 | 335<br>308<br>278<br>251<br>230 | 742<br>619<br>549<br>865<br>695 | 499<br>466<br>439<br>418<br>396 | 272<br>201<br>160<br>138<br>123 | 70<br>69<br>76<br>76<br>65 | | 21<br>22<br>23<br>24<br>25 | 837<br>796<br>735<br>707<br>675 | 386<br>377<br>370<br>362<br>366 | 316<br>259<br>229<br>e120<br>e110 | e160<br>e170<br>e190<br>e170<br>e160 | e800<br>e640<br>e450<br>e400<br>e340 | e460<br>457<br>452<br>435<br>410 | 375<br>374<br>335<br>321<br>311 | 218<br>201<br>208<br>221<br>240 | 720<br>847<br>1420<br>3610<br>2690 | 372<br>340<br>304<br>268<br>241 | 112<br>101<br>95<br>87<br>80 | 63<br>91<br>434<br>408<br>391 | | 26<br>27<br>28<br>29<br>30<br>31 | 657<br>638<br>650<br>637<br>603<br>577 | 357<br>e300<br>e250<br>e240<br>e280 | e105<br>e120<br>e110<br>e130<br>e160<br>e190 | e150<br>e140<br>e130<br>e120<br>e120<br>e110 | e280<br>e250<br>e270<br> | 395<br>384<br>367<br>338<br>308<br>295 | 297<br>268<br>244<br>235<br>245 | 218<br>187<br>167<br>157<br>152<br>144 | 1760<br>1360<br>1130<br>961<br>835 | 218<br>198<br>220<br>200<br>157<br>145 | 84<br>77<br>76<br>82<br>129<br>143 | 392<br>404<br>395<br>333<br>279 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM | 28169<br>909<br>1260<br>577<br>55870<br>1.13 | 12593<br>420<br>568<br>240<br>24980<br>.52 | 8020<br>259<br>346<br>105<br>15910 | 4750<br>153<br>210<br>110<br>9420 | 8855<br>316<br>1500<br>110<br>17560 | 20631<br>666<br>2480<br>295<br>40920<br>.83 | 8806<br>294<br>427<br>201<br>17470<br>.37 | 8612<br>278<br>435<br>144<br>17080 | 27034<br>901<br>3610<br>130<br>53620<br>1.12 | 15873<br>512<br>1200<br>145<br>31480<br>.64 | 5122<br>165<br>436<br>76<br>10160 | 5714<br>190<br>434<br>63<br>11330 | | IN. | 1.30 | .58 | .37 | .22 | .41 | .96 | .41<br>BY WATER | .40 | 1.25 | .74 | .24 | .26 | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 442<br>1807<br>1987<br>11.9<br>1989 | 310<br>715<br>1987<br>17.5<br>1989 | 324<br>626<br>1993<br>12.4<br>1989 | 204<br>451<br>1992<br>12.3<br>1989 | 295<br>731<br>1992<br>16.2<br>1990 | 957<br>2094<br>1993<br>168<br>1989 | 938<br>2435<br>1991<br>62.1<br>1989 | 1078<br>2481<br>1991<br>182<br>1989 | 1207<br>3139<br>1990<br>96.7<br>1988 | 1299<br>5640<br>1993<br>31.8<br>1988 | 771<br>3549<br>1993<br>12.6<br>1988 | 460<br>1911<br>1993<br>6.75<br>1988 | | | Y STATIST | IC <b>S</b> | FOR : | | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1986 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ME I DAILY ME DAILY ME DAILY ME DAILY ME TANEOUS PE FANEOUS PE FANEOUS LC RUNOFF (A | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS | 1 | 13100<br>105<br>122<br>1348000<br>2.3<br>31.5<br>4520<br>1250<br>260 | | | 3610<br>63<br>71<br>3860<br>14.46<br>61<br>305800<br>.53<br>7.14<br>907<br>311<br>120 | Jun 24<br>Sep 21<br>Sep 15<br>Jun 24<br>Jun 24<br>Sep 21 | | 693 1831 69.6 13100 1.4 3.2 14200 21.53 1.2 502100 .86 11.73 1750 310 24 | Aug :<br>Sep<br>Jul :<br>Jul : | 1993<br>12 1993<br>18 1988<br>8 1988<br>12 1993<br>12 1993<br>5, 19 1988 | e Estimated. ### SKUNK RIVER BASIN ### 05471050 SOUTH SKUNK RIVER AT COLFAX, IA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD .-- April 1988 to December 31, 1993 (discontinued). ### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1988 to December 31, 1993 (discontinued). WATER TEMPERATURES: October 1988 to December 31, 1993 (discontinued). SUSPENDED-SEDIMENT DISCHARGE: October 1988 to December 31, 1993 (discontinued). REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. Miscellaneous records of specific conductance, water temperature, and suspended-sediment discharge from May 13 to September 30, 1988 on file at the Iowa District Office. ### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 1,180 microsiemens Feb. 28, 1993; minimum daily, 146 microsiemens July 5, 1993. WATER TEMPERATURES: Maximum daily, 31.0°C July 7, 1989; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,660 mg/L Aug. 29, 1993; minimum daily mean, 1 mg/L Oct 6, 7, 1991. SEDIMENT LOADS: Maximum daily, 59,900 tons July 11, 1993; minimum daily, 0.05 ton Jan. 7, 8, 1989. ### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 717 microsiemens Oct. 12; minimum daily, 442 microsiemens Oct. 20. WATER TEMPERATURES: Maximum daily, 17.0°C, Oct. 8; minimum daily, 1.0°C, nov. 27, 29, Dec. 21, 22, 29, 30. SEDIMENT CONCENTRATIONS: Maximum daily mean, 191 mg/L Nov. 25; minimum daily mean, 39 mg/L Nov. 23. SEDIMENT LOADS: Maximum daily, 356 tons Oct. 10; minimum daily, 18 tons Dec. 25. ### SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 1 | | 464 | | | | | | | | | | | | 2 | 589 | 500 | | | | | | | | | | | | 3 | 648 | 456 | | | | | | | | | | | | 4 | 678 | 455 | | | | | | | | | | | | 5 | 687 | 541 | | | | | | | | | | | | 6 | 649 | 437 | | | | | | | | | | | | 7 | | 563 | | | | | | | | | | | | 8 | 644 | 458 | | | | | | | | | | | | 9 | 643 | 483 | | | | | | | | | | | | 10 | 575 | | | | | | | | | | | | | 11 | 656 | 477 | | | | | | | | | | | | 12 | 717 | | 534 | | | | | | | | | | | 13 | 551 | 452 | 525 | | | | | | | | | | | 14 | 620 | 496 | 5 9 5 | | | | | | | | | | | 15 | 468 | 463 | 460 | | | | | | | | | | | 16 | 498 | | 531 | | | | | | | | | | | 17 | 444 | 444 | 569 | | | | | | | | | | | 18 | 534 | 457 | | | | | | | | | | | | 19 | | 459 | | | | | | | | | | | | 20 | 442 | 457 | 527 | | | | | | | | | | | 21 | | 461 | 517 | | | | | | | | | | | 22 | 450 | 453 | 539 | | | | | | | | | | | 23 | 450 | 455 | | | | | | | | | | | | 24 | 451 | 453 | | | | | | | | | | | | 25 | 473 | 515 | | | | | | | | | | | | 26 | 467 | | | | | | | | | | | | | 27 | 498 | 459 | | | | | | | | | | | | 28 | 476 | | | | | | | | | | | | | 29 | 463 | 471 | 578 | | | | | | | | | | | 30 | 487 | 475 | 542 | | | | | | | | | | | 31 | 476 | | | | | | | | | | | | ### 05471050 SOUTH SKUNK RIVER AT COLFAX, IA--Continued ### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO DECEMBER 1993 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |-------------|--------------------------------------|------------------------|--------------------------------------|------------------------|--------------------------------------|------------------------|--------------------------------------|------------------------|--------------------------------------|------------------------|--------------------------------------|------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU. | ARY | MARCI | Н | | 1 | 67 | 230 | 113 | 174 | 121 | 102 | | | | | | | | 2<br>3<br>4 | 49 | 155 | 93 | 138 | 108 | 94 | | | | | | | | 3 | 42 | 121 | 84 | 122 | 106 | 90 | | | | | | | | 4 | 45 | 124 | 89 | 127 | 96 | 81 | | | | | | | | 5 | 43 | 113 | 103 | 143 | 98 | 82 | | | | | | | | 6 | 51 | 130 | 139 | 182 | 86 | 71 | | | | | | | | 7 | 51 | 126 | 127 | 161 | 85 | 69 | | | | | | | | 8 | 51 | 122 | 125 | 157 | 84 | 65 | | | | | | | | 9 | 98 | 314 | 107 | 130 | 86 | 72 | | | | | | | | 10 | 104 | 356 | 102 | 120 | 88 | <b>7</b> 7 | | | | | | | | 11 | 104 | 339 | 96 | 111 | 79 | 58 | | | | | | | | 12 | 68 | 202 | 73 | 84 | 72 | 43 | | | | | | | | 13 | 72 | 200 | 85 | 110 | 86 | 70 | | | | | | | | 14 | 67 | 174 | 137 | 172 | 80 | 75 | | | | | | | | 15 | 79 | 213 | 133 | 160 | 100 | 92 | | | | | | | | 16 | 107 | 299 | 118 | 138 | 76 | 65 | | | | | | | | 17 | 131 | 345 | 107 | 120 | 70 | 60 | | | | | | | | 18 | 127 | 316 | 153 | 168 | 78 | 66 | | | | | | | | 19 | 115 | 281 | 106 | 115 | 102 | 89 | | | | | | | | 20 | 107 | 252 | 85 | 91 | 135 | 120 | | | | | | | | 21 | 130 | 293 | 97 | 102 | 104 | 88 | | | | | | | | 22 | 139 | 299 | 50 | 51 | 130 | 91 | | | | | | | | 23 | 127 | 251 | 39 | 39 | 82 | 51 | | | | | | | | 24 | 158 | 302 | 96 | 94 | 62 | 20 | | | | | | | | 25 | 150 | 273 | 191 | 188 | 61 | 18 | | | | | | | | 26 | 155 | 275 | 184 | 178 | 80 | 23 | | | | | | | | 27 | 148 | 255 | 169 | 137 | 87 | 28 | | | | | | | | 28 | 157 | 275 | 125 | 84 | 85 | 25 | | | | | | | | 29<br>30 | 169 | 290 | 120 | 78 | 78 | 27 | | | | | | | | 30 | 169 | 275 | 137 | 104 | 97 | 42 | | | | | | | | 31 | 145 | 226 | | | 97 | 50 | | | | | | | | TOTAL | | 7426 | | 3778 | | 2004 | | | | | | | ### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|-------------|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----| | 1 | | 2.0 | | | | | | | | | | | | 2 | 12.0 | 9.0 | | | | | | | | | | | | 3 | 12.0 | 8.0 | | | | | | | | | | | | 4 | 13.0 | 10.0 | | | | | | | | | | | | 5 | 12.0 | 10.0 | | | | | | | | | | | | - | | | | | | | | | | | | | | 6 | 14.0 | 8.0 | | | | | | | | | | | | 7 | | 8.0 | | | | | | | | | | | | 8 | 17.0 | 3.0 | | | | | | | | | | | | 9 | 13.0 | 6.0 | | | | | | | | | | | | 10 | 10.0 | | | | | | | | | | | | | | | | | | | | | | | | | | | 11 | 10.0 | 6.0 | | <u> </u> | | | | | | | | | | 12 | 10.0 | | 2.0 | | | | | | | | | | | 13 | 9.0 | 8.0 | 4.0 | | | | | | | | | | | 14 | 12.0 | 7.0 | 4.0 | | | | | | | | | | | 15 | 13.0 | 5.0 | 4.0 | | | | | | | | | | | | | | | | | | | | | | | | | 16 | 15.0 | | 3.0 | | | | | | | | | | | 17 | 15.0 | 6.0 | 4.0 | | | | | | | | | | | 18 | 12.0 | 6.0 | | | | | | | | | | | | 19 | | 6 <b>.0</b> | | | | | | | | | | | | 20 | 12.0 | 6.0 | 2.0 | | | | | | | | | | | | | | | | | | | | | | | | | 21 | | 6.0 | 1.0 | | | | | | | | | | | 22 | 10.0 | 7.0 | 1.0 | | | | | | | | | | | 23 | 10.0 | 6.0 | | | | | | | | | | | | 24 | 11.0 | 6.0 | | | | | | | | | | | | 25 | 12.0 | 4.0 | | | | | | | | | | | | | | | | | | | | | | | | | | 26 | 11.0 | | | | | | | | | | | | | 27 | 9.0 | 1.0 | | | | | | | | | | | | 28 | 9.0 | | | | | | | | | | | | | 29 | 6.0 | 1.0 | 1.0 | | | | | | | | | | | 30 | 4.0 | 2.0 | 1.0 | | | | | | | | | | | 31 | 3.0 | | | | | | | | | | | | ### SKUNK RIVER BASIN ### 05471200 INDIAN CREEK NEAR MINGO, IA LOCATION.--Lat 41°48'17", long 93°18'36", in NW1/4 NW1/4 sec. 28, T.81 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on right bank 30 ft downstream from bridge on State Highway 117, 0.7 mi downstream from Wolf Creek, 2.2 mi upstream from Byers Branch, 2.9 mi northwest of Mingo, and 11.3 mi upstream from South Skunk River. DRAINAGE AREA.--276 mi<sup>2</sup>. PERIOD OF RECORD.--May 1958 to September 1975; October 1985 to current year. REVISED RECORDS .-- WSP 1728: 1958 (M), 1959 (M). GAGE.--Water-stage encoder. Datum of gage is 810.47 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 27-29 and Dec. 21 to Mar. 4. Records good except those for Mar. 18-29 and daily discharges less than 700 ft<sup>3</sup>/s for June 25 to Aug. 28 which are fair and estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 20, 1944, reached a stage of 21.4 ft, from information by local resident, discharge not determined. | | DIS | SCHARGE, | CUBIC F | EET PER | SECOND, V<br>DAILY | WATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEP | TEMBER 199 | 94 | | |------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 538<br>468<br>427<br>400<br>362 | 216<br>211<br>205<br>204<br>192 | 140<br>138<br>132<br>130<br>129 | e120<br>e100<br>e92<br>e87<br>e92 | e56<br>e66<br>e62<br>e64<br>e72 | e95<br>e100<br>e130<br>e600<br>787 | 86<br>87<br>83<br>79<br>79 | 89<br>87<br>86<br>87<br>95 | 72<br>75<br>73<br>67<br>68 | 284<br>262<br>227<br>231<br>269 | 266<br>133<br>61<br>67<br>82 | 41<br>28<br>23<br>45<br>164 | | 6<br>7<br>8<br>9<br>10 | 345<br>329<br>326<br>723<br>672 | 180<br>177<br>174<br>166<br>162 | 127<br>120<br>124<br>124<br>120 | e95<br>e88<br>e80<br>e86<br>e96 | e76<br>e62<br>e56<br>e53<br>e49 | 699<br>456<br>337<br>262<br>219 | 76<br>74<br>74<br>75<br>74 | 121<br>148<br>164<br>167<br>157 | 73<br>81<br>1440<br>817<br>515 | 228<br>200<br>180<br>165<br>152 | 52<br>42<br>37<br>33<br>33 | 115<br>79<br>63<br>53<br>44 | | 11<br>12<br>13<br>14<br>15 | 548<br>485<br>438<br>406<br>430 | 162<br>166<br>192<br>181<br>178 | 104<br>125<br>136<br>130<br>123 | e100<br>e100<br>e90<br>e70<br>e58 | e53<br>e50<br>e48<br>e50<br>e49 | 191<br>182<br>174<br>171<br>169 | 70<br>76<br>83<br>78<br>103 | 146<br>139<br>130<br>130<br>128 | 396<br>321<br>795<br>869<br>529 | 141<br>131<br>124<br>128<br>158 | 33<br>35<br>121<br>109<br>79 | 38<br>33<br>30<br>27<br>25 | | 16<br>17<br>18<br>19<br>20 | 456<br>426<br>395<br>382<br>365 | 178<br>177<br>175<br>174<br>165 | 122<br>129<br>134<br>135<br>138 | e68<br>e62<br>e52<br>e60<br>e66 | e49<br>e80<br>e340<br>e900<br>e660 | 156<br>147<br>143<br>135<br>133 | 112<br>103<br>99<br>96<br>90 | 114<br>107<br>102<br>98<br>96 | 380<br>300<br>249<br>224<br>250 | 126<br>113<br>104<br>97<br>93 | 61<br>51<br>43<br>37<br>31 | 23<br>22<br>21<br>19<br>18 | | 21<br>22<br>23<br>24<br>25 | 344<br>319<br>306<br>297<br>281 | 161<br>158<br>153<br>151<br>154 | e120<br>e86<br>e62<br>e52<br>e50 | e74<br>e110<br>e140<br>e120<br>e99 | e430<br>e300<br>e190<br>e150<br>e115 | 132<br>126<br>126<br>121<br>113 | 100<br>95<br>93<br>92<br>92 | 92<br>89<br>87<br>104<br>112 | 324<br>287<br>1040<br>1640<br>927 | 88<br>83<br>79<br>74<br>71 | 27<br>24<br>22<br>20<br>19 | 18<br>335<br>844<br>404<br>476 | | 26<br>27<br>28<br>29<br>30<br>31 | 266<br>264<br>264<br>248<br>231<br>223 | 145<br>e142<br>e135<br>e130<br>140 | e50<br>e48<br>e45<br>e50<br>e90<br>e140 | e91<br>e87<br>e80<br>e68<br>e57<br>e52 | e90<br>e95<br>e87<br> | 112<br>111<br>104<br>97<br>91<br>87 | 89<br>80<br>77<br>77<br>80 | 100<br>90<br>85<br>81<br>81<br>76 | 700<br>545<br>444<br>364<br>307 | 67<br>68<br>69<br>65<br>61<br>57 | 20<br>18<br>17<br>17<br>22<br>47 | 559<br>435<br>338<br>272<br>230 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 11964<br>386<br>723<br>223<br>23730<br>1.40<br>1.61 | 5104<br>170<br>216<br>130<br>10120<br>.62<br>.69 | 3353<br>108<br>140<br>45<br>6650<br>.39 | 2640<br>85.2<br>140<br>52<br>5240<br>.31 | 4352<br>155<br>900<br>48<br>8630<br>.56<br>.59 | 6506<br>210<br>787<br>87<br>12900<br>.76 | 2572<br>85.7<br>112<br>70<br>5100<br>.31<br>.35 | 3388<br>109<br>167<br>76<br>6720<br>.40 | 14172<br>472<br>1640<br>67<br>28110<br>1.71<br>1.91 | 4195<br>135<br>284<br>57<br>8320<br>.49<br>.57 | 1659<br>53.5<br>266<br>17<br>3290<br>.19 | 4822<br>161<br>844<br>18<br>9560<br>•58<br>•65 | | STATIS | TICS OF MO | ONTHLY MEA | N DATA F | OR WATER | EARS 1959 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 122<br>689<br>1987<br>1.11<br>1972 | 102<br>549<br>1973<br>4.12<br>1968 | 83.0<br>319<br>1973<br>2.05<br>1990 | 64.6<br>289<br>1973<br>1.87<br>1968 | 121<br>619<br>1971<br>2.25<br>1967 | 333<br>816<br>1993<br>10.9<br>1968 | 285<br>834<br>1965<br>8.07<br>1989 | 374<br>936<br>1974<br>5.58<br>1967 | 476<br>1487<br>1991<br>10.9<br>1989 | 342<br>2809<br>1993<br>3.49<br>1988 | 181<br>1500<br>1993<br>1.44<br>1988 | 101<br>678<br>1993<br>.91<br>1988 | | SUMMAR | Y STATIST | cs | FOR : | 1993 CALEN | IDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | RS 1959 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ME I DAILY ME DAILY ME SEVEN-DAY IANEOUS PE FANEOUS PE FANEOUS LO RUNOFF (A | EAN IAN IN IN IMINIMUM EAK FLOW IAK STAGE IOW FLOW IC-FT) IFSM INCHES IDS | | 283034<br>775<br>12000<br>45<br>51<br>561400<br>2.81<br>38.15<br>1650<br>437<br>86 | | | 164727<br>177<br>1640<br>17<br>19<br>1960<br>10.41<br>15<br>128400<br>.64<br>8.72<br>402<br>112<br>46 | Jun 24<br>Aug 28<br>Aug 23<br>Jun 8<br>Feb 18<br>Aug 30 | | 216<br>751<br>11.9<br>12000<br>.01<br>.15<br>23500<br>19.16<br>.00<br>156300<br>.78<br>10.62<br>509<br>74<br>4.4 | Aug 1<br>Aug 1<br>Jun<br>Jun | | e Estimated. 119 ### 05471500 SOUTH SKUNK RIVER NEAR OSKALOOSA, IA LOCATION.--Lat 41 21'19", long 92 39'31", in NW1/4 SW1/4 sec.25, T.76 N., R.16 W., Mahaska County, Hydrologic Unit 07080105, on right bank 400 ft upstream from bridge on U.S. Highway 63, 0.3 mi downstream from Painter Creek, 4.0 mi north of Oskaloosa, 52.0 mi upstream from confluence with North Skunk River, and at mile 147.3 upstream from mouth of Skunk River. DRAINAGE AREA .-- 1,635 mi<sup>2</sup>. PERIOD OF RECORD.—October 1945 to current year. Prior to October 1966, published as Skunk River near Oskaloosa. Prior to October 1948, monthly discharge only, published in WSP 1308. REVISED RECORDS.--WSP 1438: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 685.50 ft above sea level. Prior to Nov. 21, 1947, nonrecording gage at site 400 ft downstream at same datum. REMARKS.--Estimated daily discharges: Nov. 28-30, Dec. 22 to Feb. 21, Feb. 23 to Mar. 2, June 17, July 2-7, 9-27, Aug. 20-22, and Sept. 2-5. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1944 reached a stage of 25.8 ft, from floodmarks, discharge, 37,000 ft<sup>3</sup>/s, from rating curve extended above 18,000 ft<sup>3</sup>/s on basis of velocity-area study. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | 22 | | , 00010 | . DD. I DK | | MEAN V | ALUES | | | | | | |--------------|--------------------------------|--------------|------------------------------|----------------------|------------------|---------------|------------------------|---------------------|---------------|----------------|--------------|-----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3490 | 1170 | 765 | e450 | e290 | e1600 | 614 | 558 | 393 | 1320 | 254 | 197 | | 2<br>3 | 2960<br>2600 | 1140<br>1120 | 719<br>715 | e420<br>e380 | e320<br>e290 | e2000<br>2480 | 601<br>581 | 573<br>546 | 424<br>416 | e1200<br>e1000 | 321<br>465 | e180<br>e160 | | 4 | 2380 | 1090 | 708 | e330 | e320 | 3710 | 582 | 533 | 394 | e1200 | 383 | e190 | | 5 | 2210 | 1070 | 704 | e355 | e340 | 5450 | 560 | 530 | 383 | e1400 | 320 | e300 | | 6 | 2050 | 1030 | 736 | e330 | e370 | 5140 | 532 | 541 | 405 | e1200 | <b>3</b> 53 | 483 | | 7<br>8 | 19 <b>3</b> 0<br>18 <b>4</b> 0 | 980<br>962 | 691<br>652 | e310<br>e330 | e330<br>e305 | 3530<br>2580 | 519<br>507 | 613<br>66 <b>3</b> | 434<br>3000 | e1490<br>1750 | 307<br>259 | 414<br>323 | | 9 | 1940 | 944 | 639 | e355 | e280 | 2050 | 504 | 707 | 3490 | e2000 | 237 | 273 | | 10 | 2500 | 925 | 644 | e370 | e270 | 1720 | 498 | 736 | 2270 | e2300 | 220 | 238 | | 11 | 2530 | 910 | 622 | e350 | e320 | 1480 | 483 | 726 | 1770 | e1900 | 213 | 212 | | 12 | 2330 | 904 | 572 | e325 | e370 | 1370 | 484 | 687 | 1490 | e1500 | 211<br>226 | 193<br>175 | | 13<br>14 | 2140<br>2010 | 966<br>1000 | 597<br>688 | e300<br>e280 | e350<br>e460 | 1280<br>1220 | 513<br>515 | 652<br>632 | 1420<br>1790 | e1350<br>e1270 | 280 | 162 | | 15 | 1930 | 976 | 710 | e300 | e540 | 1180 | 554 | 636 | 2300 | e1220 | 458 | 148 | | 16 | 2050 | 968 | 666 | e330 | e660 | 1130 | 787 | 615 | 1760 | e1100 | 425 | 138 | | 17 | 2030 | 937 | 641 | e290 | e960 | 1060 | 734 | 590 | e1400 | e950 | <b>3</b> 51 | 125 | | 18 | 1900 | 896 | 648 | e250 | e1400 | 1010 | 693 | 560 | 1240 | e870 | 292<br>250 | 117<br>114 | | 19<br>20 | 1840<br>1780 | 885<br>863 | 657<br>657 | e210<br>e240 | e2400<br>e5600 | 958<br>917 | 663<br>631 | 5 <b>3</b> 3<br>512 | 1110<br>1420 | e810<br>e760 | e220 | 110 | | 21 | 1700 | 853 | 650 | e300 | e4500 | 902 | 658 | 490 | 1610 | e700 | e195 | 108 | | 22 | 1640 | 831 | e560 | e370 | 3350 | 884 | 670 | 474 | 1390 | e660 | e185 | 130 | | 23 | 1570 | 816 | e400 | e410 | e2200 | 862 | 635 | 460 | 1700 | e600 | 173 | 172 | | 24 | 1530 | 807 | e260 | e430 | e1800 | 845 | 608 | 478 | 3520 | e540 | 165 | 924 | | 25 | 1500 | 811 | e230 | e400 | e1500 | 799 | 612 | 480 | 4970 | e470 | 165 | 702 | | 26 | 1450 | 804 | e220 | e370 | e1300 | 771 | 590 | 506 | 3380 | e420 | 170 | 813 | | 27<br>28 | 1400<br>1350 | 731<br>e620 | e250<br>e235 | e340<br>e320 | e1200<br>e1350 | 770<br>746 | 559<br>5 <b>3</b> 5 | 480<br>449 | 2570<br>2080 | e360<br>312 | 168<br>152 | 828<br>742 | | 29 | 1310 | e600 | e233 | e320 | 61320 | 721 | 525 | 428 | 1740 | 304 | 139 | 635 | | 30 | 1270 | e680 | e330 | e280 | | 684 | 519 | 413 | 1480 | 303 | 140 | 526 | | 31 | 1210 | | e400 | e260 | | 644 | | 402 | | 271 | 204 | | | TOTAL | 60370 | 27289 | 17236 | 10285 | 33375 | 50493 | 17466 | 17203 | 51749 | 31530 | 7901 | 9832 | | MEAN | 1947 | 910 | 556 | 332 | 1192 | 1629 | 582 | 555 | 1725 | 1017 | 255 | 328 | | MAX | 3490 | 1170 | 765 | 450 | 5600 | 5450 | 787 | 736 | 4970 | 2300 | 465 | 924 | | MIN<br>AC-FT | 1210<br>119700 | 600<br>54130 | 220<br>34190 | 210<br>20400 | 270<br>66200 | 644<br>100200 | 483<br>34640 | 402<br>34120 | 383<br>102600 | 271<br>62540 | 139<br>15670 | 108<br>19500 | | CFSM | 1.19 | .56 | .34 | .20 | .73 | 1.00 | .36 | .34 | 1.06 | .62 | .16 | .20 | | IN. | 1.37 | .62 | .39 | .23 | .76 | 1.15 | .40 | .39 | 1.18 | .72 | .18 | .22 | | STATIS | TICS OF M | ONTHLY ME | AN DATA I | FOR WATER | YEARS 1946 | 5 - 1994 | , BY WATER | YEAR (WY | ) | | | | | MEAN | 524 | 559 | 468 | 479 | 824 | 1660 | 1631 | 1614 | 2036 | 1427 | 688 | 507 | | MAX | 3646 | 3576 | 2322 | 3906 | 3587 | 4841 | 5 <b>366</b> | 6168 | 9222 | 11770 | 7772 | 5140 | | (WY) | 1987 | 1984 | 1983 | 1973 | 1973 - | | 1983 | 1974 | 1947 | 1993 | 1993 | 1993 | | MIN<br>(WY) | 8.47<br>1957 | 14.5<br>1957 | 2322<br>1983<br>7.55<br>1956 | 5.30<br>1956 | 42.9<br>1954 | 45.9<br>1954 | 42.1<br>1956 | 74.2<br>1956 | 39.4<br>1977 | 27.3<br>1977 | 43.3<br>1988 | 27.8<br>1956 | | | | | | | | | | | | | | | | | Y STATIST:<br>TOTAL | ics | FOR | 1993 CALE<br>1431585 | NDAR YEAR | 1 | FOR 1994 W.<br>334729 | ATER YEAR | | WATER YE | AKS 1946 | - 1994 | | ANNUAL | | | | 3922 | | | 917 | | | 1035 | | | | | T ANNUAL ! | | | | | | | | | 3884 | | 1993 | | | 'ANNUAL ME | | | 20.400 | To 1 15 | | E 6 0 0 | Ech 20 | | 40.1<br>20400 | Tu l | 1956<br>15 1993 | | | T DAILY ME | | | 20400<br>220 | Jul 15<br>Dec 26 | | 5600<br>108 | Feb 20<br>Sep 21 | | 1.8 | Oct | 11 1956 | | | SEVEN-DAY | | | 256 | Dec 24 | | 120 | Sep 16 | | 2.0 | Oct | 7 1956 | | INSTAN | TANEOUS PE | EAK FLOW | | | | | | Mar 6<br>3 Mar 6 | | 20700 | Jul | 15 1993 | | | TANEOUS PE | | | | | | | 3 Mar 6 | | 24.78 | Jul | 15 1993 | | | TANEOUS LO<br>RUNOFF (A | AC-FT) | | 2840000 | | | 102<br>66 <b>3</b> 900 | Sep 21 | | 749700 | | | | ANNUAL | RUNOFF ( | CF SM) | | 2.4 | 0 | | .5 | 6 | | .63 | | | | | RUNOFF ( | | | 32.5 | | | 7.6 | 2 | | 8.60 | | | | | CENT EXCE | | | 9340 | | | 2000 | | | 2570 | | | | | CENT EXCES | | | 2610<br>649 | | | 639<br>233 | | | 446<br>52 | | | | AO EEK | CHAI DACEE | د رود | | 049 | | | 233 | | | | | | e Estimated. ### SKUNK RIVER BASIN ### 05472500 NORTH SKUNK RIVER NEAR SIGOURNEY, IA LOCATION.--Lat 41°18'03", long 92°12'16", in NE1/4 SE1/4 sec.14, T.75 N., R.12 W., Keokuk County, Hydrologic Unit 07080106, on right bank 10 ft downstream from bridge on State Highway 149, 1.2 mi downstream from Cedar Creek, 2.2 mi south of Sigourney, 4.0 mi upstream from Bridge Creek, and 16.2 mi upstream from confluence with South Skunk River. DRAINAGE AREA.--730 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1945 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946-47 (M). GAGE. -- Water-stage encoder. Datum of gage is 651.53 ft above sea level. Prior to June 10, 1953, nonrecording gage at same site and datum. REMARKS.—Estimated daily discharges: Nov. 28-30 and Dec. 22 to Mar. 2. Records good except those estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1944 reached a stage of 22.8 ft, from floodmark, discharge, 14,500 ft<sup>3</sup>/s. | | <b>D</b> 1 | | 2, 00010 | LELLIC | DAILY | MEAN V | ALUES | DLK 1773 | 10 521 | I IIIVIII III | | | |------------------|-----------------------|-----------------|----------------------|--------------|--------------|--------------------|---------------------|--------------------|--------------|--------------------|------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1880 | 410 | 302 | e170 | e120 | e390 | 210 | 168 | 109 | 220 | 73 | 51 | | 2 | 1460 | 403 | 298 | e150 | e125 | e450 | 213 | 176 | 121 | 211 | 70<br>74 | 55 | | 3<br>4 | 1250<br>1150 | 403<br>399 | 288<br>278 | e130<br>e115 | e120<br>e130 | 491<br>1220 | 204<br>191 | 186<br>166 | 129<br>139 | 217<br>221 | 109 | 56<br>73 | | 5 | 1050 | 391 | 279 | e130 | e145 | 3060 | 187 | 158 | 134 | 194 | 137 | 155 | | 6 | 962 | 372 | 266 | e120 | e130 | 3250 | 183 | 156 | 121 | 183 | 101 | 231 | | 7 | 903 | 351 | 256 | e110 | e120 | 2940 | 173 | 173 | 121 | 192 | 81 | 163 | | 8<br>9 | 861 | 343<br>344 | 242<br>235 | e120<br>e135 | e115<br>e110 | 1250 | 166<br>165 | 215<br>217 | 721<br>1740 | 352<br>513 | 68<br>63 | 103<br>77 | | 10 | 862<br>995 | 337 | 245 | e140 | e110 | 851<br>672 | 167 | 200 | 884 | 320 | 61 | 66 | | 11 | 966 | 332 | 238 | e135 | e120 | 564 | 162 | 183 | 960 | 209 | 58 | 60 | | 12 | 834 | 337 | 221 | e125 | e145 | 500 | 162 | 170 | 566 | 175 | 58 | 56 | | 13 | 778 | 382 | 187 | e115 | e140 | 469 | 170 | 161 | 440 | 190 | 59 | 52 | | 14<br>15 | 729<br>699 | 406<br>391 | 253<br>272 | e100<br>e110 | e180<br>e240 | 44 <b>2</b><br>424 | 188<br>191 | 156<br>162 | 596<br>645 | 168<br>160 | 62<br>73 | 51<br>50 | | | | | | | | | | | | | | | | 16<br>17 | 709<br>7 <b>4</b> 6 | 354<br>340 | 256<br>246 | e120 | e350<br>e680 | 401<br>373 | 173<br>374 | 164<br>162 | 433<br>338 | 2 <b>44</b><br>277 | 72<br>59 | 50<br>50 | | 18 | 694 | 327 | 238 | e110<br>e94 | e1000 | 373 | 277 | 146 | 286 | 184 | 53 | 47 | | 19 | 650 | 321 | 245 | e82 | e1800 | 339 | 236 | 135 | 251 | 150 | 51 | 45 | | 20 | 633 | 313 | 246 | e88 | e2700 | 326 | 213 | 127 | 277 | 145 | 49 | 43 | | 21 | 612 | 302 | 234 | e105 | e2500 | 332 | 203 | 123 | 956 | 153 | 47 | 42 | | 22 | 595 | 292 | e150 | e130 | e5000 | 338 | 204 | 121 | 437 | 148 | 45 | 45 | | 23 | 562 | 287 | e100 | e160 | e2000 | 336 | 215 | 119 | 744 | 126 | 43 | 49 | | 24 | 543 | 284 | e90 | e190 | e640 | 312 | 231 | 125 | 1060 | 109 | 43 | 46<br>75 | | 25 | 528 | 291 | e86 | e230 | e500 | 289 | 185 | 135 | 795 | 99 | 58 | | | 26 | 512 | 301 | e86 | e210 | e420 | 266 | 185 | 136 | 522 | 92<br>87 | 91 | 86 | | 27<br>28 | 490<br>472 | 303<br>e220 | e94<br>e90 | e195<br>e170 | e350<br>e380 | 265<br>25 <b>8</b> | 171<br>181 | 136<br>12 <b>8</b> | 388<br>323 | 82 | 125<br>82 | 103<br>171 | | 29 | 463 | e210 | e100 | e160 | | 243 | 209 | 119 | 275 | 80 | 62 | 121 | | 30 | 443 | e240 | e130 | e135 | | 225 | 172 | 114 | 240 | 78 | 59 | 92 | | 31 | 419 | | e150 | e110 | | 213 | | 111 | | 76 | 53 | | | TOTAL | 24450 | 9986 | 6401 | 4194 | 20365 | 21840 | 5961 | 4748 | 14751 | 5655 | 2139 | 2364 | | MEAN | 789 | 333 | 206 | 135 | 727 | 705 | 199 | 153 | 492 | 182 | 69.0 | 78.8 | | MAX | 1880 | 410 | 302 | 230 | 5000 | 3250 | 374 | 217 | 1740 | 513 | 137 | 231 | | MIN<br>AC-FT | 419<br>48500 | 210<br>19810 | 86<br>12700 | 82<br>8320 | 105<br>40390 | 213<br>43320 | 374<br>162<br>11820 | 111<br>9420 | 109<br>29260 | 76<br>11220 | 43<br>4240 | 42<br>4690 | | CFSM | 1.08 | .46 | .28 | .19 | 1.00 | .97 | .27 | .21 | .67 | .25 | .09 | .11 | | IN. | 1.25 | .51 | .33 | .21 | 1.04 | 1.11 | .30 | .24 | .75 | .29 | .11 | .12 | | STATIST | TICS OF M | ONTHLY ME | AN DATA I | FOR WATER | YEARS 1946 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 222 | 200 | 242 | 225 | 416 | 000 | 782 | 738 | 749 | 570 | 309 | 211 | | MEAN<br>MAX | 221<br>1603 | 300<br>1889 | 242<br>1208 | 275<br>1767 | 416<br>1311 | 883<br>2996 | 2826 | 4170 | 4145 | 5098 | 3668 | 311<br>2708 | | (WY) | 1987 | 1962 | 1983 | 1946 | 1973 | 1979 | 1993 | 1974 | 1947 | 1993 | 1993 | 1993 | | MIN | .13 | 3.38 | 2.58 | 2.26 | 12.8 | 17.0 | 11.2 | 14.4 | 20.1 | 11.2 | 7.90 | 4.35 | | (WY) | 1957 | 1957 | 1983<br>2.58<br>1956 | 1954 | 1954 | 1954 | 1956 | 1956 | 1977 | 1977 | 1955 | 1956 | | SUMMARY | Y STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | RS 1946 | - 1994 | | ANNUAL | | | | 704170 | | | 122854 | | | | • | | | ANNUAL | | | | 1929 | | | 337 | | | 483 | | | | | ANNUAL I | | | | | | | | | 2041 | | 1993 | | | ANNUAL MI<br>DAILY MI | | | 15500 | Jul 6 | | 5000 | Feb 22 | | 27.7<br>23200 | Mar 2 | 1956<br>1 1960 | | | DAILY ME | | | | Dec 25 | | 42 | Sep 21 | | .10 | | 7 1956 | | ANNUAL | SEVEN-DAY | MINIMUM | | 86<br>92 | Dec 23 | | 45 | Sep 18 | | .10 | 0ct | 7 1956 | | | TANEOUS PI | | | | | | a5500 | Feb 22 | | 27500 | Mar 3 | 1 1960 | | | PANEOUS PE | | | 1397000 | | | | Feb 22 | | 25.33 | Mar 3 | 1 1960 | | ANNUAL<br>ANNUAL | | AC-FT)<br>CFSM) | | 2.6 | 4 | | 243700<br>.46 | | | 349800<br>.66 | | | | | RUNOFF ( | (NCHES) | | 35.8 | | | 6.26 | | | 8.99 | | | | 10 PERC | CENT EXCER | EDS | | 5220 | | | 703 | | | 1170 | | | | | ENT EXCE | | | 1050 | | | 190 | | | 171 | | | | 90 PERC | ENT EXCE | ยบร | | 282 | | | 67 | | | 17 | | | e Estimated. a Ice affected. ### 05473400 CEDAR CREEK NEAR OAKLAND MILLS, IA LOCATION.--Lat. 40°55'20", long 91°40'10", in SE1/4 NW1/4 sec.28, T.71 N., R.7 W., Henry County, Hydrologic Unit 07080107, on left bank 30 ft upstream from bridge on county highway H46, 3.0 mi west of Oakland Mills, 2.9 mi upstream from Wolf Creek, and 4.3 mi upstream from mouth. DRAINAGE AREA.--530 mi<sup>2</sup>. PERIOD OF RECORD.--Occasional low-flow measurements, water years 1957 to 1977. July 1977 to current year. GAGE.--Water-stage recorder. Datum of gage is 565.07 ft above sea level. REMARKS.-Estimated daily discharges: Nov. 2-11, Nov. 30 to Mar. 4, and June 4, 5, 25, 26. Records good except those for estimated daily discharges, which are poor. Occasional high-water measurements were made by U.S. Army Corps of Engineers in 1965, 1966, 1970, and 1974 and by U.S. Geological Survey in 1966 and 1967. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 22, 1973 reached a stage of 24.09 ft, discharge not determined. Flood of June 1905 reached a stage approximately 2 feet higher from information by local resident. | | DI | SCHARGE, | CUBIC I | FEET PER | SECOND, V<br>DAILY | WATER Y<br>MEAN V | EAR OCTO<br>ALUES | BER 1993 | TO SEP | TEMBER 199 | 94 | | |-------------|--------------------------|--------------|--------------|---------------------|--------------------|-------------------|-------------------|------------------|--------------|--------------|--------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 853 | 49 | e110 | e60 | e29 | e84 | 59 | 317 | 28 | 95 | 15 | 9.0 | | 2 | 836 | e48 | e 90 | e54 | e27 | e100 | 59 | 236 | 130 | 94 | 13 | 12 | | 3 | 435 | e47 | e72 | e47 | e25 | e140 | 61 | 155 | 669 | 189 | 14 | 8.8 | | 4<br>5 | 19 <b>3</b><br>169 | e47<br>e46 | e63<br>e59 | e43<br>e45 | e28<br>e32 | e350<br>2500 | 57<br>53 | 113<br>93 | e360<br>e250 | 116<br>79 | 18<br>28 | 14<br>32 | | | 107 | | | 2.5 | | 2500 | | ,,, | | | | | | 6 | 156 | e46 | e54 | e42 | e37 | 2310 | 52 | 88 | 187 | 67 | 47 | 35 | | 7<br>8 | 136<br>127 | e45<br>e45 | e50<br>e46 | e38<br>e33 | e32<br>e27 | 1470<br>917 | 51<br>47 | 301<br>316 | 147<br>1010 | 58<br>179 | 38<br>21 | 26<br>26 | | 9 | 126 | e44 | e43 | e35 | e24 | 523 | 45 | 200 | 3250 | 79 | 14 | 16 | | 10 | 126 | e44 | e39 | e39 | e22 | 344 | 45 | 132 | 1020 | 62 | 12 | 13 | | 11 | 132 | e44 | e38 | e43 | e33 | 261 | 48 | 100 | 543 | 53 | 11 | 9.4 | | 12 | 111 | 51 | e46 | e39 | e32 | 212 | 89 | 82 | 589 | 40 | 10 | 7.4 | | 13<br>14 | 93<br>83 | 69 | e50 | e30<br>e23 | e37<br>e45 | 193<br>183 | 188<br>171 | 71<br>66 | 360<br>257 | 33<br>35 | 9.9<br>9.9 | 6.1<br>5.6 | | 15 | 77 | 114<br>107 | e54<br>e54 | e23 | e60 | 171 | 211 | 74 | 191 | 64 | 9.2 | 5.0 | | | | | | | | | | | | | | | | 16<br>17 | 74<br>72 | 73<br>62 | e52<br>e50 | e23<br>e29 | e150<br>e300 | 160<br>134 | 183<br>113 | 127<br>95 | 143<br>112 | 72<br>40 | 11<br>8.9 | 4.8<br>4.0 | | 18 | 74 | 58 | e54 | e25 | e500 | 119 | 80 | 69 | 94 | 37 | 8.6 | 3.7 | | 19 | 75 | 57 | e56 | e19 | e700 | 117 | 67 | 55 | 81 | 61 | 8.4 | 4.4 | | 20 | 73 | 55 | e52 | e21 | e1100 | 111 | 59 | 48 | 71 | 37 | 7.4 | 5.3 | | 21 | 67 | 52 | e45 | e25 | e800 | 108 | 64 | 42 | 66 | 28 | 6.8 | 5.4 | | 22 | 62 | 52 | e35 | e33 | e400 | 112 | 79 | 38 | 282 | 26 | 6.4 | 9.3 | | 23<br>24 | 58<br>56 | 52<br>52 | e28<br>e23 | e45<br>e56 | e240<br>e120 | 105<br>95 | 81<br>74 | 39<br>44 | 202<br>1450 | 30<br>27 | 6.2<br>5.6 | 6.3<br>4.8 | | 25 | 61 | 57 | e20 | e50 | e80 | 87 | 66 | 64 | e1000 | 24 | 5.6 | 6.5 | | | | _ | | | | - | | | | | | | | 26<br>27 | 63<br>63 | 78<br>89 | e19<br>e21 | e43<br>e37 | e70<br>e60 | 78<br>76 | 79<br>64 | 60<br>61 | e450<br>250 | 21<br>20 | 9.0<br>9.0 | 8.2<br>11 | | 28 | 60 | 64 | e18 | e32 | e68 | 84 | 55 | 51 | 183 | 19 | 11 | 20 | | 29 | 51 | 59 | e23 | e31 | | 79 | 59 | 41 | 133 | 20 | 8.2 | 11 | | 30 | 48 | e74 | e28 | e30 | | 69 | 107 | 34 | 111 | 17 | 8.5 | 8.4 | | 31 | 50 | | e40 | e26 | | 63 | | 31 | | 15 | 12 | | | TOTAL | 4660 | 1780 | 1432 | 1116 | 5078 | 11355 | 2466 | 3243 | 13619 | 1737 | 402.6 | 338.4 | | MEAN | 150 | 59.3 | 46.2 | 36.0 | 181 | 366 | 82.2 | 105 | 454 | 56.0 | 13.0 | 11.3 | | MAX<br>MIN | 853<br>48 | 114<br>44 | 110<br>18 | 60<br>19 | 1100<br>22 | 2500<br>63 | 211<br>45 | 317<br><b>31</b> | 3250<br>28 | 189<br>15 | 47<br>5.6 | 35<br>3.7 | | AC-FT | 9240 | 3530 | 2840 | 2210 | 10070 | 22520 | 4890 | 6430 | 27010 | 3450 | 799 | 671 | | CFSM | .28 | .11 | .09 | .07 | .34 | .69 | .16 | .20 | .86 | .11 | .02 | .02 | | IN. | .33 | .12 | .10 | .08 | .36 | .80 | .17 | .23 | .96 | .12 | .03 | .02 | | STATIST | rics of M | ONTHLY MEA | N DATA F | OR WATER | YEARS 1977 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 253 | 353 | 298 | 94.4 | 305 | 686 | 601 | 481 | 493 | 638 | 244 | 303 | | MAX | 1711 | 1340 | 1364 | 545 | 1091 | 1987 | 1863 | 1388 | 2199 | 4565 | 2186 | 1245 | | (WY)<br>MIN | 1987<br>5.93 | 1993<br>10.2 | 1983<br>4.43 | 1993<br>9.82 | 1985<br>6.36 | 1979<br>32.3 | 1983<br>37.7 | 1993<br>33.3 | 1990 | 1993<br>3.52 | 1993<br>5.35 | 1986<br>6.28 | | (WY) | 1989 | 1990 | 1990 | 1989 | 1989 | 1989 | 1989 | 1988 | 14.6<br>1988 | 1988 | 1983 | 1991 | | SUMMARY | Y STATIST | ics | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1977 | - 1994 | | ANNUAL | TOTAL. | | | 462474 | | | 47227.0 | | | | | | | ANNUAL | ME AN | | | 1267 | | | 129 | | | 397 | | | | | ANNUAL | | | | | | | | | 1424 | | 1993 | | | ANNUAL M | | | 8790 | Jul 9 | | 3250 | Jun 9 | | 73.0<br>8790 | .Tu l | 1989<br>9 1993 | | | DAILY ME. | | | 18 | Dec 28 | | 3.7 | Sep 18 | | .42 | | 17 1988 | | | | Y MINIMUM | | 22 | Dec 23 | | 4.7 | Sep 15 | | .55 | | 14 1988 | | | ANEOUS P | | | | | | 3600 | Jun 9 | | 8920 | Jul | 9 1993 | | | PANEOUS PI<br>PANEOUS LA | EAK STAGE | | | | | 13.31<br>3.6 | Jun 9<br>Sep 18 | | 21.27 | Jul | 9 1993 | | ANNUAL | | AC-FT) | | 917300 | | | 93670 | seb ro | | 287300 | | | | ANNUAL | RUNOFF ( | CFSM) | | 2.3 | 9 | | .24 | | | .75 | | | | ANNUAL | RUNOFF ( | INCHES) | | 32.4 | | | 3.31 | | | 10.17 | | | | | ENT EXCE | | | 4060<br><b>4</b> 56 | | | 238<br>54 | | | 953<br>82 | | | | | ENT EXCE | | | 456<br>52 | | | 11 | | | 8.6 | | | | | | | | | | | _ | | | | | | e Estimated. ### **SKUNK RIVER BASIN** ### 05474000 SKUNK RIVER AT AUGUSTA, IA (National stream-quality accounting network station) LOCATION.--Lat 40°45'13", long 91°16'40", in NE1/4 NE1/4 sec.26, T.69 N., R.4 W., Des Moines County, Hydrologic Unit 07080107, on left bank 300 ft upstream from bridge on State Highway 394 at Augusta, 2.0 mi upstream from Long Creek, and at mile 12.5. DRAINAGE AREA.--4,303 mi<sup>2</sup>. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- September to November 1913, October 1914 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1915 (M), 1919-27 (M), 1932-34 (M), 1936, 1937-38 (M), 1942 (M). WSP 1438: Drainage area. WDR IA-71-1: 1966 (M). GAGE.--Water-stage encoder. Datum of gage is 521.24 ft above NGVD. Prior to Nov. 15, 1913, nonrecording gage at site 400 ft upstream at datum about 0.7 ft higher. May 27, 1915 to Jan. 14, 1935, nonrecording gage at site 400 ft upstream at present datum. REMARKS.--Estimated daily discharges: Dec. 23 to Mar. 20, Apr. 29 to May 3, June 4-24, July 1-25, and July 28 to Aug. 3. Records fair except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1, 1903, reached a stage of about 21 ft, discharge, about 45,000 ft<sup>3</sup>/s. Stage and discharge for flood of April 1973 are believed to be the greatest since 1851. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | | | • | | DAILÝ | MEAN | VALUES | | | | | | |---------------|-----------------------|----------------|--------------|--------------|----------------|------------------|---------------|----------------|----------------|----------------------------------------------|--------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 13200<br>14400 | 2240<br>2170 | 1360<br>1410 | e870<br>e800 | e620<br>e670 | e3350<br>e3600 | 1380<br>1340 | e1550<br>e1550 | 691<br>762 | e3180<br>e2700 | e589<br>e579 | 322<br>307 | | 3 | 13000 | 2110 | 1510 | e700 | e620 | e3800 | 1280 | e1400 | 1220 | e2360 | e578 | 279 | | <b>4</b><br>5 | 9580<br>7160 | 2050<br>2020 | 1550<br>1510 | e600<br>e700 | e660 | e4100 | 1240 | 1250 | e1780<br>e1510 | e2170<br>e1960 | 564<br>541 | 306<br>397 | | _ | | | | | e760 | e4740 | 1190 | 1160 | | | | | | 6<br>7 | 5980 | 1970 | 1470 | e 620 | e700 | e9130 | 1150 | 1120 | e1150 | e1750 | 835<br>799 | 421 | | 8 | 5220<br>4720 | 1920<br>1880 | 1430<br>1380 | e560<br>e600 | e640<br>e580 | e11300<br>e10500 | 1090<br>1040 | 1160<br>1360 | e1030<br>e1620 | e1550<br>e1450 | 648 | 469<br>565 | | 9 | 4440 | 1830 | 1380 | e700 | e540 | e9450 | 1010 | 1510 | e6940 | e1570 | 566 | 642 | | 10 | 4140 | 1770 | 1220 | e760 | e540<br>e500 | e8270 | 1010 | 1500 | e8910 | e2110 | 535 | 611 | | 11 | 4030 | 1730 | 1210 | e720 | e580 | e6510 | 1180 | 1470 | e7530 | e2410 | 487 | 516 | | 12 | 4100 | 1740 | 1190 | e 640 | e680 | e4690 | 1170 | 1410 | e6700 | e2060 | 453 | 437 | | 13 | 4240 | 1820 | 1190 | e580 | e640<br>e760 | e3640 | 1210<br>1270 | 1330 | e5700<br>e4540 | e1910<br>e1760 | 422<br>417 | 378 | | 14<br>15 | 4110<br>3880 | 1920<br>1970 | 1200<br>1150 | e520<br>e560 | e1000 | e3140<br>e2850 | 1400 | 1260<br>1200 | e3800 | e1760<br>e1570 | 412 | 325<br>292 | | | | | | | | | | | | | | | | 16 | 3690 | 1950 | 1130 | e640 | e1300 | e2660 | 1520 | 1180 | e3450 | e1440 | 390 | 265 | | 17<br>18 | 3560<br>3440 | 1910<br>1830 | 1230<br>1260 | e560<br>e500 | e1700<br>e2500 | e2520<br>e2380 | 1480<br>1300 | 1160<br>1100 | e3650<br>e3610 | e1310<br>e1240 | 395<br>470 | 261<br>242 | | 19 | 3460 | 1780 | 1220 | e440 | 3650 | e2270 | 1300 | 1030 | e3110 | e1200 | 560 | 227 | | 20 | 3360 | 1730 | 1190 | e470 | 8370 | e2190 | 1370 | 965 | e2660 | e1130 | 517 | 209 | | 21 | 3210 | 1670 | 1170 | e540 | 11600 | 2130 | 1320 | 904 | e2360 | e1030 | 468 | 198 | | 22 | 3100 | 1640 | 1160 | e620 | 8430 | 2080 | 1260 | 855 | e2220 | e953 | 420 | 208 | | 23 | 3000 | 1610 | e1000 | e700 | e5600 | 2050 | 1220 | 820 | e3000 | e885 | 372 | 230 | | 24<br>25 | 2890 | 1590 | e700<br>e580 | e760 | e4800 | 2020 | 1190 | 803<br>802 | e3330<br>5440 | e838<br>e802 | 330 | 216<br>198 | | | 2800 | 1600 | | e900 | e4000 | 1940 | 1180 | | | | 311 | | | 26 | 2720 | 1610 | e540 | e1100 | e3600 | 1830 | 1260 | 818 | 5260 | 749 | 296 | 205 | | 27<br>28 | 2630 | 1630 | e580 | e970<br>e880 | e3300<br>e3200 | 1770 | 1240 | 836<br>821 | 5090<br>4910 | 685<br>e652 | 373<br>418 | 533<br>850 | | 29 | 2540<br>2470 | 1630<br>1600 | e560<br>e600 | e800 | e3200 | 1690<br>1610 | 1160<br>e1140 | 798 | 4690 | e635 | 390 | 909 | | 30 | 2390 | 1490 | e700 | e700 | | 1530 | e1350 | 772 | 4020 | e616 | 377 | 967 | | 31 | 2320 | | e780 | e580 | | 1440 | | 734 | | e602 | 354 | | | TOTAL | 149780 | 54410 | 34560 | 21090 | 72000 | 121180 | 37250 | 34628 | 110683 | 45277 | 14866 | 11985 | | MEAN | 4832 | 1814 | 1115 | 680 | 2571 | 3909 | 1242 | 1117 | 3689 | 1461 | 480 | 399 | | MAX | 14400<br>2320 | 2240 | 1550<br>540 | 1100 | 11600 | 11300 | 1520 | 1550 | 8910<br>691 | 3180 | 835<br>296 | 967<br>198 | | MIN<br>AC-FT | 297100 | 1490<br>107900 | 68550 | 440<br>41830 | 500<br>142800 | 1440<br>240400 | 1010<br>73890 | 734<br>68680 | 219500 | 602<br>89810 | 29490 | 23770 | | CFSM | 1.12 | .42 | .26 | .16 | .60 | .91 | .29 | .26 | .86 | .34 | .11 | .09 | | IN. | 1.29 | .47 | .30 | .18 | . 62 | 1.05 | .32 | .30 | .96 | .39 | .13 | .10 | | STATIS | TICS OF N | MONTHLY ME | AN DATA E | OR WATER | YEARS 191 | 4 - 1994 | BY WATER | YEAR (WY | ') | | | | | MEAN | 1364 | 1574 | 1314 | 1337 | 2341 | 4416 | 4089 | 3730 | 4191 | 2832 | 1736 | 1691 | | MAX | 11560 | 10020 | 8387 | 8090 | 7306 | 16560 | 10770 | 13940 | 19800 | 26960 | 18550 | 15460 | | (WY) | 1987 | 1962 | 1983 | 1946 | 1984 | 1979 | 1973 | 1974 | 1947 | | 1993 | 1926 | | MIN | 15.5 | 20.5 | 21.2 | 21.3 | 56.5 | 191 | 104 | 92.5 | 130 | 122 | 25.8 | 71.4 | | (WY) | 1957 | 1957 | 1957 | 1940 | 1940 | 1957 | 1956 | 1934 | 1977 | 1988 | 1934 | 1953 | | SUMMAR | Y STATIST | rics | FOR | 1993 CALE | ENDAR YEAR | E | OR 1994 W | ATER YEAR | | WATER YE | ARS 1914 | - 1994 | | ANNUAL | | | | 3542010 | | | 707709 | | | | | | | ANNUAL | | | | 9704 | | | 1939 | | | 2550 | | | | | TANNUAL | | | | | • | | | | 10200 | | 1993 | | | ANNUAL M<br>T DAILY M | | | 45000 | Jul 10 | | 14400 | Oat 3 | | 125 | 3mm * | 1934 | | | DAILY ME | | | 540 | Dec 26 | | 14400 | Sep 21 | а | 7-0 | Apr 2 | 7 1934 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 540<br>609 | Dec 24 | | 198<br>209 | Sep 20 | • | 7.4 | Aug 2 | 6 1934 | | INSTAN' | TANEOUS P | EAK FLOW | | | | | 14500 | Oct 2 | | 66800 | Apr 2 | 23 1973 | | | | EAK STAGE | | | | | 12.5 | 0 Oct 2 | _ | 27.05 | Apr 2 | 23 1973 | | | TANEOUS I<br>RUNOFF ( | OW FLOW | | 7026000 | | | 193<br>144000 | Sep 21 | a | 152<br>62600<br>7.0<br>7.4<br>66800<br>27.05 | | | | | | CFSM) | | 2 2 | 6 | | .45 | | | .59 | | | | | RUNOFF ( | INCHES) | | | 2 | | 6.12 | | | 8.05 | | | | 10 PERG | CENT EXCE | EDS | | 23600 | | | 4100 | | | 6690 | | | | | CENT EXCE | | | 6660 | | | 1240 | | | 1060 | | | | 90 PER | CENT EXCE | EDS | | 1500 | | | 439 | | | 140 | | | | | | | | | | | | | | | | | e Estimated. a Also Sept. 22, 25, 26. #### SKUNK RIVER BASIN #### 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued (National stream-quality accounting network station) #### WATER QUALITY RECORDS LOCATION.--Samples collected at bridge on State Highway 394, 300 ft downstream from gage. PERIOD OF RECORD.--October 1975 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1975 to current year. WATER TEMPERATURES: October 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1975 to current year. REMARKS.--During periods of ice effect, sediment samples are collected in open water channel. Records of specific conductance are obtained from suspended-sediment samples at time of analysis. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens Dec. 20, 1979, Feb. 12, 1980; minimum daily, 149 microsiemens Mar. 6, 1993. WATER TEMPERATURES: Maximum daily, 34.0°C July 20, 1980, Aug. 15-17, 1988, July 10-13, 1989; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,550 mg/L June 25, 1981; minimum daily mean, 1 mg/L Mar. 8, 9,12, 1978, Jan. 5, 6, 1984. SEDIMENT LOADS: Maximum daily, 499,000 tons Mar. 21, 1978; minimum daily, 1.4 tons Dec. 11, 1989. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 738 microsiemens Jan. 22; minimum daily, 340 microsiemens Feb. 21. WATER TEMPERATURES: Maximum daily, 27.0°C Aug. 3, 28; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,880 mg/L June 10; minimum daily mean, 8 mg/L Feb. 17. SEDIMENT LOADS: Maximum daily, 69,300 tons June 10; minimum daily, 19 tons Feb. 11. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TEMPER-<br>ATURE<br>AIR<br>(DEG C)<br>(00020) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>PRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | |------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------| | OCT<br>20<br>DEC | 1215 | 3370 | 569 | 8.3 | 13.5 | 13.0 | 23 | 10.1 | 99 | 746 | K60 | | 02<br>MAR | 1245 | 1420 | <b>6</b> 25 | 7.8 | 2.5 | 11.5 | 3.5 | 13.5 | 100 | 754 | 19 | | 09 | 1415 | 9560 | 320 | 7.8 | 3.0 | 3.0 | 200 | 12.4 | 93 | 753 | 490 | | MAY<br>11 | 1145 | 1450 | 523 | 8.5 | 18.0 | 16.0 | 12 | 12.2 | 131 | 749 | K48 | | AUG<br>18 | 1045 | 463 | 507 | 8.4 | 25.0 | 20.0 | 12 | 7.4 | 91 | 749 | 84 | | DATE | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | | OCT 20 | K64 | 310 | 83 | 25 | 9.7 | 6 | 0.2 | 1.9 | 256 | 3 | 307 | | DEC<br>02 | 54 | 310 | 79 | 27 | 13 | 8 | 0.3 | 2.0 | 248 | 0 | 304 | | MAR<br>09 | 1200 | 120 | 31 | 9.4 | 4.3 | 7 | 0.2 | 4.0 | 98 | 0 | 120 | | MAY<br>11 | 100 | 250 | 63 | 22 | 9.8 | 8 | 0.3 | 1.9 | 174 | 14 | 183 | | AUG<br>18 | 120 | 230 | 53 | 23 | 14 | 12 | 0.4 | 3.5 | 196 | 12 | 213 | # SKUNK RIVER BASIN # 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued (National stream-quality accounting network station) | DATE | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | |-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------| | OCT<br>20 | 34 | 13 | 0.3 | 18 | 364 | 366 | 0.50 | 3310 | 0.48 | 6.00 | | DEC<br>02 | 46 | 16 | 0.2 | 13 | 373 | 366 | 0.51 | 1430 | 0.21 | 4.50 | | MAR<br>09 | 21 | 12 | 0.2 | 7.8 | 193 | 172 | 0.26 | 4980 | 1.0 | 5.00 | | MAY<br>11 | 33 | 19 | 0.2 | 3.7 | 285 | 269 | 0.39 | 1120 | 1.6 | 2.80 | | AUG<br>18 | 44 | 18 | 0.3 | 5.2 | 293 | 278 | 0.40 | 366 | 1.2 | <0.05 | | | •• | 10 | ••• | 312 | 2,0 | 2,0 | | 000 | | 10.00 | | DATE | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM<br>(70331) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>FINER<br>THAN<br>.062 MM<br>(70342) | | OCT<br>20 | <0.01 | 0.02 | 0.5 | 0.11 | 0.10 | 0.19 | 148 | 1350 | 80 | | | DEC<br>02 | <0.01 | 0.09 | 0.3 | 0.05 | 0.07 | 0.07 | 83 | 318 | 42 | | | MAR<br>09 | 0.06 | 0.40 | 1.4 | 0.10 | 0.13 | 0.28 | 994 | 25700 | | 96 | | MAY<br>11 | 0.03 | 0.03 | 1.6 | <0.01 | 0.03 | 0.18 | 141 | 552 | 100 | | | AUG<br>18 | <0.01 | 0.03 | 1.2 | 0.04 | 0.05 | 0.27 | 78 | 98 | 100 | | | | ALUM- | | | | | MANGA- | MOLYB- | | SELE- | | | DATE | INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145) | DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | | OCT 20 | DIS-<br>SOLVED<br>(UG/L<br>AS AL) | DIS-<br>SOLVED<br>(UG/L<br>AS BA) | DIS-<br>SOLVED<br>(UG/L<br>AS CO) | DIS-<br>SOLVED<br>(UG/L<br>AS FE) | DIS-<br>SOLVED<br>(UG/L<br>AS LI) | DIS-<br>SOLVED<br>(UG/L<br>AS MN) | DIS-<br>SOLVED<br>(UG/L<br>AS MO) | DIS-<br>SOLVED<br>(UG/L<br>AS NI) | DIS-<br>SOLVED<br>(UG/L<br>AS SE) | DIS-<br>SOLVED<br>(UG/L<br>AS AG) | | OCT<br>20<br>DEC<br>02 | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106) | DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145) | DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | | OCT<br>20<br>DEC<br>02<br>MAR<br>09 | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106) | DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145) | DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | | OCT<br>20<br>DEC<br>02<br>MAR<br>09<br>MAY<br>11 | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106) | DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145) | DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | | OCT 20 DEC 02 MAR 09 | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106)<br><10 | DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060)<br><10<br><br><10 | DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145)<br><1<br><br><1 | DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | | OCT 20 DEC 02 MAR 09 MAY 11 | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106)<br><10<br><br>20 | DIS-<br>SOLVED (UG/L<br>AS BA) (01005)<br>120<br>69 | DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035)<br><3 <3 <3 | DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046)<br>5<br><br>36 | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130)<br>13<br><br><4 | DIS-<br>SOLVED<br>(MC/L<br>AS MN)<br>(01056)<br>4<br><br>3 | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060)<br><10<br><br><10<br><10 | DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065)<br><1<br><br>4 | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145)<br><1<br><br><1 | DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075)<br><1<br><br><1<br><1 | | OCT 20 DEC 02 MAR 09 AUG 18 DATE | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106)<br><10<br><br>20<br>20<br>80<br>STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | DIS- SOLVED (UG/L AS BA) (01005) 120 69 72 99 VANA- DIUM, DIS- SOLVED (UG/L AS V) | DIS- SOLVED (UG/L AS CO) (01035) <3 <3 <3 <3 <3 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630) | DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046)<br>5<br><br>36<br>10<br>5<br>CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>(81757) | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130)<br>13<br><br><4<br>8<br>8<br>METRI-<br>BUZIN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056)<br>4<br><br>3<br>5<br>27<br>ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060)<br><10<br><10<br><10<br><10<br><10<br>METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | DIS- SOLVED (UG/L AS NI) (01065) <1 4 1 2 TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030) | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145)<br><1<br><br><1<br>1<br><1<br>BUTY-<br>LATE<br>TOTAL<br>(UG/L)<br>(99901) | DIS- SOLVED (UG/L AS AG) (01075) <1 <1 <1 <1 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) | | OCT 20 DEC 02 MAR 09 MAY 11 AUG 18 DATE | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106)<br><10<br><br>20<br>20<br>80<br>STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | DIS- SOLVED (UG/L AS BA) (01005) 120 69 72 99 VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085) | DIS- SOLVED (UG/L AS CO) (01035) <3 <3 <3 <3 <3 ATRA- ZINE WATER UNFLTRD REC (UG/L) | DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046)<br>5<br><br>36<br>10<br>5 | DIS- SOLVED (UG/L AS LI) (01130) 13 <4 8 8 METRI- BUZIN IN WHOLE WATER (UG/L) | DIS- SOLVED (UG/L AS MN) (01056) 4 3 5 27 ALA- CHLOR TOTAL RECOVER (UG/L) | DIS-<br>SOLVED (UG/L AS MO) (01060) <10 < | DIS- SOLVED (UG/L AS NI) (01065) <1 4 1 2 TRI- FLURA- LIN TOTAL RECOVER (UG/L) | DIS- SOLVED (UG/L AS SE) (01145) <1 <1 1 <1 BUTY- LATE TOTAL (UG/L) | DIS- SOLVED (UG/L AS AG) (01075) <1 <1 <1 <1 C1 C1 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) | | OCT 20 DEC 02 MAR 09 AUG 18 DATE OCT 20 DEC 02 MAR | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106)<br><10<br><br>20<br>20<br>80<br>STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005)<br>120<br><br>69<br>72<br>99<br>VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | DIS- SOLVED (UG/L AS CO) (01035) <3 <3 <3 <3 <3 <3 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630) 0.2 | DIS-<br>SOLVED (UG/L<br>AS FE) (01046) 5 36 10 5 CYAN-<br>AZINE TOTAL (UG/L) (81757) <0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130)<br>13<br><br><4<br>8<br>8<br>METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408)<br><0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056)<br>4<br><br>3<br>5<br>27<br>ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825)<br><0.10 | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060)<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10 | DIS- SOLVED (UG/L AS NI) (01065) <1 4 1 2 TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030) <0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145)<br><1<br><br><1<br>1<br><1<br>EUTY-<br>LATE<br>TOTAL<br>(UG/L)<br>(99901)<br><0.1 | DIS- SOLVED (UG/L AS AG) (01075) <1 <1 <1 <1 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) | | OCT 20 DEC 02 MAR 09 AUG 18 DATE OCT 20 DEC 02 MAR 09 MAY | DIS-<br>SOLVED (UG/L<br>AS AL) (01106) <10 20 20 80 STRON-<br>TIUM, DIS-<br>SOLVED (UG/L AS SR) (01080) 180 81 | DIS- SOLVED (UG/L AS BA) (01005) 120 69 72 99 VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 | DIS- SOLVED (UG/L AS CO) (01035) <3 <3 <3 <3 <3 <3 <3 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630) 0.2 0.3 | DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046)<br>5<br><br>36<br>10<br>5<br>CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>(81757)<br><0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130)<br>13<br><br><4<br>8<br>8<br>METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408)<br><0.1<br><br><0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056)<br>4 3 5 27 ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) <0.10 <0.10 | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060)<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10 | DIS- SOLVED (UG/L AS NI) (01065) <1 4 1 2 TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030) <0.1 <0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145)<br><1<br><br><1<br>1<br><1<br>EBUTY-<br>LATE<br>TOTAL<br>(UG/L)<br>(99901)<br><0.1<br><br><0.1 | DIS- SOLVED (UG/L AS AG) (01075) <1 <1 <1 <1 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) | | OCT 20 DEC 02 MAR 09 AUG 18 DATE OCT 20 DEC 02 MAR 09 | DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106)<br><10<br><br>20<br>20<br>80<br>STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005)<br>120<br><br>69<br>72<br>99<br>VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | DIS- SOLVED (UG/L AS CO) (01035) <3 <3 <3 <3 <3 <3 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630) 0.2 | DIS-<br>SOLVED (UG/L<br>AS FE) (01046) 5 36 10 5 CYAN-<br>AZINE TOTAL (UG/L) (81757) <0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130)<br>13<br><br><4<br>8<br>8<br>METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408)<br><0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056)<br>4<br><br>3<br>5<br>27<br>ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825)<br><0.10 | DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060)<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10 | DIS- SOLVED (UG/L AS NI) (01065) <1 4 1 2 TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030) <0.1 | DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145)<br><1<br><br><1<br>1<br><1<br>EUTY-<br>LATE<br>TOTAL<br>(UG/L)<br>(99901)<br><0.1 | DIS- SOLVED (UG/L AS AG) (01075) <1 <1 <1 <1 C1 ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) 0.11 | 125 # 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued (National stream-quality accounting network station) # SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------------|-------------|-----|-----|-----|-------------|-----|-----|-----|-----|-----|------|-----| | 1<br>2<br>3 | 362 | 516 | 521 | 528 | 535 | | 517 | 525 | 499 | | 432 | 471 | | 2 | 415 | 469 | 462 | 488 | 436 | | 448 | 514 | 484 | | 443 | 520 | | 3 | 465 | 482 | 499 | 478 | 560 | | 540 | 513 | | | 459 | 533 | | 4 | 504 | 500 | 528 | 496 | 616 | | 472 | 529 | 531 | | | 518 | | 5 | 535 | 445 | 511 | 488 | 67 <b>7</b> | | 445 | 442 | 547 | | 518 | 511 | | 6 | 570 | 489 | 525 | | 504 | | 501 | 486 | 553 | | 493 | 623 | | 7 | 552 | 488 | 527 | 481 | 629 | | 495 | 519 | 558 | | 476 | | | 8 | 574 | 490 | 621 | 517 | 548 | | 472 | 555 | 550 | | 496 | 542 | | 9 | 552 | 442 | 517 | 500 | 518 | | 479 | 553 | 378 | | 468 | 513 | | 10 | 579 | 418 | 527 | 466 | 627 | | 441 | 515 | | | 475 | 500 | | 11 | 571 | 445 | 465 | 475 | 699 | | 431 | 522 | | | 467 | 491 | | 12 | 572 | 466 | 479 | 507 | 519 | | 452 | 491 | | | 447 | 467 | | 13 | 581 | 513 | 525 | 553 | 572 | | 461 | 496 | | | 481 | 441 | | 14 | 568 | 602 | 585 | 461 | 504 | | 492 | 470 | | | 501 | 443 | | 15 | 56 <b>8</b> | 607 | 481 | 530 | 582 | | 462 | 477 | | | 507 | 455 | | 16 | 610 | 491 | 544 | 472 | 568 | | 472 | 478 | | | 501 | 428 | | 17 | 611 | 491 | 515 | 479 | 651 | | 481 | 469 | | | 4 92 | 396 | | 18 | 596 | 574 | 486 | 537 | 588 | | 429 | 467 | | | 510 | 438 | | 19 | 599 | 467 | 546 | 495 | 544 | | 451 | 452 | | | 517 | 439 | | 20 | 518 | 550 | 504 | 519 | 535 | | 445 | 461 | | | 552 | 451 | | 21 | 535 | 506 | 552 | 478 | 340 | | 463 | 440 | | | 554 | 463 | | 22 | 535 | 542 | 530 | 738 | 480 | | 519 | 416 | | | 526 | 478 | | 23 | 479 | 511 | 537 | 505 | 363 | | 520 | 419 | | | 470 | 501 | | 24 | 479 | 559 | 522 | 620 | | | 442 | 424 | | | 417 | 540 | | 25 | 482 | 492 | 514 | 526 | | | 510 | 416 | | | 387 | 548 | | 26 | 481 | 497 | 488 | 559 | | | 506 | 470 | 455 | | 401 | 530 | | 27 | 469 | 461 | 548 | 588 | | | 476 | 463 | | 491 | 431 | 537 | | 28 | 488 | 499 | 589 | 619 | | | 476 | 413 | | 424 | 442 | 535 | | 29 | 497 | 504 | 504 | 522 | | | 504 | 411 | | 392 | 459 | 570 | | 30 | 560 | 550 | 653 | 489 | | | 495 | 483 | | 406 | 4 68 | 406 | | 31 | 498 | | 533 | 523 | | 565 | | 500 | | 419 | 494 | | # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|------|-----|-----|-----|------|------|------|------|------|------|------| | 1 | 15.0 | 8.0 | 3.0 | 1.0 | 2.0 | | 11.0 | 15.0 | 17.0 | | 25.0 | 19.0 | | 2 | 15.0 | 8.0 | 5.0 | 1.0 | 2.0 | | 11.0 | 15.0 | 17.0 | | 26.5 | 20.0 | | 3 | 15.0 | 10.0 | 5.0 | 1.0 | 2.0 | | 12.0 | 17.0 | | | 27.0 | 21.0 | | 4 | 18.0 | 10.0 | 4.0 | 1.0 | 2.0 | | 11.0 | 17.0 | | | 25.5 | 19.0 | | 5 | 17.0 | 6.0 | 5.0 | 1.0 | 2.0 | | 12.0 | 17.0 | | | 23.0 | 19.5 | | 6 | 20.0 | 5.0 | 5.0 | | | | 12.0 | 16.0 | | | 21.0 | 19.5 | | 7 | 19.0 | 5.0 | 5.0 | 1.0 | 2.0 | | 11.0 | 15.0 | | | 23.0 | 19.5 | | 8 | 18.0 | 7.0 | 4.0 | .0 | 2.0 | | 13.0 | 20.0 | | | 25.0 | 20.5 | | 9 | 15.0 | 8.0 | 5.0 | .0 | 2.0 | | 14.0 | 20.0 | | | 23.0 | 21.0 | | 10 | 16.0 | 8.0 | 4.0 | .0 | 2.0 | | 15.0 | 20.0 | | | 22.0 | 22.0 | | 11 | 15.0 | 8.0 | 4.0 | .0 | 2.0 | | 12.0 | 22.0 | | | 22.5 | 25.0 | | 12 | 15.0 | 9.0 | 3.0 | .0 | 3.0 | | 11.0 | 25.0 | | | 22.5 | 22.0 | | 13 | 15.0 | 10.0 | 4.0 | .0 | 3.0 | | 12.0 | 21.0 | | | 24.0 | 22.5 | | 14 | 14.0 | 8.0 | 6.0 | .0 | 3.0 | | 12.0 | 21.0 | | | 22.5 | 24.5 | | 15 | 18.0 | 7.0 | 6.0 | .0 | 3.0 | | 12.0 | 21.0 | | | 21.5 | 25.0 | | 16 | 15.0 | 7.0 | 5.0 | .0 | 3.0 | | 13.0 | 22.0 | | | 22.0 | 25.0 | | 17 | 14.0 | 6.0 | 5.0 | .0 | 3.0 | | 14.0 | 22.0 | | | 23.0 | 22.5 | | 18 | 14.0 | 6.0 | 4.0 | .o | 4.0 | | 20.0 | 24.0 | | | 25.0 | 23.5 | | 19 | 14.0 | 7.0 | 5.0 | .0 | 5.0 | | 21.0 | 24.0 | | | 25.5 | 20.5 | | 20 | 15.0 | 7.0 | 3.0 | .0 | 4.0 | | 18.0 | 25.0 | | | 24.5 | 21.0 | | 21 | 14.0 | 7.0 | 3.0 | .0 | 3.0 | | 19.0 | 25.0 | | | 24.5 | 22.0 | | 22 | 14.0 | 10.0 | 3.0 | 1.0 | 4.0 | | 19.0 | 25.0 | | | 22.0 | 21.0 | | 23 | 14.0 | 8.0 | 1.0 | .0 | 4.0 | | 20.0 | 26.0 | | | 23.0 | 16.5 | | 24 | 14.0 | 8.0 | 1.0 | 3.0 | | | 20.0 | 25.0 | | | 24.5 | 15.5 | | 25 | 14.0 | 5.0 | 1.0 | 3.0 | | | 19.0 | 25.0 | | | 26.5 | 17.0 | | 26 | 12.0 | 5.0 | 1.0 | 3.0 | | | 24.0 | 25.0 | | | 25.5 | 17.0 | | 27 | 12.0 | 2.0 | 1.0 | 3.0 | | | 18.0 | 24.0 | | 23.5 | 26.0 | 15.0 | | 28 | 11.0 | 3.0 | 1.0 | 2.0 | | | 19.0 | 20.0 | | 23.0 | 27.0 | 15.5 | | 29 | 8.0 | 3.0 | 1.0 | 2.0 | | | 19.0 | 20.0 | | 23.0 | 21.5 | 15.0 | | 30 | 7.0 | 3.0 | | 3.0 | | | 13.0 | 17.0 | | 23.5 | 22.0 | 16.5 | | 31 | 8.0 | | iŏ | 3.0 | | 11.0 | 13.0 | 17.0 | | 26.0 | 21.0 | | | | ~ | | | ٠.٠ | | | | | | | | | ### SKUNK RIVER BASIN # 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued (National stream-quality accounting network station) # SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | IBER | JANUA | RY | FEBRU | ARY | MARC | Н | | 1 | 200 | 7080 | 62 | 378 | 54 | 199 | 89 | 209 | 75 | 126 | 51 | 461 | | 2 | 145 | 5620 | 86 | 505 | 72 | 276 | 124 | 268 | 107 | 194 | 50 | 486 | | 3 | 144 | 5030 | 75 | 426 | 72 | 294 | 150 | 283 | 64 | 107 | 45 | 462 | | 4 | 139 | 3590 | 79 | 437 | 50 | 212 | 137 | 222 | 18 | 32 | 42 | 465 | | 5 | 140 | 2700 | 68 | 368 | 48 | 195 | 121 | 229 | 10 | 21 | 476 | 6090 | | 6 | 133 | 2150 | 47 | 251 | 54 | 213 | 116 | 194 | 33 | 62 | 1170 | 28800 | | 7 | 142 | 2000 | 40 | 208 | 41 | 160 | 104 | 157 | 21 | 36 | 1650 | 50300 | | 8 | 163 | 2070 | 33 | 166 | 26 | 98 | 108 | 175 | 14 | 22 | 1330 | 37700 | | 9 | 155 | 1870 | 53 | 260 | 38 | 141 | 61 | 115 | 85 | 124 | 1130 | 28800 | | 10 | 135 | 1510 | 62 | 298 | 67 | 223 | 92 | 189 | 49 | 66 | 624 | 13900 | | 11 | 125 | 1360 | 55 | 256 | 60 | 195 | 96 | 187 | 12 | 19 | 231 | 4060 | | 12 | 124 | 1380 | 60 | 283 | 47 | 152 | 51 | 88 | 23 | 42 | 113 | 1430 | | 13 | 124 | 1420 | 59 | 288 | 42 | 135 | 30 | 47 | 25 | 43 | 103 | 1010 | | 14 | 112 | 1240 | 42 | 218 | 23 | 75 | 20 | 28 | 47 | 96 | 101 | 856 | | 15 | 100 | 1050 | 35 | 185 | 31 | 97 | 32 | 48 | 28 | 76 | 95 | 731 | | 16 | 98 | 975 | 35 | 187 | 45 | 138 | 69 | 119 | 14 | 49 | 95 | 682 | | 17 | 133 | 1270 | 40 | 206 | 52 | 174 | 87 | 132 | 8 | 37 | 93 | 633 | | 18 | 94 | 870 | 18 | 89 | 54 | 184 | 42 | 57 | 31 | 209 | 98 | 630 | | 19 | 105 | 977 | 36 | 174 | 54 | 178 | 24 | 29 | 27 | 266 | 93 | 570 | | 20 | 134 | 1220 | 30 | 142 | 48 | 155 | 49 | 62 | 58 | 1310 | 97 | 574 | | 21 | 118 | 1020 | 19 | 86 | 47 | 150 | 47 | 69 | 703 | 22000 | 96 | 551 | | 22 | 109 | 911 | 27 | 118 | 50 | 157 | 14 | 23 | 211 | 4800 | 100 | 563 | | 23 | 145 | 1170 | 36 | 155 | 48 | 130 | 18 | 34 | 88 | 1330 | 99 | 547 | | 24 | 145 | 1130 | 36 | 153 | 54 | 102 | 31 | 64 | 94 | 1220 | 99 | 542 | | 25 | 130 | 984 | 43 | 186 | 62 | 97 | 32 | 78 | 93 | 1000 | 91 | 475 | | 26<br>27<br>28<br>29<br>30<br>31 | 133<br>154<br>116<br>124<br>94<br>70 | 975<br>1090<br>799<br>829<br>605<br>440 | 57<br>74<br>71<br>63<br>57 | 249<br>326<br>313<br>274<br>228 | 46<br>36<br>38<br>62<br>50<br>72 | 67<br>56<br>57<br>100<br>94<br>152 | 47<br>29<br>41<br>48<br>30<br>64 | 140<br>76<br>97<br>104<br>57 | 81<br>94<br>51<br> | 787<br>838<br>441<br> | 72<br>69<br>53<br>41<br>34<br>32 | 357<br>331<br>243<br>176<br>142<br>124 | | TOTAL | | 55335 | | 7413 | | 4656 | | 3680 | | 35353 | | 182691 | | | | | | | | | | | | | | | | | APR: | TL. | MAY | | JUNI | E | JULY | | AUGU S | T | SEPTEME | BER | | 1 | 69 | 258 | 214 | 896 | 93 | 173 | 496 | 4260 | 59 | 94 | 111 | 97 | | 2 | 56 | 203 | 176 | 737 | 51 | 106 | 388 | 2830 | 46 | 72 | 109 | 90 | | 3 | 80 | 277 | 155 | 586 | 93 | 335 | 299 | 1910 | 51 | 80 | 111 | 83 | | 4 | 105 | 350 | 72 | 244 | 295 | 1420 | 233 | 1370 | 111 | 169 | 109 | 91 | | 5 | 52 | 166 | 42 | 131 | 255 | 1040 | 204 | 1080 | 95 | 139 | 129 | 139 | | 6<br>7<br>8<br>9 | 42<br>36<br>84<br>54<br>110 | 131<br>106<br>236<br>147<br>301 | 29<br>163<br>256<br>212<br>169 | 88<br>524<br>942<br>865<br>686 | 193<br>161<br>154<br>2510<br>2880 | 599<br>448<br>674<br>47000<br>69300 | 177<br>152<br>136<br>166<br>241 | 836<br>636<br>532<br>704<br>1370 | 151<br>155<br>121<br>98<br>100 | 347<br>335<br>212<br>149<br>143 | 127<br>146<br>188<br>232<br>152 | 145<br>185<br>291<br>402<br>251 | | 11 | 150 | 478 | 145 | 576 | 1360 | 27700 | 244 | 1590 | 100 | 131 | 159 | 221 | | 12 | 228 | 720 | 121 | 460 | 829 | 15000 | 169 | 940 | 97 | 119 | 121 | 143 | | 13 | 252 | 824 | 170 | 609 | 513 | 7900 | 145 | 748 | 88 | 100 | 127 | 130 | | 14 | 72 | 248 | 105 | 359 | 306 | 3750 | 125 | 594 | 86 | 97 | 95 | 83 | | 15 | 23 | 87 | 167 | 538 | 254 | 2610 | 104 | 441 | 83 | 93 | 109 | 86 | | 16 | 184 | 758 | 188 | 595 | 188 | 1750 | 84 | 327 | 75 | 79 | 112 | 80 | | 17 | 75 | 308 | 199 | 620 | 443 | 4370 | 64 | 226 | 73 | 78 | 102 | 72 | | 18 | 15 | 53 | 81 | 243 | 472 | 4600 | 57 | 191 | 83 | 106 | 92 | 60 | | 19 | 139 | 492 | 151 | 420 | 314 | 2640 | 58 | 188 | 106 | 160 | 93 | 57 | | 20 | 203 | 750 | 54 | 143 | 214 | 1540 | 59 | 180 | 93 | 130 | 95 | 54 | | 21 | 164 | 585 | 43 | 104 | 154 | 981 | 57 | 159 | 97 | 122 | 96 | 51 | | 22 | 87 | 298 | 87 | 200 | 184 | 1100 | 62 | 160 | 88 | 100 | 109 | 61 | | 23 | 73 | 240 | 88 | 194 | 796 | 6450 | 64 | 153 | 81 | 82 | 113 | 71 | | 24 | 33 | 106 | 152 | 330 | 623 | 5600 | 61 | 138 | 82 | 73 | 92 | 53 | | 25 | 501 | 1590 | 130 | 281 | 1200 | 18200 | 68 | 147 | 96 | 80 | 107 | 57 | | 26<br>27<br>28<br>29<br>30<br>31 | 65<br>150<br>65<br>64<br>201 | 216<br>497<br>206<br>197<br>733 | 45<br>91<br>86<br>45<br>145<br>189 | 100<br>206<br>190<br>97<br>300<br>376 | 1170<br>1010<br>899<br>788<br>669 | 16600<br>13900<br>11900<br>9990<br>7290 | 83<br>84<br>73<br>63<br>65<br>66 | 168<br>155<br>129<br>108<br>108<br>107 | 86<br>98<br>106<br>109<br>114<br>112 | 69<br>99<br>119<br>114<br>116<br>107 | 99<br>179<br>240<br>229<br>238 | 55<br>304<br>552<br>564<br>623 | | TOTAL<br>YEAR 6 | <br>529845 | 11561 | | 12640 | | 284966 | | 22485 | | 3914 | | 5151 | #### MISSISSIPPI RIVER MAIN STEM #### 05474500 MISSISSIPPI RIVER AT KEOKUK, IA LOCATION.--Lat 40°23'37", long 91°22'27", in SE1/4 SW1/4 sec.30, T.65 N., R.4 W., Lee County, Hydrologic Unit 07080104, near right bank in tailwater of dam and powerplant of Union Electric Co. at Keokuk, 0.2 mi upstream from bridge on U.S. Highway 136, 2.7 mi upstream from Des Moines River, and at mile 364.2 upstream from Ohio River. DRAINAGE AREA.--119,000 mi<sup>2</sup>, approximately. PERIOD OF RECORD .-- January 1878 to current year. GAGE.--Water-stage recorder. Datum of gage is 477.41 ft above sea level (levels by U.S. Army Corps of Engineers). Jan. 1, 1878 to May 1913, nonrecording gage at Galland (formerly Nashville), 8 mi upstream; zero of gage was set to low-water mark of 1864, or 496.52 ft above sea level. REMARKS.--Discharge computed from records of operation of turbines in powerplant and spillway gates in dam. Minor flow regulation caused by powerplant since 1913 and navigation dams. Records for May 1913 to September 1937 adjusted for change in contents in Keokuk Reservoir, those after September 1937 unadjusted. COOPERATION .-- Records provided by Union Electric Co. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 6, 1851, reached a stage of 21.0 ft, present site and datum, estimated as 13.5 ft at Galland, discharge, 360,000 ft<sup>3</sup>/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN. FER MAR APR MAY JUN. JUL AUG SEP 134000 43900 47700 45800 69000 47600 53100 62500 57700 54400 15 8 9000 25 28 75300 81700 57200 106800 TOTAL 2870100 MEAN MAX MIN AC-FT CFSM .49 1.00 - 90 .64 .46 .62 1.14 - 92 1.16 - 68 .83 - 60 .58 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1879 - 1994, BY WATER YEAR (WY) MEAN (WY) (WY) SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1879 - 1994 ANNUAL TOTAL HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Jul 10 May 10 Dec 27 Jul 10 1993 Dec 27 Dec 26 Dec 27 Dec 25 LOWEST DAILY MEAN Dec 27 ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE a27.58 Jul ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 1.35 .67 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS a From floodmark. ### 05476500 DES MOINES RIVER AT ESTHERVILLE, IA LOCATION.--Lat 43°23'51", long 94°50'38"; in SW1/4 SE1/4 sec.10, T.99 N., R.34 W., Emmet County, Hydrologic Unit 07100002, on right bank in city park, 1,200 ft downstream from bridge on State Highway 9 at Estherville, 0.1 mi upstream from School Creek, 2.3 mi upstream from Brown Creek, and at mile 404.2. DRAINAGE AREA.--1,372 mi<sup>2</sup>. PERIOD OF RECORD.--October 1951 to current year. Prior to November 1951, monthly discharge only, published in WSP 1728. REVISED RECORDS.--WSP 1438: Drainage area. GAGE.--Water-stage encoder and concrete control. Datum of gage is 1,247.55 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 27 to Dec. 14, Dec. 21 to Mar. 18, June 9, and July 20. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994<br>DAILY MEAN VALUES | | | | | | | | | | | | | |--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1020<br>974<br>905<br>861<br>823 | 447<br>527<br>511<br>492<br>484 | e420<br>e440<br>e550<br>e600<br>e580 | e310<br>e320<br>e315<br>e310<br>e290 | e105<br>e110<br>e113<br>e115<br>e110 | e500<br>e540<br>e700<br>e1000<br>e2000 | 918<br>877<br>833<br>796<br>771 | 2420<br>2390<br>2280<br>2210<br>2190 | 565<br>540<br>525<br>501<br>540 | 2630<br>2450<br>2270<br>2090<br>1970 | 463<br>424<br>392<br>371<br>347 | 612<br>583<br>577<br>625<br>667 | | 6<br>7<br>8<br>9<br>10 | 783<br>766<br>749<br>736<br>730 | 460<br>375<br>404<br>477<br>453 | e520<br>e500<br>e500<br>e510<br>e490 | e280<br>e250<br>e230<br>e230<br>e240 | e115<br>e120<br>e120<br>e115<br>e110 | e2200<br>e2300<br>e2200<br>e2050<br>e2200 | 705<br>706<br>719<br>707<br>695 | 2210<br>2180<br>2050<br>1900<br>1760 | 799<br>1070<br>1200<br>e1480<br>1700 | 1900<br>1910<br>1740<br>1580<br>1440 | 318<br>302<br>295<br>296<br>759 | 695<br>684<br>680<br>656<br>618 | | 11<br>12<br>13<br>14<br>15 | 784<br>843<br>846<br>819<br>806 | 457<br>450<br>474<br>510<br>568 | e440<br>e410<br>e430<br>e450<br>481 | e230<br>e220<br>e210<br>e195<br>e180 | e110<br>e105<br>e100<br>e98<br>e96 | e2200<br>e2100<br>e2000<br>e1900<br>e2000 | 642<br>704<br>972<br>1100<br>1160 | 1620<br>1510<br>1380<br>1290<br>1230 | 1730<br>1760<br>2390<br>2270<br>1960 | 1310<br>1270<br>1290<br>1280<br>1180 | 1930<br>2420<br>2530<br>2250<br>2180 | 579<br>540<br>516<br>482<br>462 | | 16<br>17<br>18<br>19<br>20 | 784<br>759<br>738<br>725<br>708 | 663<br>785<br>811<br>802<br>778 | 499<br>569<br>558<br>564<br>569 | e170<br>e180<br>e170<br>e160<br>e180 | e97<br>e97<br>e100<br>e140<br>e350 | e2050<br>e2100<br>e2200<br>2330<br>2120 | 1310<br>1470<br>1530<br>1610<br>1660 | 1150<br>1090<br>1050<br>995<br>944 | 1760<br>1710<br>2570<br>3330<br>3270 | 1170<br>1110<br>983<br>1050<br>e1210 | 2130<br>2000<br>1850<br>1720<br>1580 | 436<br>408<br>382<br>360<br>342 | | 21<br>22<br>23<br>24<br>25 | 695<br>673<br>650<br>640<br>631 | 738<br>730<br>707<br>683<br>644 | e400<br>e320<br>e300<br>e280<br>e300 | e160<br>e145<br>e135<br>e125<br>e120 | e820<br>e860<br>e700<br>e600<br>e450 | 1950<br>1810<br>1680<br>1540<br>1400 | 1630<br>1510<br>1410<br>1340<br>1350 | 898<br>850<br>816<br>798<br>796 | 3120<br>2820<br>3040<br>3270<br>3000 | 1330<br>1170<br>1020<br>913<br>828 | 1420<br>1280<br>1160<br>1090<br>996 | 348<br>361<br>330<br>297<br>289 | | 26<br>27<br>28<br>29<br>30<br>31 | 612<br>592<br>575<br>575<br>540<br>493 | 539<br>e450<br>e340<br>e400<br>e450 | e310<br>e260<br>e220<br>e210<br>e240<br>e270 | e115<br>e110<br>e108<br>e107<br>e105<br>e100 | e480<br>e520<br>e540<br> | 1300<br>1210<br>1140<br>1060<br>1000<br>952 | 1600<br>1880<br>2170<br>2250<br>2330 | 794<br>764<br>736<br>705<br>666<br>615 | 2950<br>2980<br>2990<br>2950<br>2820 | 755<br>685<br>609<br>568<br>530<br>495 | 929<br>868<br>813<br>754<br>703<br>663 | 276<br>260<br>244<br>233<br>225 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM | 22835<br>737<br>1020<br>493<br>45290 | 16609<br>554<br>811<br>340<br>32940<br>.40 | 13190<br>425<br>600<br>210<br>26160 | 6000<br>194<br>320<br>100<br>11900 | 7396<br>264<br>860<br>96<br>14670 | 51732<br>1669<br>2330<br>500<br>102600<br>1.22 | 37355<br>1245<br>2330<br>642<br>74090 | 42287<br>1364<br>2420<br>615<br>83880 | 61610<br>2054<br>3330<br>501<br>122200<br>1.50 | 40736<br>1314<br>2630<br>495<br>80800 | 35233<br>1137<br>2530<br>295<br>69880<br>.83 | 13767<br>459<br>695<br>225<br>27310 | | IN.<br>STATIS | .62<br>TICS OF MO | .45<br>ONTHLY ME: | .36<br>AN DATA F | .16<br>OR WATER | .20<br>YEARS 1952 | 1.40<br>2 - 1994. | 1.01<br>BY WATER | 1.15<br>YEAR (WY | 1.67 | 1.10 | .96 | .37 | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 213<br>1980<br>1987<br>.92<br>1959 | 230<br>1920<br>1980<br>1.66<br>1959 | 133<br>741<br>1980<br>1.32<br>1956 | 67.3<br>354<br>1983<br>.46<br>1977 | 93.2<br>703<br>1983<br>.77<br>1959 | 538<br>2608<br>1983<br>16.0<br>1959 | 1312<br>6314<br>1969<br>13.4<br>1959 | 788<br>3969<br>1993<br>15.7<br>1968 | 789<br>5082<br>1993<br>22.6<br>1976 | 659<br>6127<br>1993<br>4.16<br>1976 | 283<br>2330<br>1993<br>2.36<br>1976 | 200<br>1541<br>1979<br>.74<br>1958 | | SUMMARY | Y STATIST | cs | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 W | ATER YEAR | | WATER YE | ARS 1952 | ~ 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ME I DAILY ME DAILY ME DAILY ME SEVEN-DAY IANEOUS PE FANEOUS PE PANEOUS LC RUNOFF (A | AN A | | 779430<br>2135<br>8490<br>130<br>141<br>1546000<br>1.5<br>21.1<br>5730<br>1020<br>180 | | | 348750<br>955<br>3330<br>96<br>99<br>3370<br>a10.10<br>691700<br>.70<br>9.46<br>2180<br>705<br>189 | Jun 19<br>Feb 15<br>Feb 12<br>Jun 19<br>O Mar 6 | | 443<br>2194<br>26.5<br>15800 .00<br>16000 17.68<br>320600 .32<br>4.38<br>1150<br>109<br>7.8 | Jan<br>Jan<br>Apr<br>Apr | 1993<br>1956<br>12 1969<br>16 1977<br>14 1977<br>12 1969<br>16 1977 | e Estimated. a Ice affected. #### 05476750 DES MOINES RIVER AT HUMBOLDT, IA LOCATION.—Lat 42°43'12", long 94°13'06", in SE1/4 SW1/4 sec.1, T.91 N., R.29 W., Humboldt County, Hydrologic Unit 07100002 on left bank 5 ft downstream from First Avenue in city of Humboldt, about 700 ft downstream from City of Humboldt water plant, 3.2 mi downstream from dam, 3.2 mi upstream from Indian Creek, 3.9 mi upstream from East Fork Des Moines River, and at mile 334.3 upstream from mouth of Des Moines River. DRAINAGE AREA PERIOD OF RECORD. -October 1964 to current year. Prior to October 1970, published as West Fork Des Moines River at Humboldt. GAGE.--Water-stage encoder. Datum of gage is 1,053.54 ft above sea level. Prior to Oct. 3, 1966, nonrecording gage at same size and datum. REMARKS.--Estimated daily discharges: Dec. 21 to Jan. 23, Jan. 26-27, Jan. 30 to Feb. 14, July 27-29, and Aug. 1Records good except those for estimated daily discharges, which are poor. Daily nonrecording gage readings available in Iowa City district office for period Mar. 7, 1940 to Sept. 30, 1964. Discharge not published for this period because of extreme regulation at dam 3.2 mi upstream from gage. Power generation and streamflow regulation discontinued August 1964. Low-flow discharges occasionally affected by minor regulation. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23, 1947, reached a stage of 12.2 ft, discharge, 11,000 ft<sup>3</sup>/s at present site and datum. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | DI | SCHARGE | , CUBIC | FEET PER | | | YEAR OC<br>VALUES | TOBER 199 | 3 TO SEP | TEMBER 19 | 94 | | |-------------|-----------------------|-----------------------|---------------------|-----------------------------------------------|----------------------------|--------------|--------------------------------------|--------------|--------------|-------------------------------------------------------------|----------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1850 | 942 | 612 | e640 | e270 | 779 | | | 835 | 5090 | e1000 | 887 | | 2 | 1760 | 894<br>889 | 718<br>755 | e640<br>e620<br>e590<br>e540 | e280 | 805<br>1040 | | | 794<br>751 | 4730<br>4380 | 940<br>882 | 873<br>847 | | 3<br>4 | 1680<br>1600 | 929 | 832 | e590 | e270<br>e260 | 1610 | 1260<br>1220 | | 731 | 4160 | 802 | 921 | | 5 | 1510 | 888 | 863 | e530 | e270 | 2440 | 1180 | | 794 | 4040 | 743 | 980 | | 6 | 1440 | 857 | 804 | e540 | e280 | 3250 | 1130 | | 1120 | 3680 | 688 | 978<br>970 | | 7<br>8 | 1390<br>1370 | 844<br>812 | 676<br>739 | e520<br>e350 | e260<br>e240 | 3320<br>3810 | 1080<br>1040 | | 1280<br>1390 | 3360<br>3090 | 634<br>585 | 952 | | 9 | 1500 | 742 | 765 | e400 | e250 | 4220 | 1050 | | 1450 | 3010 | 548 | 930 | | 10 | 1690 | 785 | 741 | e450 | e240 | 3910 | 1030 | | 1530 | 2750 | 546 | 899 | | 11<br>12 | 1650<br>15 <b>9</b> 0 | 798<br>798 | 551<br>664 | e490<br>e430 | e230<br>e220 | 3770<br>3140 | 1000<br>1060 | | 1640<br>1750 | 2460<br>2250 | 576<br>1430 | 855<br>807 | | 13 | 1570 | 839 | 823 | e450 | e225 | 2960 | 1320 | | 2380 | 2360 | 1940 | 779 | | 14 | 1550 | 858 | 782 | e370 | e210 | 2980 | 1800 | 1970 | 3230 | 3300 | 2220 | 742 | | 15 | 1510 | 863 | 844 | e280 | 206 | 2980 | 2020 | 1830 | 3530 | 4690 | 2480 | 720 | | 16<br>17 | 1470<br>1430 | 893<br>942 | 935<br>988 | e300<br>e320 | 205<br>207 | 3010<br>3040 | 2030<br>2030 | | 3420<br>3080 | 5070<br>4440 | 2530<br>2450 | 676<br>643 | | 18 | 1390 | 1060 | 1140 | e270 | 249 | 3140 | 2110 | | 2770 | 4060 | 2390 | 610 | | 19 | 1330 | 1170 | 1250 | e260 | 877 | 3270 | 2150 | 1420 | 2840 | 3590 | 2310 | 585 | | 20 | 1300 | 1190 | 1240 | e340 | 1220 | 3180 | 2150 | 1340 | 3010 | 3120 | 2170 | 555 | | 21 | 1270 | 1190 | el130 | e330 | 1390 | 2930 | 2180 | 1260 | 3440 | 2950 | 2020 | 536 | | 22<br>23 | 1240<br>1220 | 1160<br>1140 | e900<br>e600 | e350<br>e350 | 1460<br>1360 | 2680<br>2480 | 2190<br>2130 | 1190<br>1130 | 4020<br>5180 | 2910<br>2740 | 1850<br>1680 | 584<br>698 | | 24 | 1180 | 1150 | e660 | 379 | 1190 | 2310 | 2020 | 1060 | 7970 | 2430 | 1550 | 794 | | 25 | 1150 | 1170 | e620 | 346 | 965 | 2140 | 1930 | 1090 | 9350 | 2090 | 1460 | 737 | | 26 | 1120 | 945 | e450 | e320 | 878 | 1970 | 1870 | 1080 | 9110 | 1830 | 1400 | 664 | | 27 | 1090 | 519 | e320 | e300 | 790 | 1850 | 1890 | 1050 | 8250 | e1620 | 1320 | 626 | | 28<br>29 | 1070<br>1050 | 424<br>483 | e240<br>e300 | 316<br>297 | 760<br> | 1730<br>1650 | 20 <b>8</b> 0<br>2260 | 1010<br>970 | 7240<br>6400 | e1450<br>e1280 | 1240<br>1160 | 590<br>552 | | 30 | 1020 | | e560 | e280 | | 1560 | 2480 | 947 | 5590 | 1100 | 1070 | 522 | | 31 | 985 | | e620 | e270 | | 1470 | | 893 | | 1040 | 957 | | | TOTAL | 42975 | 26692 | 23122 | 12228 | 15262 | 79424 | 50410 | 57770 | 104874 | 95070 | 43571 | 22512 | | MEAN | 1386 | 890 | 746 | 394 | 545 | 2562 | 1680 | 1864 | 3496 | 3067 | 1406 | 750<br>980 | | MAX<br>MIN | 1850<br>985 | 1190<br>424 | 1250<br>2 <b>40</b> | 640<br>260 | 1460<br>205 | 770 | 1680<br>2480<br>1000 | 2890<br>893 | 9350<br>730 | 5090<br>1040 | 2530<br>546 | 522 | | AC-FT | 85240 | 52940 | 45860 | 24250 | 30270 | 157500 | 99990 | 114600 | 208000 | 188600 | 86420 | 44650 | | CFSM | .61 | .39 | .33 | .17 | .24 | 1.14 | .74 | .83 | 1.55 | 1.36 | .62<br>.72 | .33<br>.37 | | IN. | .71 | .44 | .38 | .20 | .25 | 1.31 | .83 | . 95 | 1.73 | 1.57 | .72 | .37 | | STATIS | TICS OF M | ONTHLY MEA | AN DATA I | FOR WATER | YEARS 196 | 5 - 1994 | , BY WATE | ER YEAR (WY | ) | | | | | MEAN | 654 | 642 | 400 | 230 | 310 | 1293 | 2616 | 1818 | 1843 | 1589 | 685 | 559 | | MAX | 3768 | 2656 | 1675 | 1078 | 1570 | 5110 | 8454 | 6261 | 9126 | 11540 | 4477 | 3097 | | (WY)<br>MIN | 1987<br>20.4 | 1980<br>28.8 | 1983<br>19.9 | 1983<br>13.5 | 1983<br>19.8 | 1983<br>78.9 | 1969<br>94.4 | 1993<br>77.6 | 1993<br>72.3 | 1993<br>81.0 | 1993<br>42.4 | 1979<br>30.1 | | (WY) | 1977 | 1977 | 1977 | 1977 | 1977 | 1968 | 1968 | 1968 | 1977 | 1976 | 1976 | 1976 | | SUMMAR | Y STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | | FOR 1994 | WATER YEAR | | WATER YE | EARS 1965 | - 1994 | | ANNUAL | | | | 1458111 | | | 573910 | | | | | | | ANNUAL | MEAN<br>Lannual | MERN | | 3995 | | | 1572 | | | 1055 | | 1003 | | | ANNUAL M | | | | | | | | | 74.3 | | 1977 | | HIGHEST | DAILY M | EAN | | 17100<br>240<br>303 | Jul 13 | | 9350 | Jun 25 | | 17800 | Apr I | 4 1969 | | LOWEST | DAILY ME. | AN | | 240 | Jul 13<br>Dec 28<br>Feb 20 | | 205<br>215 | Feb 16 | | 13 | Nov | 2 1976 | | ANNUAL | SEVEN-DA | Y MINIMUM<br>EAK FLOW | | 303 | Feb 20 | | 215<br>9570 | Feb 11 | | 19000 | Jan J<br>Jul 1 | 3 1993 | | | | EAK STAGE | | | | | 11 | 72 Jun 25 | | 15.40 | Apr | 4 1969 | | INSTANI | TANEOUS L | OCT DY OCT | | 202222 | • | | 198<br>1138000<br>9.<br>3130<br>1140 | Feb 16 | | 1055<br>4136<br>74.3<br>17800<br>13<br>13<br>19000<br>15.40 | | • | | | RUNOFF ( | AC-FT)<br>CESM) | | 2892000<br>1.7<br>24.0<br>9670<br>2190<br>376 | 7 | | 1128000 | 70 | | .47 | | | | ANNUAL | RUNOFF ( | INCHES) | | 24.0 | 4 | | 9. | 46 | | 6.35 | | | | 10 PERC | CENT EXCE | EDS | | 9670 | | | 3130 | | | 2780 | | | | | ENT EXCE | EDS | | 2190 | | | | | | 410 | | | | 90 PERC | ENT EXCE | EDS | | 376 | | | 350 | | | 62 | | | e Estimated. # 05479000 EAST FORK DES MOINES RIVER AT DAKOTA CITY, IA LOCATION.--Lat 42 43'26", long 94 11'30", in NW1/4 SE1/4 sec.6, T.91 N., R.28 W., Humboldt County, Hydrologic Unit 07100003, on right bank 50 ft upstream from old mill dam, in city park at east edge of Dakota City, 500 ft upstream from bridge on county highway P56, 0.6 mi downstream from bridge on State Highway 3, 3.4 mi upstream from confluence with Des Moines River, and at mile 333.8 upstream from mouth of Des Moines River. DRAINAGE AREA.--1,308 mi<sup>2</sup>. PERIOD OF RECORD .-- March 1940 to current year. Prior to October 1954, published as "near Hardy". REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1944, 1945-47 (M). GAGE.--Water-stage encoder. Datum of gage is 1,038.71 ft above sea level. Prior to Oct. 1, 1954, nonrecording gage at site 8 mi upstream at different datum. REMARKS.--Estimated daily discharges: Nov. 27 to Dec. 1, Dec. 12, 13, and Dec. 21 to Mar. 10. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of September 1938 reached a stage of 17.4 ft, discharge, about 22,000 ft<sup>3</sup>/s, site and datum in use during the period 1940-54. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAILY MEAN VALUES | | | | | | | | | | | | | |-------------------|-------------------------|--------------------|--------------|--------------|--------------|----------------|-----------------------|-----------------|--------------|---------------|----------------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1200 | 405 | e310 | e400 | e100 | e380 | 458 | 789 | 360 | 2780 | 1190 | 233 | | 2<br>3 | 1110<br>1070 | 397<br>389 | 349<br>342 | e350<br>e280 | e110<br>e120 | e410<br>e450 | 435<br>412 | 889<br>950 | 348<br>331 | 2340<br>1970 | 959<br>813 | 225<br>220 | | 4 | 1030 | 382 | 294 | e230 | e110 | e700 | 393 | 974 | 321 | 1730 | 713 | 262 | | 5 | 975 | 367 | 288 | e250 | e130 | e1500 | 379 | 976 | 333 | 1580 | 632 | 316 | | 6<br>7 | 921<br>866 | 3 <b>48</b><br>337 | 283<br>281 | e270<br>e190 | e140<br>e120 | e2200<br>e1800 | 369<br>357 | 980<br>1000 | 572<br>785 | 1400<br>1290 | 569<br>522 | 303<br>274 | | é | 848 | 335 | 323 | e150 | e100 | e1700 | 348 | 1030 | 809 | 1260 | 476 | 244 | | 9 | 922 | 325 | 277 | e170 | e110 | e1800 | 343 | 1060 | 783 | 1200 | 428 | 211 | | 10 | 905 | 313 | 269 | e190 | e98 | e2100 | 327 | 1060 | 723 | 1140 | 413 | 194 | | 11 | 882 | 329 | 183 | e210 | e100<br>e105 | 2340<br>2340 | 308<br>321 | 1040<br>1000 | 653<br>597 | 1120<br>1110 | 465<br>521 | 180<br>166 | | 12<br>13 | 858<br>820 | 323<br>334 | e170<br>e250 | e170<br>e200 | e105 | 2120 | 443 | 945 | 982 | 1130 | 594 | 157 | | 14 | 777 | 331 | 289 | e160 | e110 | 1970 | 712 | 890 | 1620 | 1650 | 682 | 147 | | 15 | 741 | 332 | 321 | e140 | e120 | 1850 | 1000 | 825 | 1690 | 2120 | 775 | 142 | | 16 | 705 | 346 | 377 | e120 | e120 | 1720 | 1140 | 774 | 1680 | 2330 | 837 | 132 | | 17<br>18 | 671<br>648 | 348<br>341 | 466<br>608 | e150<br>e130 | e130<br>e150 | 1640<br>1530 | 1180<br>1180 | 723<br>662 | 1690<br>1700 | 2630<br>3710 | 843<br>785 | 123<br>120 | | 19 | 624 | 341 | 729 | e120 | e270 | 1350 | 1130 | 616 | 1790 | 5330 | 693 | 121 | | 20 | 602 | 332 | 785 | e150 | e870 | 1200 | 1070 | 578 | 1580 | 5640 | 614 | 114 | | 21 | 581 | 351 | e600 | e140 | e820 | 1060 | 997 | 541 | 1370 | 5180 | 561 | 114 | | 22 | 559 | 378 | e350 | e160 | e600 | 956 | 914 | 513 | 1340 | 4510 | 512 | 139 | | 23<br>24 | 542<br>525 | 370<br>351 | e210<br>e230 | e150<br>e170 | e450<br>e360 | 873<br>793 | 848<br>798 | 493<br>486 | 2050<br>4220 | 3960<br>3510 | 467<br>424 | 180<br>425 | | 25 | 513 | 338 | e270 | e150 | e320 | 720 | 751 | 479 | 5690 | 3130 | 391 | 651 | | 26 | 494 | 290 | e200 | e130 | e340 | 667 | 711 | 469 | 4660 | 2770 | 368 | 738 | | 27 | 475 | e210 | e140 | e110 | e350 | 619 | 661 | 455 | 4130 | 2400 | 333 | 748 | | 28<br>29 | 471<br>453 | e190<br>e220 | e110<br>e150 | e120<br>e110 | e360 | 581<br>543 | 644<br>677 | 443<br>428 | 4070<br>3740 | 2040<br>1750 | 308<br>284 | 689<br>613 | | 30 | 432 | e260 | e220 | e105 | | 507 | 708 | 410 | 3260 | 1490 | 263 | 546 | | 31 | 419 | | e300 | e100 | | 476 | | 387 | | 1310 | 246 | | | TOTAL | 22639 | 9913 | 9974 | 5475 | 6818 | 38895 | 20014 | 22865 | 53877 | 75510 | 17681 | 8727 | | MEAN | 730 | 330 | 322 | 177 | 243 | 1255 | 667 | 738 | 1796 | 2436 | 570<br>1190 | 291 | | MAX<br>MIN | 1200<br>419 | 405<br>190 | 785<br>110 | 400<br>100 | 870<br>98 | 2340<br>380 | 1180<br>308 | 1060<br>387 | 5690<br>321 | 5640<br>1110 | 246 | 748<br>114 | | AC-FT | 44900 | 19660 | 19780 | 10860 | 13520 | 77150 | 39700 | 45350 | 106900 | 149800 | 35070 | 17310 | | CFSM | .56 | .25 | .25 | -14 | -19 | .96 | .51 | .56 | 1.37 | 1.86 | .44 | .22 | | IN. | .64 | .28 | .28 | .16 | .19 | 1.11 | .57 | .65 | 1.53 | 2.15 | .50 | .25 | | STATIS | TICS OF MO | ONTHLY ME | AN DATA F | OR WATER | YEARS 1940 | - 1994, | , BY WATER | YEAR (WY | ) | | | | | MEAN | 314 | 316 | 222 | 128 | 229 | 888 | 1352 | 974 | 1207 | 843 | 395 | 342 | | MAX | 1713 | 2042 | 1340 | 836 | 1602 | 4033 | 7004<br>1993 | 5031 | 5908<br>1993 | 6777<br>1993 | 4114<br>197 <b>9</b> | 2666<br>1979 | | (WY)<br>MIN | 1983<br>12.0 | 1942<br>14.2 | 1992<br>8.45 | 1992<br>5.12 | 1984<br>10.4 | 1983<br>39.4 | 58.8 | 1991<br>52.2 | 36.3 | 13.7 | 15.5 | 7.40 | | (WY) | 1959 | 1959 | 1977 | 1977 | 1959 | 1968 | 1977 | 1940 | 1977 | 1977 | 1976 | 1976 | | SUMMAR | Y STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | FOR 1994 W | ATER YEAR | | WATER YE | ARS 1940 | - 1994 | | ANNUAL | | | | 937446 | | | 292388 | | | | | | | ANNUAL | | | | 2568 | | | 801 | | | 610 | | 1002 | | | ANNUAL M<br>ANNUAL ME | | | | | | | | | 2744<br>29.7 | | 1993<br>1977 | | | DAILY ME | | | 15600 | Apr 1 | | 5690 | Jun 25 | | 17800 | Jun 2 | 21 1954 | | | DAILY ME | | | 110 | Dec 28 | | 98 | Feb 10 | | 4.8 | Jan 1 | L1 1977 | | | SEVEN-DAY<br>TANEOUS PE | | | 139 | Feb 19 | | 104<br>5900 | Feb 8<br>Jun 25 | | 4.8<br>178000 | | 8 1977<br>21 1954 | | | TANEOUS PE | | | | | | 15.80 | ) Jun 25 | | 24.02 | Jun 2 | 1 1954 | | ANNUAL | RUNOFF (A | AC-FT) | | 1859000 | | | 580000 | | | 441700 | | - | | | RUNOFF (C | | | 1.9 | | | .61 | | | .47<br>6.33 | | | | | RUNOFF (I | | | 26.6<br>6790 | 00 | | 8.32<br>17 <b>4</b> 0 | <u>.</u> | | 1630 | | | | 50 PERC | CENT EXCEE | EDS | | 1430 | | | 476 | | | 200 | | | | 90 PERC | ENT EXCEE | EDS | | 200 | | | 140 | | | 22 | | | | | | | | | | | | | | | | | e Estimated. # 05480500 DES MOINES RIVER AT FORT DODGE, IA LOCATION.--Lat 42°30'22", long 94°12'04", in NW1/4 SW1/4 sec.19, T.89 N., R.28 W., Webster County, Hydrologic Unit 07100004, on right bank 400 ft upstream from Soldier Creek, 1,800 ft downstream from Illinois Central Railroad bridge in Fort Dodge, 2,000 ft downstream from Lizard Creek, and at mile 314.6. DRAINAGE AREA.--4,190 mi<sup>2</sup>. PERIOD OF RECORD.--April 1905 to July 1906 (no winter records), October 1913 to September 1927 (published as "at Kalo"), October 1946 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1924, 1925 (M). GAGE.--Water-stage encoder. Datum of gage is 969.38 ft above sea level. See WSP 1728 for history of changes prior to Dec. 8, 1949. REMARKS.--Estimated daily discharges: Nov. 27 to Dec. 2, Dec. 12, Dec. 22 to Mar. 10. Records good except those for estimated daily discharges, which are poor. Occasional minor regulation caused by dam 0.8 mi upstream from gage. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and data collection platform and City of Fort Dodge gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994<br>DAILY MEAN VALUES | | | | | | | | | | | | | | |--------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1<br>2<br>3<br>4<br>5 | 3560<br>3370<br>3230<br>3130<br>3000 | 1630<br>1570<br>1510<br>1520<br>1490 | e1000<br>e1200<br>1290<br>1330<br>1340 | e1700<br>e1400<br>e1200<br>e1100<br>e1200 | e480<br>e500<br>e520<br>e470<br>e540 | e1400<br>e1500<br>e1600<br>e2500<br>e5400 | 2270<br>2180<br>2090<br>2020<br>1970 | 3870<br>3970<br>4020 | 1620<br>1560<br>1490<br>1430<br>1500 | 8300<br>7440<br>6700<br>6240<br>6020 | 2850<br>2320<br>2070<br>1890<br>1720 | 1310<br>1270<br>1220<br>1600<br>1810 | | | 6<br>7<br>8<br>9<br>10 | 2900<br>2800<br>2750<br>2960<br>3220 | 1400<br>1330<br>1340<br>1250<br>1210 | 1270<br>1150<br>1230<br>1250<br>1200 | e1300<br>e1000<br>e660<br>e680<br>e840 | e560<br>e500<br>e440<br>e450<br>e420 | e6400<br>e6200<br>e5800<br>e6000<br>e6200 | 1900<br>1850<br>1790<br>1790<br>1760 | 4310<br>4480<br>4470 | 1990<br>2870<br>2870<br>2860<br>2850 | 5460<br>5210<br>5010<br>4750<br>4420 | 1600<br>1490<br>1380<br>1280<br>1220 | 1660<br>1540<br>1470<br>1360<br>1300 | | | 11<br>12<br>13<br>14<br>15 | 3200<br>3100<br>3010<br>2930<br>2860 | 1270<br>1260<br>1300<br>1310<br>1300 | 1050<br>e1000<br>1370<br>1280<br>1290 | e 960<br>e 760<br>e 820<br>e 680<br>e 580 | e420<br>e430<br>e440<br>e440<br>e460 | 6740<br>6020<br>5540<br>5390<br>5220 | 1710<br>1800<br>2210<br>3020<br>3510 | 4070<br>3840<br>3600<br>3410 | 2890<br>2950<br>4960<br>7340<br>7420 | 4090<br>3860<br>3860<br>5050<br>7050 | 1250<br>2260<br>3460<br>3540<br>3600 | 1230<br>1150<br>1100<br>1030<br>991 | | | 16<br>17<br>18<br>19<br>20 | 2770<br>2690<br>2590<br>2490<br>2390 | 1290<br>1350<br>1440<br>1540<br>1550 | 1450<br>1620<br>1920<br>2230<br>2310 | e500<br>e580<br>e500<br>e470<br>e620 | e460<br>e500<br>e660<br>e1200<br>e3300 | 5050<br>4930<br>4890<br>4840<br>4660 | 3650<br>3660<br>3680<br>3680<br>3600 | 2890<br>2750<br>2620 | 6660<br>6070<br>6540<br>5910<br>5710 | 7680<br>7380<br>7620<br>8690<br>8710 | 3650<br>3550<br>3420<br>3270<br>3080 | 941<br>894<br>849<br>814<br>776 | | | 21<br>22<br>23<br>24<br>25 | 2320<br>2240<br>2180<br>2120<br>2050 | 1550<br>1550<br>1520<br>1500<br>1500 | 2080<br>e1800<br>e1100<br>e1200<br>e1300 | e600<br>e660<br>e640<br>e700<br>e640 | e3000<br>e2200<br>e1700<br>e1400<br>e1200 | 4310<br>3980<br>3720<br>3480<br>3250 | 3540<br>3470<br>3360<br>3230<br>3110 | | 5780<br>6180<br>8520<br>14500<br>18400 | 8140<br>7500<br>6830<br>6090<br>5400 | 2880<br>2690<br>2450<br>2250<br>2080 | 752<br>821<br>996<br>1360<br>1680 | | | 26<br>27<br>28<br>29<br>30<br>31 | 1970<br>1920<br>1880<br>1820<br>1740<br>1700 | 1160<br>e840<br>e740<br>e810<br>e880 | e800<br>e620<br>e410<br>e600<br>e900<br>e1500 | e580<br>e540<br>e560<br>e540<br>e520<br>e480 | e1250<br>e1300<br>e1350<br> | 3070<br>2920<br>2790<br>2640<br>2490<br>2360 | 3000<br>2930<br>3020<br>3220<br>3440 | 2040<br>1980<br>1910<br>1850<br>1800<br>1710 | 16300<br>14100<br>12500<br>11000<br>9460 | 4820<br>4310<br>3820<br>3390<br>3040<br>2770 | 2000<br>1830<br>1700<br>1590<br>1500<br>1390 | 1670<br>1630<br>1550<br>1420<br>1300 | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 80890<br>2609<br>3560<br>1700<br>160400<br>.62<br>.72 | 39910<br>1330<br>1630<br>740<br>79160<br>.32<br>.35 | 400 90<br>1293<br>2310<br>410<br>79520 | 24010<br>775<br>1700<br>470<br>47620<br>.18<br>.21 | 26590<br>950<br>3300<br>420<br>52740<br>.23 | 131290<br>4235<br>6740<br>1400<br>260400<br>1.01<br>1.17 | 82460<br>2749<br>3680<br>1710<br>163600<br>.66 | 95440<br>3079<br>4480<br>1710<br>189300<br>•73<br>•85 | 194230<br>6474<br>18400<br>1430<br>385300<br>1.55<br>1.72 | 179650<br>5795<br>8710<br>2770<br>356300<br>1.38<br>1.59 | 71260<br>2299<br>3650<br>1220<br>141300<br>.55<br>.63 | 37494<br>1250<br>1810<br>752<br>74370<br>.30 | | | | | | .36<br>AN DATA I | | | | | er year (wy | | 1,39 | .03 | .33 | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 888<br>6120<br>1987<br>32.8<br>1957 | 829<br>4447<br>1983<br>54.5<br>1959 | 571<br>3698<br>1983<br>34.7<br>1977 | 373<br>2257<br>1983<br>24.0<br>1977 | 711<br>4352<br>1984<br>35.5<br>1959 | 2552<br>11070<br>1983<br>141<br>1968 | 3917<br>17530<br>1993<br>238<br>1968 | 2787<br>10540<br>1991<br>149<br>1926 | 3148<br>16150<br>1993<br>138<br>1977 | 2286<br>21530<br>1993<br>75.2<br>1926 | 1051<br>9264<br>1993<br>69.0<br>1976 | 902<br>6206<br>1979<br>49.9<br>1976 | | | SUMMAR | Y STATIST | ıcs | FOR | 1993 CALE | NDAR YEAR | | FOR 1994 | WATER YEAR | | WATER | YEARS 1905 | - 1994 | | | LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS | | 2763700<br>7572<br>30200<br>410<br>563<br>5482000<br>1.8<br>24.5<br>18700<br>4230<br>740 | | | 1990000 | Jun 25<br>Dec 28<br>Feb 8<br>Jun 25<br>.65 Mar 5 | | 1670<br>7882<br>143<br>35100<br>14<br>23<br>35600<br>14<br>1210000<br>5.<br>4390<br>600<br>100 | Nov<br>Jan<br>Apr<br>62 Jun<br>Nov | 1993<br>1977<br>8 1965<br>3 1955<br>13 1977<br>8 1965<br>23 1947<br>3 1955 | | e Estimated. #### 05481000 BOONE RIVER NEAR WEBSTER CITY, IA LOCATION.--Lat 42°26'01", long 93°48'12", in NW1/4 SE1/4 sec. 18, T.88 N., R.25 W., Hamilton County, Hydrologic Unit 07100005, on right bank 100 ft upstream from bridge on State Highway 17, 2.5 mi south of Webster City, and 3.2 mi downstream from Brewers Creek. DRAINAGE AREA.--844 mi2. PERIOD OF RECORD .-- March 1940 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1940 (M), WSP 1708: 1956. GAGE. -- Water-stage encoder. Datum of gage is 989.57 ft above sea level. Prior to June 26, 1940, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 1, Dec. 23 to Mar. 10, July 24-25, and Aug. 14-16. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and gage-height satellite data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since 1896, 19.1 ft about June 10, 1918, from floodmarks, from information by local resident, discharge, 21,500 ft<sup>3</sup>/s. Flood of June 18, 1932, reached a stage of 16.0 ft, discharge, 15,000 ft<sup>3</sup>/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | 101 | | , 002101 | LLI I LIK | | MEAN V | | <b>JBLIK 1773</b> | . 0 521 | | | | |---------------|------------------|----------------------|-------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------|---------------|-------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 440 | 242 | e160 | e150 | e46 | e170 | 139 | 346 | 243 | 1470 | 277 | 57 | | 2<br>3 | 409<br>385 | 235<br>231 | 173<br>171 | e120<br>e100 | e49<br>e54 | e190<br>e210 | 138<br>129 | 376<br>373 | 234<br>205 | 1150<br>935 | 249<br>230 | 55<br>57 | | 4 | 366 | 231 | 157 | e78 | e52 | e300 | 124 | 363 | 184 | 831 | 224 | 146 | | 5 | 344 | 226 | 153 | e84 | e54 | e600 | 130 | 373 | 199 | 1210 | 195 | 308 | | 6<br>7 | 338<br>330 | 211<br>197 | 146<br>123 | e90<br>e68 | e52<br>e50 | e860<br>e820 | 122<br>119 | 456<br>571 | 226<br>465 | 1360<br>1190 | 169<br>152 | 344<br>245 | | 8 | 349 | 194 | 144 | e60 | e47 | e780 | 126 | 702 | 495 | 1240 | 142 | 183 | | 9<br>10 | 482<br>600 | 195<br>194 | 157<br>145 | e64<br>e68 | e45 | e820<br>e840 | 130<br>123 | 754<br>706 | 457<br>397 | 1430<br>1130 | 132<br>148 | 145<br>119 | | | | | | | e44 | | | | | | | | | 11<br>12 | 682<br>630 | 185<br>196 | 83<br>131 | e76<br>e66 | e44<br>e46 | 832<br>784<br>716<br>676<br>688 | 115<br>141 | 625<br>567 | 338<br>301 | 906<br>793 | 143<br>268 | 101<br>88 | | 13 | 568 | 216 | 164 | e70 | e49 | 716 | 273 | 523 | 1250 | 787 | 488 | 81 | | 14 | 518 | 207 | 161<br>159 | e64 | e48<br>e49 | 716<br>676<br>688 | 554 | 509 | 1530<br>1400 | 945 | e413 | 73 | | 15 | 491 | 205 | | | | 088 | 764 | 490 | | 1280 | e372 | 69 | | 16<br>17 | 467<br>439 | 190<br>185 | 156<br><b>196</b> | e52<br>e58<br>e54<br>e52<br>e56 | e52<br>e54 | 643<br>544<br>469<br>414<br>377 | 813 | 448 | 1120<br>832 | 1420<br>1460 | e308<br>246 | 69<br>66 | | 18 | 416 | 182 | 242 | e54 | e54<br>e68 | 469 | 749 | 363 | 703 | 1430 | 204 | 60 | | 19 | 398 | .185 | 302 | e52 | e68<br>e120<br>e270 | 414 | 665 | 338 | 636 | 1500 | 172 | 58 | | 20 | 381 | 179 | 344 | | | | 575 | 448<br>399<br>363<br>338<br>318 | 634 | 1700 | 146 | 54 | | 21 | 369 | 178 | 326 | e52 | e240<br>e200<br>e180<br>e160<br>e130 | 352 | 510<br>467<br>429<br>407<br>396 | 301<br>301<br>286<br>293<br>302 | 647 | 1560 | 126 | 82 | | 22<br>23 | 355<br>342 | 174<br>171 | 207<br>e150 | e62<br>e60 | e200<br>e180 | 318<br>293 | 467<br>429 | 286 | 681<br>1680 | 1260<br>966 | 114<br>103 | 186<br>233 | | 24 | 332 | 170 | e110 | e 64 | e160 | 261 | 407 | 293 | 3520 | e772 | 93 | 260 | | 25 | 326 | 187 | e120 | e58 | e130 | 228 | | | 4270 | e617 | 89 | 399 | | 26 | 315 | 135 | e80 | e54 | e140 | 207 | 372 | 340<br>342<br>341<br>318<br>304 | 3920 | 509 | 109 | 557 | | 27<br>28 | 302<br>298 | 124<br>e120 | e64<br>e56 | e50<br>e52 | e150<br>e160 | 198<br>189 | 329<br>306 | 342 | 3990<br>3480 | 436<br>376 | 104<br>95 | 514<br>433 | | 29 | 286 | e130 | e64 | e50 | | 171 | 301 | 318 | 2650 | 329 | 76 | 368 | | 30 | 272 | e140 | e80 | e49 | | 154 | | 304 | 1930 | 289 | 66 | 324 | | 31 | 253 | | e110 | e47 | | 143 | | 271 | | 259 | 62 | | | TOTAL<br>MEAN | 12483 | 5615 | 4834 | 2086 | 2653<br>94.7 | 14247 | 10566 | 12999 | 38617 | 31540<br>1017 | 5715 | 5734<br>191 | | MAX | 403<br>682 | 187<br>242 | 156<br>344 | 150 | 94.7<br>270<br>44 | 860 | 352<br>813 | 419<br>754 | 1287<br>4270 | 1700 | 184<br>488 | 557 | | MIN | 253 | 120 | 56 | 47<br>4140 | 44 | | 115 | 271 | 184 | 259 | 62 | 54 | | AC-FT<br>CFSM | 24760 | 11140 | 9590 | 4140 | 5260 | 28260 | 20960 | 25780<br>.50 | 76600 | 62560 | 11340 | 11370 | | IN. | .48<br>.55 | .22<br>.25 | .18 | .08<br>.09 | .11<br>.12 | .54<br>.63 | .42<br>.47 | .57 | 1.53<br>1.70 | 1.21<br>1.39 | .22<br>.25 | .23<br>.25 | | STATIST | TCS OF M | ONTHLY MEA | N DATA FO | OR WATER | YEARS 1941 | | | YEAR (WY) | | | | | | | | | | | | • | | | | | | | | MEAN<br>MAX | 233<br>1771 | 216<br>1395 | 146<br>1181 | 100<br>568 | 245<br>1847 | 798<br>2826 | 885<br>4307 | 756<br>4315 | 1008<br>4239 | 580<br>4715 | 260<br>2942 | 226<br>2501 | | (WY) | 1987 | 1993 | 1983 | 1983 | 1984 | 1973 | 1965 | 1991 | 1984 | 1993 | 1993 | 1965 | | MIN | 6.66 | 11.0 | 4.62 | .32 | 3.60 | 32.5 | 33.7 | 46.0 | 14.1 | 8.66 | 9.79 | 6.48 | | (WY) | 1950 | 1950 | 1977 | 1977 | 1950 | 1968 | 1957 | 1968 | 1977 | 1977 | 1949 | 1976 | | SUMMARY | STATIST: | ics | FOR 1 | .993 CALE | NDAR YEAR | F | OR 1994 WA | ATER YEAR | | WATER YE | ARS 1941 | - 1994 | | ANNUAL | | | | 631580 | | | 147089 | | | | | | | ANNUAL | MEAN<br>ANNUAL N | ME AN | | 1730 | | | 403 | | | 455<br>1861 | | 1993 | | | ANNUAL ME | | | | | | | | | 36.1 | Jun : | 1956 | | | DAILY ME | | | 12500 | Apr 1 | | 4270 | Jun 25 | | 19500 | Jun 3 | 22 1954 | | | DAILY MEA | AN<br>Y MINIMUM | | 56<br>82 | Dec 28<br>Dec 24 | | 44<br>46 | Feb 10<br>Feb 8 | | -01 | Feb<br>Feb | 1 1977 | | INSTANT | ANEOUS PE | EAK FLOW | | | DC0 21 | | 4380 | Jun 25 | | 20300 | Jun 2 | 22 1954 | | | | EAK STAGE<br>OW FLOW | | | | | a8.26 | Mar 4 | | 18.55 | | 22 1954<br>7 1977 | | | RUNOFF ( | | 1 | 253000 | | | 291800 | | | .00<br>329400 | cep | , 19// | | ANNUAL | RUNOFF (C | CFSM) | 1 | 2.0 | 5 | | .48 | | | .54 | | | | | RUNOFF () | | | 27.84<br>5200 | 4 | | 6.48<br>831 | | | 7.32<br>1140 | | | | 50 PERC | ENT EXCE | EDS | | 634 | | | 235 | | | 133 | | | | 90 PERC | ENT EXCER | DS | | 138 | | | 58 | | | 15 | | | e Estimated. a Ice affected. # 05481300 DES MOINES RIVER NEAR STRATFORD, IA LOCATION.--Lat 42°15'04", long 93°59'52", in NW1/4 NE1/4 sec.21, T.86 N., R.27 W., Webster County, Hydrologic Unit 07100004, on right bank 6 ft downstream from bridge on State Highway 175, 0.1 mi downstream from Skillet Creek, 4.0 mi southwest of Stratford, 7.3 mi downstream from Boone River and at mile 276.7 DRAINAGE AREA.--5,452 mi<sup>2</sup>. PERIOD OF RECORD.--April 1920 to current year in reports of U.S. Geological Survey. Published as "near Boone" 1920-67. Monthly discharge only for some periods, published in WSP 1308. December 1904 to April 1920 (fragmentary gage heights during high-water periods only) in reports of U.S. Weather Bureau. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1925-27, 1934. WSP 1708: 1955. GAGE.—Water-stage encoder. Datum of gage is 894.00 ft above sea level. Prior to May 1, 1920, nonrecording gage 16.6 mi downstream at datum 23.49 ft lower. Oct. 9, 1924, to Jan. 10, 1933, nonrecording gage 17.6 mi downstream at datum 28.53 ft lower. Jan. 11, 1933, to Sept. 30, 1934, nonrecording gage 17.9 mi downstream at datum 22.25 ft lower. Oct. 1, 1934 to Feb. 6, 1935, nonrecording gage and Feb. 7, 1935 to Sept. 30, 1935. nonrecording gage 17.9 mi downstream at datum 22.25 it lower. Oct. 1, 1934 to Feb. 6, 1933, nonrecording gage and Feb. 7, 1933 to Sept. 30, 1967, water-stage recorder 17.9 mi downstream at datum 21.84 ft lower. REMARKS.--Estimated daily discharges: Nov. 27 to Dec. 3 and Dec. 21 to Mar. 11. Records good except those for estimated daily discharges, which are poor. Occasional minor regulation caused by dam at Fort Dodge. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 30, 1903, reached a stage of 25.4 ft, from high-water mark, site and datum then in use, discharge, 43,600 ft<sup>3</sup>/s. | | D | ISCHARG | E, CUBIC | FEET PER | SECOND,<br>DAILY | WATER Y | YEAR OCT | OBER 199 | 3 TO SEP | TEMBER 1 | 1994 | | |------------------|-----------------------|-----------------------|-----------------------|---------------|------------------|-----------------------|--------------|-----------------|---------------|-----------------------|--------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 4580 | 2270 | e1500 | e2000 | e660 | e1600 | 2660 | 4230 | 2010 | 11400 | 3210 | 1360 | | 2 | 4320 | 2200 | e1700 | e1700 | e700 | e1700 | 2560 | 4470 | 1940 | 9910 | 2890 | 1290 | | 3 | 4080 | 2150 | e1 <b>8</b> 50 | e1500 | e760 | e1900 | 2470 | 4650 | 1860 | 8820 | 2490 | 1270 | | 4 | 3940 | 2120 | 1990 | e1300 | e720 | e3000 | 2380 | 4730 | 1740 | 8120 | 2310 | 1410 | | 5 | 3760 | 2120 | 2000 | e1400 | e780 | e6000 | 2330 | 4750 | 1760 | 7740 | 2050 | 2110 | | 6<br>7 | 3590 | 2040 | 1980 | e1500 | e760 | e8800 | 2240<br>2170 | 4860 | 1930<br>3040 | 7790<br>7270 | 1850<br>1720 | 2070<br>1840 | | á | 3460<br>3350 | 1970<br>1940 | 1 <b>8</b> 10<br>1790 | e1300<br>e970 | e700<br>e640 | e8200<br>e7400 | 2170 | 5140<br>5510 | 3750 | 7030 | 1580 | 1660 | | 9 | 3710 | 1910 | 1860 | e1000 | e580 | e7600 | 2090 | 5680 | 3610 | 6870 | 1460 | 1540 | | 10 | 4050 | 1830 | 1850 | e1100 | e540 | e7800 | 2070 | 5540 | 3490 | 6350 | 1390 | 1430 | | 11 | 4370 | 1840 | 1690 | e1200 | e540 | e7800 | 2010 | 5240 | 3430 | 5700 | 1340 | 1360 | | 12 | 4200 | 1870 | 1410 | e1000 | e560 | 7860 | 2040 | 4920 | 3430 | 5210 | 1630 | 1280 | | 13 | 3990 | 1920 | 1790 | e1100 | e580 | 7190 | 2310 | 4600 | 5130 | 4960 | 3270 | 1210 | | 14 | 3820 | 1940 | 1990 | e1000 | e560 | 6880 | 3090 | 4320 | 8500 | 5340 | 3950 | 1150 | | 15 | 3730 | 1950 | 1900 | e900 | e580 | 6710 | 4350 | 4120 | 95 <b>8</b> 0 | 7540 | 3870 | 1100 | | 16 | 3580 | 1920 | 1960 | e750 | e600 | 6440 | 4760 | 3830 | 8720 | 9090 | 3920 | 1070 | | 17 | 3450 | 1940 | 2150 | e830 | e600 | 6170 | 4880 | 3580 | 7830 | 9270 | 3840 | 1010 | | 1 <b>8</b><br>19 | 3330<br>3220 | 1990<br>20 <b>8</b> 0 | 2370<br>2730 | e800<br>e800 | e800<br>e2200 | 5960<br>5 <b>8</b> 20 | 4840<br>4800 | 3350<br>3160 | 8620<br>8110 | 9000<br>9 <b>86</b> 0 | 3670<br>3480 | 963<br>923 | | 20 | 3100 | 2160 | 2980 | e860 | e2200<br>e3500 | 5660 | 4660 | 2990 | 7700 | 10700 | 3260 | 898 | | | | | | | | | | | | | | | | 21 | 3030 | 2150 | e2700 | e <b>81</b> 0 | e3100 | 5320 | 4520 | 2860 | 7420<br>7600 | 10400<br>9520 | 3010<br>2780 | 872<br>937 | | 22<br>23 | 2930<br>2840 | 2150<br>2130 | e2200<br>e1500 | e880<br>e850 | e2600<br>e2300 | 4880<br>4550 | 4390<br>4240 | 2750<br>2780 | 9950 | 8580 | 2540 | 1120 | | 24 | 2790 | 2100 | e1600 | e930 | e1800 | 4240 | 4080 | 2750 | 14500 | 7650 | 2330 | 1290 | | 25 | 2730 | 2140 | e1700 | e860 | e1300 | 3940 | 3920 | 2550 | 19600 | 6740 | 2160 | 1770 | | 26 | 2670 | 2020 | e1200 | e780 | e1400 | 3680 | 3750 | 2540 | 21300 | 6030 | 2110 | 2080 | | 27 | 2590 | e1500 | e840 | e730 | e1450 | 3460 | 3560 | 2470 | 19400 | 5360 | 1970 | 2140 | | 28 | 2530 | e1100 | e700 | e780 | e1500 | 3290 | 3520 | 2390 | 17500 | 4740 | 1870 | 2010 | | 29 | 2490 | e1150 | e960 | e760 | | 3100 | 3750 | 2310 | 15700 | 4170 | 1670 | 1840 | | 30 | 2390 | e1250 | e1400 | e720 | | 2930 | 3930 | 2240 | 13400 | 3660 | 1560 | 1680 | | 31 | 2320 | | e1800 | e680 | | 2770 | | 2130 | | 3240 | 1450 | | | TOTAL | 104940 | 57850 | 55900 | 31790 | 32810 | 162650 | 100490 | 117440 | 242550 | 228060 | 76630 | 42683 | | MEAN | 3385 | 1928 | 1803 | 1025 | 1172 | 5247 | 3350 | . 3788 | 8085 | 7357 | 2472 | 1423 | | MAX | 4580 | 2270 | 2980 | 2000 | 3500 | 8800 | 4880 | 5680 | 21300 | 11400 | 3950 | 2140 | | MIN | 2320 | 1100 | 700 | 680 | 540 | 1600 | 2010 | 2130 | 1740 | 3240 | 1340 | 872 | | AC-FT<br>CFSM | 208100 | 114700 | 110900 | 63060 | 65080 | 322600<br>.96 | 199300 | 232900 | 481100 | 452400 | 152000 | 84660 | | IN. | .62<br>.72 | .35 | .33 | .19 | .21 | 1.11 | .61<br>.69 | .69<br>.80 | 1.48<br>1.65 | 1.35<br>1.56 | .45<br>.52 | .26<br>.29 | | | | | | | | | | | | 1.30 | | •27 | | STATIS | STICS OF M | ONTHLY M | EAN DATA | FOR WATER | YEARS 192 | 0 - 1994, | , BY WATER | R YEAR (WY | () | | | | | MEAN | 1133 | 1094 | 767 | 568 | 990 | 3445 | 4712 | 3601 | 4162 | 2871 | 1370 | 1298 | | MAX | 8763 | 5745 | 5267 | 4781 | 7061 | 13920 | 22020 | 16010 | 21310 | 27250 | 13500 | 9194 | | (WY) | 1987 | 1993 | 1983 | 1932 | 1984 | 1983 | 1993 | 1991 | 1993 | 1993 | 1993 | 1938 | | MIN | 47.2 | 82.5 | 44.4 | 18.7 | 42.3 | 132 | 236 | 131 | 177 | 96.1 | 81.4 | 67.2 | | (WY) | 1957 | 1959 | 1977 | 1977 | 1959 | 1934 | 1931 | 1934 | 1977 | 1926 | 1931 | 1955 | | SUMMAR | Y STATIST | 'ICS | FOR | 1993 CALE | ENDAR YEAR | I | FOR 1994 W | VATER YEAR | | WATER Y | EARS 1920 | - 1994 | | ANNUAL | TOTAL | | | 3661300 | | | 1253793 | | | | | | | ANNUAL | | | | 10030 | | | 3435 | | | 2161 | | | | | T ANNUAL | | | | | | | | | 10400 | | 1993 | | | 'ANNUAL M | | | | | | | | | 213 | _ | 1956 | | | T DAILY M | | | 41400 | Apr 2 | | 21300 | Jun 26 | | 55900 | | 22 1954 | | | DAILY ME | | | 700 | Dec 28 | | 540 | Feb 10 | | 13<br>14 | | 23 1977<br>22 1977 | | | SEVEN-DA<br>TANEOUS P | | | 873 | Feb 4 | | 563<br>21700 | Feb 9<br>Jun 26 | | 57400 | | 22 1977<br>22 1954 | | | TANEOUS P | | | | | | 19.1 | | | 29.7 | | 22 1954 | | | | AC-FT) | - | 7262000 | | | 2487000 | | | 1565000 | | | | | | CFSM) | | 1.8 | | | .6 | 3 | | .4 | 0 | | | ANNUAL | RUNOFF ( | INCHES) | | 24.9 | | | 8.5 | | | 5.3 | | | | 10 PER | CENT EXCE | EDS | | 24800 | | | 7600 | | | 5570 | | | | | CENT EXCE | | | 5530 | | | 2370 | | | 835 | | | | 90 PER | CENT EXCE | RDS | | 1000 | | | 891 | | | 127 | | | e Estimated. #### 05481630 SAYLORVILLE LAKE NEAR SAYLORVILLE, IA LOCATION.—Lat 41°42'13", long 93°41'21", in SE 1/4 SW 1/4 sec.30, T.80 N., R.24 W., Polk County, Hydrologic Unit 07100004, in control tower of Saylorville Dam, 3.2 mi northwest of Saylorville, 4.2 mi upstream from Beaver Creek, and at mile 213.7. DRAINAGE AREA .-- 5,823 mi2. PERIOD OF RECORD .-- April 1977 to current year. GAGE.--Water-stage recorder. Datum of gage is at sea level (levels by U.S. Army Corps of Engineers). REMARKS.--Reservoir is formed by earthfill dam completed in 1976. Storage began in April 1977. Release controlled at intake structure to forechamber of 22 ft diameter concrete conduit through dam. Ungated chute spillway 430 ft in length at right end of dam at elevation 884 ft, contents, 570,000 acre-ft. Conservation pool at elevation 833 ft, contents, 74,000 acre-ft, surface area, 5,400 acres. Flood pool elevation at 890 ft, contents, 676,000 acre-ft, surface area, 16,700 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Storage tables for water years 1985-1986 published as day second- feet instead of acre-feet storage. COOPERATION .-- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 717,000 acre-ft July 13, 1993; maximum elevation, 892.00 ft July 14, 1993; minimum daily contents, 45,000 acre-ft May 15, 1985; minimum elevation, 832.61 ft Jan. 19, 1979. EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 200,000 acre-ft July 10; maximum elevation, 851.73 ft July 11; minimum daily contents, 87,400 acre-ft Apr. 3; minimum elevation, 836.04 ft Apr. 4. #### Capacity table (elevation, in feet, and contents, in acre-feet) | 810 | 2.140 | 840 | 112,000 | 870 | 380,000 | |-----|--------|-------|---------|-------|---------| | 815 | 7,460 | 845 | 147,000 | 875 | 440,000 | | 820 | 18,500 | 850 | 186.000 | 880 | 507,000 | | 825 | 34,300 | 855 | 229,000 | 885 | 582,000 | | 830 | 55,600 | 8 6 0 | 274,000 | 890 | 672,000 | | 835 | 80.500 | 865 | 324.000 | 8 9 5 | 782.000 | #### RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY OBSERVATION AT 24:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|--------|--------|--------|-------|--------|--------|-------|-------|--------|--------|-------|--------| | 1 | 130000 | 106000 | 102000 | 90000 | 89000 | 89300 | 88200 | 88100 | 90500 | 185000 | 89300 | 89800 | | 2 | 125000 | 103000 | 103000 | 90000 | 88900 | 89000 | 87900 | 87800 | 92800 | 183000 | 89000 | 89500 | | 3 | 111000 | 103000 | 103000 | 89900 | 89000 | 89000 | 87400 | 87900 | 92100 | 178000 | 88900 | 89000 | | 4 | 105000 | 104000 | 102000 | 89400 | 89200 | 89500 | 88900 | 88500 | 90600 | 172000 | 88800 | 89800 | | 5 | 104000 | 104000 | 102000 | 89000 | 89400 | 92900 | 89100 | 88700 | 90500 | 163000 | 88500 | 90700 | | 6 | 103000 | 102000 | 100000 | 88900 | 89700 | 104000 | 89800 | 89100 | 89900 | 159000 | 88000 | 92000 | | 7 | 102000 | 102000 | 101000 | 88700 | 89600 | 108000 | 89600 | 88700 | 90600 | 168000 | 87800 | 93100 | | 8 | 102000 | 101000 | 102000 | 88600 | 89400 | 107000 | 89900 | 88700 | 93200 | 180000 | 88300 | 95800 | | 9 | 98200 | 101000 | 102000 | 88300 | 89200 | 100000 | 89900 | 88500 | 93100 | 192000 | 88300 | 96500 | | 10 | 96100 | 101000 | 101000 | 88400 | 89000 | 96200 | 89600 | 88400 | 92200 | 200000 | 89100 | 96600 | | 11 | 97200 | 101000 | 99600 | 88800 | 88700 | 93200 | 88900 | 88200 | 90600 | 197000 | 88800 | 96700 | | 12 | 106000 | 100000 | 99200 | 89200 | 88400 | 91200 | 89500 | 88200 | 89900 | 187000 | 88900 | 97800 | | 13 | 114000 | 101000 | 101000 | 89600 | 88100 | 89000 | 89000 | 88400 | 89400 | 175000 | 88900 | 98300 | | 14 | 117000 | 101000 | 101000 | 89600 | 88000 | 88500 | 88800 | 88900 | 91200 | 162000 | 89500 | 99200 | | 15 | 116000 | 100000 | 99100 | 89400 | 88100 | 88700 | 88900 | 88400 | 94000 | 152000 | 89700 | 99800 | | 16 | 115000 | 100000 | 97100 | 89400 | 87800 | 88300 | 90200 | 88200 | 94400 | 146000 | 89600 | 101000 | | 17 | 108000 | 101000 | 95600 | 89200 | 88400 | 88500 | 90500 | 87800 | 92000 | 141000 | 89500 | 101000 | | 18 | 104000 | 101000 | 94300 | 88900 | 89300 | 88900 | 90400 | 87800 | 89300 | 135000 | 89100 | 101000 | | 19 | 101000 | 102000 | 92900 | 89000 | 92100 | 88700 | 89400 | 88400 | 90200 | 130000 | 89300 | 101000 | | 20 | 101000 | 101000 | 91800 | 89100 | 96200 | 88800 | 89100 | 89000 | 89800 | 128000 | 89100 | 101000 | | 21 | 101000 | 101000 | 91000 | 89100 | 100000 | 88400 | 89100 | 89200 | 88900 | 126000 | 88600 | 101000 | | 22 | 101000 | 100000 | 88700 | 89200 | 99100 | 88000 | 89000 | 89300 | 88100 | 122000 | 88600 | 101000 | | 23 | 101000 | 101000 | 88200 | 89200 | 94400 | 88500 | 88700 | 90400 | 88800 | 116000 | 88800 | 101000 | | 24 | 101000 | 100000 | 88700 | 89300 | 90300 | 87900 | 88500 | 90100 | 91300 | 108000 | 88700 | 101000 | | 25 | 101000 | 100000 | 88200 | 89400 | 89000 | 87800 | 88000 | 89400 | 100000 | 99900 | 88700 | 102000 | | 26 | 101000 | 100000 | 88000 | 89600 | 88500 | 88200 | 88000 | 88500 | 122000 | 93000 | 88600 | 101000 | | 27 | 102000 | 101000 | 88500 | 89500 | 88800 | 88200 | 88000 | 88300 | 144000 | 89400 | 88700 | 101000 | | 28 | 109000 | 99800 | 89400 | 89400 | 89100 | 87900 | 88600 | 88300 | 162000 | 89300 | 88800 | 101000 | | 29 | 114000 | 99600 | 89700 | 89400 | | 88100 | 88400 | 89000 | 175000 | 90100 | 89100 | 101000 | | 30 | 111000 | 100000 | 89600 | 89300 | | 88300 | 88500 | 89600 | 182000 | 89800 | 90400 | 101000 | | 31 | 108000 | | 90000 | 89100 | | 88400 | | 89700 | | 89600 | 90200 | | | MEAN | 107000 | 101000 | 95800 | 89200 | 90200 | 91200 | 89000 | 88700 | 102000 | 143000 | 89000 | 97700 | | MAX | 130000 | 106000 | 103000 | 90000 | 100000 | 108000 | 90500 | 90400 | 182000 | 200000 | 90400 | 102000 | | MIN | 96100 | 99600 | 88000 | 88300 | 87800 | 87800 | 87400 | 87800 | 88100 | 89300 | 87800 | 89000 | #### 05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA LOCATION.--Lat 41°40'50", long 93°40'05", near center of sec.5, T.79 N., R.24 W., Polk County, Hydrologic Unit 07100004, on left bank 5 ft upstream of Fisher Bridge on county highway R6F, 2.0 mi west of Saylorville, 2.1 mi downstream from Rock Creek, 2.3 mi downstream from Saylorville Dam, 2.3 mi upstream from Beaver Creek, and at mile 211.4. DRAINAGE AREA.--5,841 mi<sup>2</sup>. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1961 to current year. GAGE.--Water-stage encoder. Datum of gage is 787.42 ft above NGVD (levels by U. S. Army Corps of Engineers). Prior to Aug. 6, 1970, nonrecording gage at same site and datum. REMARKS.—Estimated daily discharges: Nov. 2-4, Jan. 2-19, Jan. 25 to Feb. 1, and Feb. 7-12. Records good except those for estimated daily discharges, which are poor. Flow regulated by Saylorville Lake (Station 05481630) 2.3 mi upstream since Apr. 12, 1977. U.S. Army Corps of Engineers satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 47,400 ft<sup>3</sup>/s Apr. 10, 1965, gage height, 24.02 ft; minimum daily discharge, 13 ft<sup>3</sup>/s. Jan. 25, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1893, 24.5 ft June 24, 1954, from floodmarks, discharge, 60,000 ft<sup>3</sup>/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES OCT SEP DAY NOV DEC JAN FEB MAR APR MAY JUN JUL AUG e880 8730 e2540 e1800 1420 e1950 e1900 2350 e1800 e1700 e740 e780 e1500 e1400 e760 e780 e1350 e840 e1200 10700 14 2710 e1200 e1150 e1100 e1200 5460 4770 18 1800 2630 e1050 1170 5990 4880 3380 8790 11700 3810 e960 2990 4730 e1000 2180 2380 7110 4910 4300 2790 8110 11500 2600 4110 e960 e 920 1620 1490 1020 1190 e960 e940 3510 3280 2340 12200 5250 1830 2050 3910 e900 e880 e860 TOTAL 1376 2060 3380 7110 724 5420 MEAN MAX MIN AC-FT YEARS 1978 - 1994, STATISTICS OF MONTHLY MEAN DATA FOR WATER BY WATER YEAR (WY) MEAN MAX 17790 18170 32820 1993 1987 362 623 1305 877 254 (WY) MIN 1991 (WY) SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1978 - 1994a ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 487 HIGHEST DAILY MEAN Jul 21 1993 Nov 29 1977 Jul Jun 27 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW 846 Oct 13 Feb 23 765 Oct 13 Mar 5 Jul 21 Feb 5 1978 Jun 28 INSTANTANEOUS PEAR STAGE INSTANTANEOUS PEAR STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 13.74 2630000 b24.22 2831000 Jun Jul 21 1993 9730 2520 90 PERCENT EXCEEDS e Estimated. a Post-regulation period. b Backwater from Raccoon River. # 05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD: October 1961 to current year. #### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: December 1967 to September 1971, October 1971 to September 1980 (partial record station), October 1980 to current year. WATER TEMPERATURES: October 1961 to September 1971, October 1971 to September 1980 (partial record station), October 1980 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1961 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. During periods of partial ice cover, sediment samples are collected in open water channel. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 1,400 microsiemens Feb. 18, 1977; minimum daily, 90 microsiemens Feb. 19,1971. WATER TEMPERATURES: Maximum daily, 36.0°C June 29, 1971; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 5,400 mg/L May 14, 1970; minimum daily mean, 1 mg/L Jan. 8, 1965, Sept. 1, 1988, Feb. 9, July 8, 1990. SEDIMENT LOADS: Maximum daily, 148,000 tons June 12, 1966; minimum daily, 0.56 tons Sept. 1, 1988. EXTREMES FOR CURRENT YEAR: SPECIFIC CONDUCTANCE: Maximum daily, 740 microsiemens Oct. 7; minimum daily, 418 microsiemens Mar. 1. WATER TEMPERATURES: Maximum daily, 27.0°C Sept. 2, 5, 9, 11, 12; minimum daily, 0.0°C Jan. 21, 23, 28. SEDIMENT CONCENTRATIONS: Maximum daily mean, 161 mg/L Oct. 30; minimum daily mean, 7 mg/L June 2. SEDIMENT LOADS: Maximum daily, 4,150 tons June 28; minimum daily, 19 tons June 2. #### SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JÜN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-----|-----|--------------|-----|-------------|-----|--------------|-----| | 1 | | | | 654 | 680 | 418 | | | | 452 | | | | 2 | | 618 | | | | | 643 | 588 | | | 625 | 621 | | 3 | 579 | 597 | | | | | | 598 | 591 | 454 | 594 | | | 4 | | | | 601 | ~~~ | | 638 | | 589 | | 606 | | | 5 | | | | | | | 627 | 588 | | | 615 | 596 | | 6 | | 657 | | | | 429 | 643 | 595 | 589 | 520 | 615 | 587 | | 7 | 740 | | 692 | | ~ | | 624 | 592 | 596 | | | | | 8 | | | | 565 | 683 | 429 | | 586 | | 502 | 598 | 616 | | 9 | 723 | 549 | | | ~ | 427 | | 593 | | | 606 | 610 | | 10 | 673 | | | 635 | | | | 593 | | 580 | 601 | 574 | | 11 | 702 | 590 | | | | | | 594 | 508 | 602 | | 587 | | 12 | | | | 632 | | 426 | 639 | 608 | | | | | | 13 | 519 | 579 | | | 625 | | | 600 | | 595 | 588 | | | 14 | | | 596 | | 692 | | 590 | | 5 <b>98</b> | 591 | 601 | 625 | | 15 | | | | 620 | | | 628 | | | | 568 | | | 16 | | 627 | | 650 | 436 | 606 | | 594 | | | | | | 17 | | | | | | 684 | 632 | 598 | | | | | | 18 | | 648 | 665 | | ~ | 670 | | 598 | | | | 617 | | 19 | | | | | 431 | 678 | | 590 | | 607 | 587 | 615 | | 20 | | | | | 429 | | 626 | 577 | 485 | 589 | 590 | | | 21 | 500 | 702 | 617 | 715 | 432 | 534 | 649 | | | 585 | 5 <b>9</b> 1 | 593 | | 22 | | | | | | | | | | 576 | | 614 | | 23 | | | | 615 | | 640 | 658 | 588 | | 592 | | | | 24 | 610 | | | | 428 | | | 589 | | 601 | | | | 25 | 520 | | | | | | 5 <b>9</b> 7 | 594 | 485 | | | | | 26 | | | | | | 630 | 482 | 588 | 590 | 548 | | 620 | | 27 | | 580 | | 713 | | | | | 623 | 586 | 585 | 635 | | 28 | | | | 704 | | | 575 | | | 584 | | | | 29 | | | | 604 | | | 57 <b>6</b> | | | 592 | 584 | | | 30 | | 687 | | | | 640 | 585 | | 479 | 594 | | | | 31 | 498 | | | | | | | 589 | | | 5 <b>98</b> | | # 05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued # SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------| | | осто | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU | ARY | MARC | н | | 1<br>2<br>3<br>4<br>5 | 24<br>20<br>16<br>12<br>17 | 605<br>488<br>366<br>231<br>221 | 148<br>111<br>89<br>93<br>82 | 1350<br>761<br>433<br>482<br>491 | 18<br>35<br>58<br>64<br>66 | 62<br>162<br>311<br>385<br>419 | 55<br>50<br>40<br>20<br>16 | 277<br>263<br>205<br>97<br>78 | 90<br>89<br>78<br>65<br>55 | 214<br>226<br>178<br>135<br>114 | 109<br>107<br>95<br>84<br>83 | 671<br>663<br>591<br>644<br>947 | | 6<br>7<br>8<br>9<br>10 | 24<br>31<br>34<br>33<br>43 | 277<br>361<br>385<br>430<br>592 | 81<br>82<br>88<br>111<br>102 | 501<br>509<br>523<br>610<br>564 | 61<br>41<br>26<br>41<br>50 | 381<br>210<br>93<br>209<br>273 | 18<br>33<br>36<br>35<br>28 | 83<br>134<br>136<br>123<br>102 | 46<br>49<br>54<br>48<br>39 | 94<br>98<br>114<br>98<br>82 | 85<br>92<br>101<br>74<br>58 | 1470<br>2400<br>3070<br>2270<br>1730 | | 11<br>12<br>13<br>14<br>15 | 39<br>34<br>25<br>33<br>46 | 446<br>138<br>42<br>267<br>585 | 103<br>101<br>107<br>109<br>106 | 568<br>556<br>591<br><b>6</b> 01<br><b>61</b> 3 | 49<br>39<br>50<br>108<br>92 | 269<br>182<br>185<br>574<br>589 | 19<br>29<br>29<br>52<br>102 | 62<br>98<br>94<br>161<br>303 | 31<br>28<br>25<br>40<br>59 | 70<br>62<br>59<br>91<br>131 | 62<br>63<br>62<br>59<br>58 | 1770<br>1720<br>1490<br>1130<br>1050 | | 16<br>17<br>18<br>19<br>20 | 42<br>40<br>39<br>53<br>58 | 602<br>597<br>578<br>673<br>548 | 72<br>38<br>47<br>77<br>88 | 392<br>184<br>230<br>427<br>519 | 65<br>66<br>65<br>84<br>94 | 453<br>455<br>464<br>650<br>762 | 99<br>97<br>101<br>85<br>77 | 321<br>275<br>262<br>229<br>219 | 64<br>58<br>59<br>59<br>80 | 130<br>112<br>185<br>261<br>471 | 128<br>140<br>134<br>85<br>46 | 2330<br>2390<br>2170<br>1370<br>729 | | 21<br>22<br>23<br>24<br>25 | 74<br>95<br>97<br>95<br>122 | 619<br>788<br>806<br>783<br>1000 | 88<br>88<br>88<br>88 | 524<br>521<br>514<br>517<br>520 | 101<br>97<br>91<br>71<br>66 | 850<br>810<br>603<br>263<br>227 | 76<br>74<br>72<br>71<br>71 | 215<br>205<br>199<br>197<br>184 | 111<br>134<br>141<br>97<br>71 | 1260<br>2260<br>2710<br>1650<br>773 | 35<br>32<br>34<br>37<br>32 | 538<br>478<br>444<br>455<br>370 | | 26<br>27<br>28<br>29<br>30<br>31 | 129<br>126<br>119<br>139<br>161<br>155 | 968<br>563<br>327<br>529<br>1140<br>1410 | 91<br>95<br>96<br>50<br>23 | 485<br>417<br>418<br>211<br>87 | 57<br>51<br>54<br>56<br>49<br>50 | 169<br>137<br>176<br>230<br>220<br>214 | 75<br>93<br>117<br>126<br>111<br>97 | 186<br>241<br>297<br>306<br>264<br>225 | 78<br>88<br>100<br> | 664<br>605<br>616<br> | 35<br>39<br>36<br>33<br>39<br>38 | 367<br>388<br>344<br>287<br>311<br>299 | | TOTAL | | 17365 | | 15119 | | 10987 | | 6041 | | 13463 | | 34886 | | | | | | | | | | | | | | | | | APR | IL. | MAY | | JUNE | 3 | JULY | ? | AUGUS | T | SEPTEMB | BER | | 1<br>2<br>3<br>4<br>5 | 38<br>38<br>35<br>35<br>37 | 294<br>293<br>260<br>217 | 16<br>17<br>33<br>32 | 176<br>187<br>381<br>373 | 12<br>7<br>10<br>13 | 62<br>19<br>64 | 119<br>109<br>96 | 3740<br>3430<br>3020 | 14<br>12<br>13 | 128<br>107<br>98 | 85<br>3 <b>8</b><br>19 | 379<br>1 <b>64</b><br>71<br><b>6</b> 2 | | 6 | | 203 | 28 | 336 | 12 | 8 <b>5</b><br>72 | 89<br>83 | 2790<br>2560 | 13<br>14 | 86<br>87 | 1 <b>6</b><br>15 | 72 | | 7<br>8<br>9<br>10 | 35<br>37<br>38<br>39<br>46 | 203<br>193<br>220<br>239<br>242<br>283 | 28<br>21<br>16<br>15<br>15 | 336<br>262<br>206<br>210<br>221<br>231 | | | | | 13 | | | | | 7<br>8<br>9 | 35<br>37<br>38<br>39 | 193<br>220<br>239<br>242 | 21<br>16<br>15<br>15 | 262<br>206<br>210<br>221 | 12<br>13<br>34<br>74 | 72<br>69<br>85<br>303<br>835 | 83<br>78<br>25<br>45<br>47 | 2560<br>2230<br>341<br>140<br>179 | 13<br>14<br>14<br>13<br>15<br>24 | 87<br>85<br>71<br>66<br>97 | 15<br>30<br>19<br>18<br>18 | 72<br>135<br>59<br>55<br>70 | | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 35<br>37<br>38<br>39<br>46<br>52<br>57<br>51<br>43 | 193<br>220<br>239<br>242<br>283<br>323<br>349<br>334<br>317 | 21<br>16<br>15<br>15<br>16<br>15<br>15<br>15 | 262<br>206<br>210<br>221<br>231<br>216<br>196<br>179<br>189 | 12<br>13<br>34<br>74<br>90<br>94<br>69<br>49<br>59 | 72<br>69<br>85<br>303<br>835<br>1070<br>1110<br>754<br>533<br>848 | 83<br>78<br>25<br>45<br>47<br>18<br>28<br>16<br>14 | 2560<br>2230<br>341<br>140<br>179<br>114<br>460<br>387<br>389<br>514 | 13<br>14<br>13<br>15<br>24<br>9<br>18<br>46<br>116<br>144 | 87<br>85<br>71<br>66<br>97<br>37<br>69<br>210<br>676<br>1130 | 15<br>30<br>19<br>18<br>18<br>23<br>19<br>10<br>12<br>17 | 72<br>135<br>59<br>55<br>70<br>95<br>67<br>29<br>35<br>52 | | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 35<br>37<br>38<br>39<br>46<br>52<br>57<br>51<br>43<br>45<br>35<br>37<br>34 | 193<br>220<br>239<br>242<br>283<br>323<br>349<br>334<br>317<br>416<br>359<br>448<br>445<br>568 | 21<br>16<br>15<br>15<br>16<br>15<br>15<br>17<br>17<br>17<br>17<br>22<br>18 | 262<br>206<br>210<br>221<br>231<br>216<br>196<br>179<br>189<br>189<br>175<br>217<br>167<br>128 | 12<br>12<br>13<br>34<br>74<br>90<br>94<br>69<br>49<br>59<br>80<br>105<br>119<br>113<br>102 | 72<br>69<br>85<br>303<br>835<br>1070<br>1110<br>754<br>533<br>848<br>1560<br>2440<br>2920<br>2680<br>2230 | 83<br>78<br>25<br>45<br>47<br>18<br>28<br>16<br>14<br>18<br>20<br>25<br>30<br>24<br>16 | 2560<br>2230<br>341<br>140<br>179<br>114<br>460<br>387<br>387<br>514<br>543<br>732<br>940<br>768<br>513 | 13<br>14<br>14<br>13<br>15<br>24<br>9<br>18<br>46<br>116<br>144<br>143<br>148<br>144<br>142<br>133 | 87<br>85<br>71<br>66<br>97<br>37<br>69<br>210<br>676<br>1130<br>1370<br>1500<br>1480<br>1460<br>1270 | 15<br>30<br>19<br>18<br>18<br>23<br>19<br>10<br>12<br>17<br>16<br>14<br>13<br>11 | 72<br>135<br>59<br>55<br>70<br>95<br>67<br>29<br>35<br>52<br>48<br>34<br>35<br>32 | | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 35<br>37<br>38<br>39<br>46<br>52<br>57<br>51<br>43<br>45<br>35<br>37<br>34<br>42<br>45 | 193<br>220<br>239<br>242<br>283<br>3249<br>334<br>317<br>416<br>359<br>448<br>548<br>571<br>473<br>433<br>448<br>515 | 21<br>16<br>15<br>15<br>16<br>15<br>15<br>17<br>17<br>17<br>17<br>22<br>18<br>16<br>18<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>17<br>17<br>17 | 262<br>206<br>210<br>221<br>231<br>216<br>196<br>179<br>189<br>189<br>175<br>217<br>167<br>128<br>129<br>125<br>118<br>126<br>128<br>113 | 12<br>12<br>13<br>34<br>74<br>90<br>94<br>69<br>95<br>80<br>105<br>119<br>113<br>102<br>97<br>97<br>90<br>97<br>107<br>113<br>121<br>126<br>119<br>119 | 72<br>69<br>85<br>303<br>835<br>1070<br>1110<br>754<br>533<br>848<br>1560<br>2440<br>2920<br>2680<br>2230<br>2020<br>2030<br>1830<br>1980<br>2560 | 83<br>78<br>25<br>45<br>47<br>18<br>28<br>16<br>14<br>18<br>20<br>25<br>30<br>21<br>16<br>17<br>12<br>13<br>36<br>27<br>8<br>14<br>14 | 2230<br>341<br>140<br>179<br>114<br>460<br>387<br>387<br>389<br>514<br>543<br>732<br>940<br>513<br>522<br>658<br>494<br>519<br>366<br>364<br>893<br>578<br>114<br>146<br>128 | 13 14 14 13 15 24 9 18 46 116 144 143 148 144 142 133 103 64 46 43 89 115 116 130 138 | 87<br>85<br>71<br>69<br>210<br>676<br>1130<br>1370<br>1500<br>1480<br>1270<br>911<br>570<br>324<br>266<br>542<br>659<br>569<br>577<br>621 | 15<br>30<br>19<br>18<br>18<br>23<br>19<br>10<br>12<br>17<br>16<br>14<br>13<br>11<br>11<br>11<br>11<br>9<br>10 | 72<br>135<br>595<br>570<br>95<br>67<br>295<br>52<br>48<br>34<br>32<br>32<br>32<br>32<br>32<br>32<br>32 | | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | 35<br>37<br>38<br>39<br>46<br>52<br>57<br>51<br>43<br>45<br>35<br>37<br>42<br>45<br>39<br>37<br>39<br>45<br>52<br>42<br>42<br>45<br>57 | 193<br>220<br>239<br>242<br>283<br>349<br>334<br>317<br>416<br>359<br>448<br>5568<br>571<br>473<br>448<br>515<br>582<br>459<br>263<br>192<br>192<br>192<br>193 | 21<br>16<br>15<br>15<br>16<br>15<br>15<br>17<br>17<br>17<br>22<br>18<br>16<br>16<br>17<br>16<br>17<br>16 | 262<br>206<br>210<br>221<br>231<br>216<br>179<br>189<br>175<br>217<br>167<br>128<br>129<br>125<br>118<br>126<br>128<br>113 | 12<br>12<br>13<br>34<br>74<br>90<br>94<br>69<br>49<br>59<br>80<br>105<br>119<br>113<br>102<br>97<br>97<br>107 | 72<br>69<br>85<br>303<br>835<br>1070<br>1110<br>754<br>533<br>848<br>1560<br>2440<br>2920<br>2230<br>2030<br>1980<br>2560<br>3270<br>3670<br>4150<br>3770<br>3730 | 83<br>78<br>25<br>47<br>18<br>28<br>16<br>14<br>18<br>20<br>25<br>30<br>24<br>16<br>17<br>21<br>16<br>17<br>12<br>13<br>36<br>27<br>8 | 2230<br>341<br>140<br>179<br>114<br>460<br>387<br>514<br>543<br>732<br>940<br>768<br>513<br>522<br>658<br>494<br>519<br>366<br>364<br>893<br>578<br>114<br>66 | 13<br>14<br>14<br>13<br>15<br>24<br>9<br>18<br>46<br>116<br>144<br>143<br>143<br>144<br>142<br>133<br>103<br>64<br>46<br>43<br>89<br>115<br>116<br>130 | 87<br>85<br>71<br>66<br>97<br>37<br>69<br>210<br>676<br>1130<br>1370<br>1480<br>1460<br>1270<br>911<br>570<br>321<br>324<br>266<br>542<br>659<br>569<br>577 | 15<br>30<br>19<br>18<br>18<br>23<br>19<br>10<br>12<br>17<br>16<br>14<br>13<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>15<br>16<br>17<br>15 | 72<br>135<br>59<br>55<br>70<br>95<br>67<br>29<br>35<br>52<br>48<br>34<br>35<br>32<br>32<br>32<br>32<br>27<br>26<br>33<br>66<br>95 | YEAR 211754 # 05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--------------------------|------------|-----|------------------|-----------------------|--------------------------|----------------------|--------------------------------------|--------------------------|--------------------------------------|------------------------------|--------------------------| | 1<br>2<br>3<br>4<br>5 | 21.0 | 10.0 | | 10.0 | 1.0 | 6.0 | 8.0<br>8.0<br>8.0 | 22.0<br>23.0<br>23.0 | 25.0<br>25.0 | 26.0<br>26.0 | 23.0<br>23.0<br>23.0<br>23.0 | 27.0 | | 6<br>7<br>8<br>9<br>10 | 17.0<br>17.0<br>17.0 | 5.0 | 5.0 | 10.0 | 1.0 | 6.0<br>5.0<br>5.0 | 8.0 | 23.0<br>23.0<br>23.0<br>23.0<br>23.0 | 25.0<br>25.0<br> | 26.0<br>22.0<br>22.0 | 23.0 | 26.0<br>26.0<br>27.0 | | 11<br>12<br>13<br>14<br>15 | 17.0<br>18.0 | 4.0<br>4.0 | 5.0 | 10.0 | 2.0 | 5.0 | 11.0 | 24.0<br>24.0<br>24.0 | 22.0 | 22.0<br>22.0<br>22.0 | 26.0<br>26.0 | 27.0<br>27.0<br><br>13.0 | | 16<br>17<br>18<br>19<br>20 | | 4.0 | 5.0 | 2.0 | 5.0<br><br>5.0<br>5.0 | 5.0<br>5.0<br>5.0<br>6.0 | | 23.0<br>24.0<br>24.0<br>24.0<br>24.0 | 22.0 | 22.0<br>22.0 | 26.0<br>26.0 | 15.0<br>15.0 | | 21<br>22<br>23<br>24<br>25 | 15.0<br><br>15.0<br>13.0 | 4.0 | 5.0 | .0 | 5.0 | 7.0<br>8.0 | | 24.0<br>25.0<br>25.0 | 23.0 | 22.0<br>23.0<br>22.0<br>22.0 | 26.0 | 15.0 | | 26<br>27<br>28<br>29<br>30<br>31 | <br><br><br>12.0 | 4.0 | | 1.5<br>.0<br>1.0 | | 8.0 | 22.0<br>22.0<br>22.0 | 25.0<br><br><br>25.0 | 25.0<br>25.0<br><br>25.0 | 23.0<br>23.0<br>23.0<br>23.0<br>23.0 | 26.0<br>25.0<br>25.0 | 15.0<br>15.0 | #### 05481950 BEAVER CREEK NEAR GRIMES, IA LOCATION.--Lat 41°41'18", long 93°44'08", in SW1/4 SW1/4 sec.35, T.80 N., R.25 W., Polk County, Hydrologic Unit 07100004, on right bank 6 ft upstream from bridge on Northwest 70th Avenue, 0.5 mi downstream from Little Beaver Creek, 2.5 mi east of Grimes, and 6 mi upstream from mouth. DRAINAGE AREA.--358 mi<sup>2</sup>. PERIOD OF RECORD .-- April 1960 to current year. REVISED RECORDS.--WDR IA-77-1: 1974 (P). GAGE.-Water-stage encoder and concrete and steel sheeting broad-crested control. Datum of gage is 806.98 ft above sea level. Prior to Aug. 31, 1966, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 24 to Mar. 5 and Aug. 3 to Sept. 30. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. | DI | SCHARGE, | CUBIC F | EET PER | | | | BER 1993 | TO SEPT | TEMBER 19 | 94 | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 457<br>403<br>370<br>354<br>336 | 224<br>223<br>241<br>232<br>218 | 133<br>129<br>124<br>123<br>119 | e64<br>e60<br>e62<br>e60<br>e60 | e26<br>e26<br>e27<br>e29<br>e30 | e50<br>e56<br>e110<br>e260<br>e450 | 105<br>106<br>110<br>102<br>95 | 95<br>94<br>95<br>98<br>101 | 60<br>67<br>65<br>59<br>77 | 206<br>178<br>148<br>134<br>124 | 20<br>14<br>e13<br>e15<br>e13 | e8.5<br>e5.5<br>e3.6<br>e84<br>e67 | | 326<br>318<br>312<br>339<br>361 | 196<br>192<br>190<br>183<br>177 | 118<br>113<br>121<br>126<br>122 | e56<br>e54<br>e56<br>e54<br>e50 | e27<br>e25<br>e26<br>e25<br>e27 | 1120<br>689<br>467<br>370<br>320 | 92<br>84<br>83<br>83<br>78 | 109<br>121<br>135<br>148<br>147 | 98<br>98<br>612<br>803<br>513 | 111<br>98<br>95<br>90<br>82 | e11<br>e10<br>e9.2<br>e8.4<br>e10 | e52<br>e47<br>e44<br>e30<br>e12 | | 373<br>356<br>334<br>322<br>364 | 177<br>178<br>185<br>176<br>170 | 103<br>108<br>126<br>124<br>106 | e44<br>e46<br>e43<br>e39<br>e36 | e29<br>e28<br>e30<br>e32<br>e31 | 290<br>268<br>247<br>235<br>227 | 74<br>83<br>94<br>97<br>135 | 137<br>129<br>122<br>116<br>113 | 378<br>352<br>384<br>355<br>286 | 73<br>72<br>114<br>121<br>90 | e9.4<br>e25<br>e59<br>e50<br>e39 | e7.0<br>e6.7<br>e4.1<br>e3.0<br>e2.3 | | 425<br>395<br>369<br>350<br>331 | 164<br>161<br>160<br>160<br>156 | 97<br>97<br>101<br>103<br>106 | e38<br>e36<br>e34<br>e37<br>e40 | e30<br>e31<br>e80<br>e250<br>e200 | 207<br>191<br>184<br>172<br>161 | 174<br>157<br>150<br>137<br>124 | 106<br>96<br>88<br>84<br>80 | 244<br>212<br>190<br>193<br>210 | 72<br>62<br>53<br>45<br>40 | e30<br>e26<br>e17<br>e10<br>e6.7 | e5.4<br>e1.8<br>e1.6<br>e1.5<br>e1.6 | | 318<br>307<br>300<br>295<br>289 | 151<br>147<br>143<br>139<br>146 | 94<br>82<br>47<br>e46<br>e44 | e42<br>e46<br>e49<br>e48<br>e46 | e86<br>e60<br>e54<br>e50<br>e47 | 162<br>155<br>152<br>148<br>138 | 118<br>113<br>108<br>107<br>106 | 77<br>73<br>90<br>167<br>112 | 356<br>337<br>308<br>530<br>505 | 36<br>32<br>28<br>26<br>24 | e4.8<br>e4.3<br>e3.3<br>e2.7<br>e2.5 | e1.2<br>e1.6<br>e1.7<br>e1.7 | | 278<br>266<br>264<br>255<br>239<br>229 | 125<br>124<br>147<br>152<br>144 | e46<br>e49<br>e52<br>e56<br>e64<br>e72 | e45<br>e47<br>e42<br>e37<br>e30<br>e25 | e49<br>e49<br>e46<br> | 133<br>132<br>127<br>119<br>113<br>108 | 102<br>91<br>85<br>86<br>89 | 102<br>89<br>81<br>74<br>72<br>67 | 371<br>308<br>265<br>225<br>191 | 20<br>18<br>17<br>13<br>11 | e23<br>e19<br>e15<br>e12<br>e31<br>e19 | e4.8<br>e3.3<br>e3.6<br>e5.7<br>e4.4 | | 10235<br>330<br>457<br>229<br>20300<br>.92 | 5181<br>173<br>241<br>124<br>10280 | 2951<br>95.2<br>133<br>44<br>5850 | 1426<br>46.0<br>64<br>25<br>2830<br>.13 | 1450<br>51.8<br>250<br>25<br>2880<br>•14 | 7561<br>244<br>1120<br>50<br>15000 | 3168<br>106<br>174<br>74<br>6280<br>•29 | 3218<br>104<br>167<br>67<br>6380<br>.29 | 8652<br>288<br>803<br>59<br>17160<br>.81 | 2243<br>72.4<br>206<br>10<br>4450<br>.20 | 532.3<br>17.2<br>59<br>2.5<br>1060 | 428.6<br>14.3<br>84<br>1.2<br>850<br>.04 | | | | | | | | | | | .23 | .00 | ••• | | 113<br>724<br>1974<br>.058<br>1989 | 126<br>655<br>1973<br>.63<br>1967 | 108<br>486<br>1983<br>.77<br>1977 | 65.3<br>305<br>1974<br>.002<br>1977 | 127<br>526<br>1973<br>.35<br>1977 | 376<br>1171<br>1979<br>3.98<br>1981 | 389<br>1275<br>1965<br>3.26<br>1981 | 428<br>1419<br>1974<br>1.11<br>1981 | 431<br>1201<br>1990<br>1.41<br>1977 | 279<br>2160<br>1993<br>.24<br>1977 | 115<br>695<br>1993<br>.73<br>1988 | 82.7<br>654<br>1993<br>.26<br>1988 | | STATIST | cs | FOR : | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1960 | - 1994 | | ANNUAL ME DAILY RUNOFF (F RUNOFF (F RUNOFF (T RUNO | EAN EAN IN ( MINIMUM EAK FLOW EAK STAGE IC-FT) EFSM) INCHES) | | 21.39<br>1050 | | | 1120<br>1.2<br>1.6<br>1580<br>9.24<br>93320<br>.36<br>4.89<br>319 | Mar 6<br>Sep 21<br>Sep 18<br>Mar 6<br>Mar 6 | | 219<br>575<br>17.3<br>11500<br>.00<br>14300<br>16.58<br>158500<br>.61<br>8.31<br>565<br>75 | Jul<br>Sep<br>Oct<br>Jul<br>Jul | 1993<br>1981<br>10 1993<br>8 1970<br>7 1971<br>10 1993<br>10 1993 | | | 457 403 370 354 336 318 312 339 361 373 356 339 361 373 356 395 369 350 331 318 307 300 2289 278 266 264 265 239 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 331 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 330 457 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 10235 229 1 | OCT NOV 457 224 403 223 370 241 354 232 336 218 326 196 318 192 312 190 339 183 361 177 373 177 356 178 334 185 322 176 364 170 425 164 395 161 369 160 350 160 350 160 351 156 318 151 369 160 350 160 350 160 351 156 318 151 307 147 300 143 295 139 289 146 278 125 266 124 229 10235 5181 330 173 457 229 124 229 10235 5181 330 173 457 241 229 124 239 144 229 10235 5181 330 173 457 241 229 124 264 147 255 152 239 144 229 10235 5181 330 173 457 241 229 124 2655 152 239 144 229 10235 5181 330 173 457 241 259 124 2655 152 239 144 229 10235 5181 330 173 457 241 259 124 2665 1974 1973 .058 63 1989 1967 STATISTICS COTAL LEAN ANNUAL MEAN INUAL INUA | OCT NOV DEC 457 224 133 403 223 129 370 241 124 354 232 123 336 218 119 326 196 118 318 192 113 312 190 121 339 183 126 361 177 122 373 177 103 356 178 108 324 176 124 364 170 106 425 164 97 395 1661 97 369 160 101 350 160 101 350 160 101 350 160 101 350 160 101 350 160 101 350 160 103 331 156 106 318 151 94 307 147 82 300 143 47 295 139 e46 289 146 e44 278 125 e46 289 146 e44 278 125 e56 239 144 e64 279 124 44 20300 10280 5850 -92 48 37 106 .54 .31 ICS OF MONTHLY MEAN DATA FOR THE | OCT NOV DEC JAN 457 224 133 e64 403 223 129 e60 370 241 124 e62 354 232 123 e60 336 218 119 e60 326 196 118 e56 318 192 113 e54 312 190 121 e56 339 183 126 e54 361 177 122 e50 373 177 103 e44 356 178 108 e46 334 185 126 e43 322 176 124 e39 364 170 106 e36 425 164 97 e38 395 161 97 e38 395 161 97 e36 369 160 101 e34 350 160 103 e37 331 156 106 e40 318 151 94 e42 307 147 82 e46 337 147 82 e46 246 124 e49 289 146 e44 e46 278 125 e46 e45 289 146 e44 e46 278 125 e46 e45 264 124 e52 255 152 e56 e37 239 144 e64 e30 229 e72 e25 10235 5181 2951 1426 230 10280 5850 2830 22 48 27 .13 1.06 5.4 .31 .15 ICS OF MONTHLY MEAN DATA FOR WATER 113 126 108 65.3 724 655 486 30.5 1974 1973 1983 1974 .058 .63 .77 .002 1989 1967 1977 1977 STATISTICS FOR 1993 CALE OTAL 205833 TATISTICS FOR 1993 CALE OTAL 205831 EVEN-DAY MINIMUM 38 NINGUS PEAK STAGE UNOFF (CFSM) 1.55 ( | DAILY OCT NOV DEC JAN FEB 457 224 133 e64 e26 403 223 129 e60 e26 370 241 124 e62 e27 354 232 123 e60 e29 336 218 119 e60 e30 326 196 118 e56 e27 318 192 113 e54 e25 312 190 121 e56 e26 339 183 126 e54 e25 361 177 122 e50 e27 373 177 103 e44 e29 356 178 108 e46 e28 334 185 126 e43 e30 322 176 124 e39 e32 364 170 106 e36 e31 425 164 97 e38 e30 322 176 124 e39 e32 369 160 101 e34 e80 350 160 103 e37 e250 331 156 106 e40 e200 318 151 94 e42 e86 307 147 82 e46 e60 300 143 47 e49 e54 295 139 e46 e48 e50 289 146 e44 e46 e47 278 125 e46 e48 e50 289 146 e44 e46 e47 278 125 e46 e48 e50 289 146 e44 e46 e47 278 125 e46 e47 e49 266 124 e49 125 152 e56 e37 239 144 e66 e30 229 e72 e25 10235 5181 2951 1426 1450 330 173 95.2 46.0 51.8 457 241 133 64 250 229 124 44 25 25 229 124 44 25 25 230 10280 5850 2830 2880 92 48 .27 .13 .14 1.06 .54 .31 .15 .15 ICS OF MONTHLY MEAN DATA FOR WATER YEARS 1960 ANNUAL MEAN NUAL | DAILY MEAN V. OCT NOV DEC JAN FEB MAR 457 224 133 e64 e26 e50 403 223 129 e60 e26 e56 370 241 124 e62 e27 e110 354 232 123 e60 e29 e260 336 218 119 e60 e30 e450 326 196 118 e56 e27 1120 318 192 113 e54 e25 669 319 183 126 e54 e25 370 361 177 122 e50 e27 320 373 177 103 e44 e29 290 375 177 103 e44 e29 290 376 178 108 e46 e28 268 334 185 126 e43 e30 247 322 176 124 e39 e32 235 364 170 106 e36 e31 227 425 164 97 e38 e30 207 425 164 97 e38 e30 207 335 161 97 e36 e31 191 369 160 101 e34 e80 184 350 160 103 e37 e250 172 331 156 106 e40 e200 161 318 151 94 e42 e86 162 307 147 82 e46 e60 155 300 143 47 e49 e54 152 289 146 e44 e46 e47 138 289 146 e44 e46 e47 138 278 125 e46 e44 e46 e50 155 330 173 95.2 46.0 51.8 244 457 241 133 64 250 142 264 147 e52 e42 e46 127 255 152 e56 e37 119 229 e72 e25 108 10235 5181 2951 1426 1450 7561 330 173 95.2 46.0 51.8 244 457 241 133 64 250 1120 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 229 124 44 25 25 50 239 144 e64 e30 113 229 e72 e25 108 10235 5181 2951 1426 1450 7561 330 173 95.2 46.0 51.8 244 457 241 133 64 250 1120 229 124 44 25 25 50 229 124 44 25 25 50 239 144 e64 e30 113 229 e72 e25 108 10235 5181 2951 1426 1450 7561 330 173 95.2 46.0 51.8 244 179 1973 1983 1974 1973 1979 1989 1967 1977 1977 1977 1977 1981 STATISTICS FOR 1993 CALENDAR YEAR FOTAL 205833 1EAN 564 2NINUAL MEAN NINUAL | CCT NOV DEC JAN FEB MAR APR | CCT NOV DEC | CCT NOV DEC JAN FEB MAR APR MAY JUN 457 224 133 e644 e26 e50 105 95 60 403 223 129 e60 e25 e56 106 94 67 370 241 122 e60 e25 e56 106 94 67 370 211 124 e62 e27 e110 110 95 69 336 218 119 e60 e30 e450 95 101 77 326 196 118 e56 e27 1120 92 109 98 318 192 113 e54 e25 689 84 121 98 318 192 113 e56 e26 467 83 135 612 339 183 122 e56 e54 e25 370 83 148 803 361 177 122 e50 e27 320 78 147 513 373 177 103 e44 e29 290 74 137 378 356 178 108 e46 e38 e30 247 94 122 384 322 176 124 e39 e32 235 97 116 355 364 170 106 e36 e31 227 135 113 286 425 164 97 e38 e30 207 174 106 244 329 160 101 e34 e80 154 150 88 193 331 156 106 e40 e20 161 124 e80 210 339 160 101 e34 e80 154 150 88 193 331 156 106 e40 e20 161 124 80 210 339 143 47 e49 e54 152 108 98 193 331 156 106 e40 e20 161 124 80 210 339 140 e44 e28 e66 e31 127 137 84 193 330 141 e57 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 457 224 133 c64 c26 c50 105 95 60 206 403 223 129 e60 c26 c56 106 94 67 178 370 224 124 e62 c27 c110 110 95 65 148 336 218 119 e60 c30 c450 95 101 77 124 326 156 118 c56 c27 1120 92 109 98 159 134 318 152 113 c54 c25 669 e84 121 99 98 131 318 152 113 c54 c25 669 e84 121 99 98 131 318 152 113 c54 c25 669 e84 121 99 98 131 319 152 153 c55 c55 c56 106 e84 121 99 98 131 319 150 121 c56 c26 467 88 115 612 99 131 312 150 121 c56 c26 467 88 115 612 99 131 312 150 121 c56 c26 467 88 115 612 99 131 315 150 c56 c26 689 e84 121 99 98 133 361 177 122 c50 c27 320 78 147 513 82 373 177 103 c44 c29 290 74 137 379 73 355 178 108 c46 c25 689 88 31 129 352 72 334 185 126 c49 25 370 88 174 513 82 322 176 124 c39 c32 235 97 116 355 121 322 176 124 c39 c32 235 97 116 355 121 325 164 97 c38 c30 227 174 106 244 72 369 160 101 c34 c36 c31 227 135 113 286 90 425 164 97 c38 c30 207 174 106 244 72 369 160 101 c34 c36 c31 227 135 113 286 90 425 166 103 c37 c250 172 137 84 193 350 160 103 c37 c250 172 137 84 193 351 156 106 c40 c200 161 124 80 210 40 318 151 94 c46 c48 c50 155 113 73 337 357 32 329 144 c44 c46 c47 138 106 112 505 24 228 146 c44 c46 c47 138 106 112 505 24 229 149 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c48 c50 149 133 102 102 371 202 229 144 c64 c46 c47 138 106 112 505 24 229 124 c49 c49 c46 c50 155 113 73 33 30 .23 229 144 c64 c50 558 50 268 148 106 112 505 24 228 129 144 c64 c60 155 113 112 15 55 24 229 124 c49 c50 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 457 224 133 664 e26 e50 105 95 60 226 226 227 140 370 241 124 e62 e27 e110 110 95 65 148 e13 370 241 124 e62 e27 e110 110 95 65 148 e13 356 218 119 e60 e30 e456 e50 95 101 77 124 e13 386 218 119 e50 e30 e456 95 95 101 77 124 e13 386 128 119 e50 e30 e456 e50 95 101 77 124 e13 386 192 113 e54 e25 689 84 121 98 98 e10 312 190 121 e56 e26 467 83 135 e12 95 e0.2 339 187 128 e54 e25 370 83 148 803 95 e6.4 331 177 122 e50 e27 320 78 147 913 82 e10 331 177 128 e54 e25 370 83 148 803 90 e6.4 331 177 128 e54 e25 87 87 87 87 87 87 87 87 87 87 87 87 87 | e Estimated. # 05482135 NORTH RACCOON RIVER NEAR NEWELL, IA LOCATION.--Lat 42°36'16", long 95°02'42", in NE1/4 NW1/4 sec.24, T.90 N., R.36 W., Buena Vista County, Hydrologic Unit 07100006, on left bank 40 ft downstream from bridge on State Highway 7, 0.8 mi upstream from Outlet Creek, 2.2 mi west of Newell, and at mile 398.6 upstream from mouth of Des Moines River. DRAINAGE AREA.--233 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1982 to current year. GAGE.--Water-stage encoder. Datum of gage is 1235.50 ft above sea level. REMARKS.--Estimated daily discharges: Oct. 28 to July 13. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. National Weather Service Limited Automatic Remote Collector at station. | Selvice I | | tomane Nen | | | | | | | | | | | |-----------|--------------|------------|--------------|------------|----------------------|------------------|--------------|--------------|---------------|--------------------|--------------|--------------| | | DIS | CHARGE, | CUBIC F | EET PER S | SECOND, W<br>DAILY I | ATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEPT | EMBER 199 | 4 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 111 | e82 | e76 | e100 | e24 | e130 | e68 | e90 | e66 | e370 | 63 | 21 | | 2 | 99 | e80 | e76 | e80 | e34 | e170 | e66 | e86 | e68 | e320 | 50 | 20 | | 3 | 98 | e78 | e72 | e65 | e39 | e250 | e62 | e82 | e66 | e290 | 50 | 21 | | 4 | 95 | e82 | e68 | e60 | e36 | e800 | e64 | e94 | e64 | e290 | 54 | 69<br>166 | | 5 | 87 | e78 | e66 | e65 | e45 | e940 | e 62 | e180 | e78 | e280 | 45 | | | 6 | 91 | e74 | e66 | e68 | e52 | e720 | e60 | e340 | e90 | e270 | 37 | 106<br>80 | | 7 | 89 | e76 | e 64 | e52 | e39 | e540 | e62 | e330 | e140<br>e240 | e390<br>e400 | 31<br>28 | 60 | | 8 | 87 | e74 | e60 | e30 | e28 | e390 | e60<br>e62 | e310<br>e280 | e240<br>e190 | e340 | 25 | 46 | | 9<br>10 | 211<br>230 | e72<br>e70 | e 62<br>e 64 | e40<br>e46 | e30<br>e25 | e300<br>e240 | e60 | e260 | e160 | e290 | 26 | 37 | | 11 | 198 | e72 | e56 | e52 | e26 | e200 | e58 | e240 | e150 | e260 | 23 | 30 | | 11<br>12 | 175 | e74 | e64 | e40 | e27 | e170 | e130 | e210 | e330 | e230 | 196 | 26 | | 13 | 157 | e78 | e88 | e45 | e28 | e160 | e220 | e190 | e1000 | e300 | 610 | 23 | | 14 | 148 | e76 | e100 | e35 | e29 | e150 | e200 | e170 | e900 | e610 | 377 | 21 | | 15 | 143 | e72 | e110 | e26 | e49 | e140 | e190 | e155 | e760 | 458 | 249 | 20 | | 16 | 139 | e68 | e130 | e24 | e45 | e130 | e170 | e140 | e600 | 354 | 180 | 20<br>18 | | 17 | 1 <b>3</b> 3 | e70 | e160 | e33 | e52 | e120 | e150 | e130 | e480 | 293 | 133<br>107 | 17 | | 18 | 127 | e70 | e190 | e26 | e62 | e105 | e130 | e120 | e430<br>e410 | 251<br>224 | 90 | 16 | | 19 | 121 | e72 | e220 | e24 | e130 | e100<br>e98 | e120<br>e110 | e115<br>e105 | e370 | 203 | 74 | 16 | | 20 | 116 | e70 | e200 | e32 | e320 | | | | | | | | | 21 | 112 | e68 | e180 | e31 | e200 | e94 | e105 | e100 | e460 | 181<br>144 | 61<br>52 | 15<br>122 | | 22 | 108 | e68 | e150 | e45 | e120 | e90 | e100 | e98<br>e94 | e600<br>e1200 | 13 <b>3</b> | 44 | 580 | | 23 | 106 | e66 | e56 | e42 | e110 | e90<br>e86 | e92<br>e94 | e91 | e1000 | 119 | 35 | 445 | | 24 | 104<br>101 | e68 | e58<br>e62 | e64<br>e49 | e82<br>e70 | e82 | e92 | e90 | e840 | 106 | 31 | 314 | | 25 | | e64 | | | | | | | | 96 | 51 | 249 | | 26 | 95 | . e50 | e41 | e39 | e72<br>e82 | e80<br>e78 | e84<br>e80 | e86<br>e83 | e720<br>e600 | 87 | 46 | 209 | | 27 | e91<br>e98 | e41 | e35<br>e22 | e32<br>e35 | e02<br>e99 | e78 | e76 | e79 | e520 | 78 | 32 | 177 | | 28 | e90 | e43<br>e52 | e22<br>e26 | e33 | | e72 | e82 | e81 | e450 | 70 | 27 | 157 | | 29<br>30 | e86 | e70 | e35 | e28 | | e70 | e86 | e76 | e400 | 62 | 24 | 141 | | 31 | e82 | | e67 | e25 | | e66 | | e71 | | 56 | 23 | | | TOTAL | 3729 | 2078 | 2724 | 1366 | 1955 | 6739 | 2995 | 4576 | 13382 | 7555 | 2874 | 3242 | | MEAN | 120 | 69.3 | 87.9 | 44.1 | 69.8 | 217 | 99.8 | 148 | 446 | 244 | 92.7 | 108 | | MAX | 230 | 82 | 220 | 100 | 320 | 940 | 220 | 340 | 1200 | 610 | 610 | 580 | | MIN | 82 | 41 | 22 | 24 | 24 | 66 | 58 | 71 | 64 | 56 | 23<br>5700 | 15<br>6430 | | AC-FT | 7400 | 4120 | 5400 | 2710 | 3880 | 1 <b>3</b> 370 | 5940 | 9080 | 26540 | 14990<br>1.05 | .40 | .46 | | CFSM | .52 | .30 | .38 | .19 | .30 | .93<br>1.08 | .43<br>.48 | .63<br>.73 | 1.91<br>2.14 | 1.21 | .46 | .52 | | IN. | .60 | .33 | .43 | .22 | .31 | | | | | 1.21 | • • • | ••• | | STATIST | ICS OF M | ONTHLY MEA | N DATA F | OR WATER | YEARS 1983 | - 1994, | , BY WATER | YEAR (WY | ) | | | | | MEAN | 139 | 102 | 81.4 | 47.5 | 93.1 | 253 | 367 | 302 | 480 | 244 | 76.6 | 68.9 | | MAX | 602 | 271 | 229 | 168 | 291 | 825 | 905 | 631 | 1277 | 1092 | 371 | 192 | | (WY) | 1983 | 1984 | 1983 | 1992 | 1984 | 1983 | 1993 | 1991 | 1984 | 1993 | 1993 | 1986 | | MIN | 4.10 | 2.54 | .40 | .98 | 2.13 | 17.0 | 15.4 | 70.1 | 38.5 | 9.78 | 2.17<br>1989 | 5.70<br>1984 | | (WY) | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1989 | 1989 | 1989 | | | | SUMMARY | STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | FOR 1994 WA | TER YEAR | | WATER YE | RS 1983 | - 1994 | | ANNUAL | | | | 144802 | | | 53215 | | | 400 | | | | ANNUAL | MEAN | | | 397 | | | 146 | | | 18 <b>8</b><br>431 | | 1993 | | HIGHEST | ANNUAL | MEAN | | | | | | | | 35.7 | | 1989 | | LOWEST | ANNUAL M | EAN | | 2260 | Mar 29 | | 1200 | Jun 23 | | 3670 | Jun 2 | 7 1983 | | | DAILY ME | | | 2360<br>22 | Feb 24 | | 15 | Sep 21 | | .07 | | 2 1989 | | | | Y MINIMUM | | 27 | Feb 18 | | 17 | Sep 15 | | - 08 | | 1 1989 | | | | EAK FLOW | | 2. | 10 | | unknown | | | 2850 | | 7 1984 | | | | EAK STAGE | | | | | unknown | | | 16.73 | | 7 1984 | | | ANEOUS L | | | | | | 14 | Sep 19 | a | .07 | Dec 2 | 2 1989 | | | RUNOFF ( | | | 287200 | | | 105600 | | | 136100 | | | | ANNUAL | RUNOFF ( | CFSM) | | 1.7 | | | .63 | | | .81 | | | | ANNUAL | RUNOFF ( | INCHES) | | 23.1 | 2 | | 8.50 | | | 10.96<br>467 | | | | 10 PERC | ENT EXCE | EDS | | 1250 | | | 330 | | | 72 | | | | 50 PERC | ENT EXCE | EDS | | 145 | | | 84<br>30 | | | 6.7 | | | | 90 PERC | ENT EXCE | FDS | | 36 | | | 30 | | | ••• | | | e Estimated. a Also Sept. 20 and 21. #### 05482300 NORTH RACCOON RIVER NEAR SAC CITY, IA LOCATION.--Lat 42°21'16", long 94°59'26", in NW1/4 NW1/4 sec.13, T.87 N., R.36 W., Sac County, Hydrologic Unit 07100006, on right bank 5 ft downstream from bridge on county highway, 2.1 mi upstream from Indian Creek, 0.3 mi upstream from Drainage ditch 73, 4.6 mi south of Sac City, and at mile 367.6 upstream from mouth of Des Moines River. DRAINAGE AREA.--700 mi<sup>2</sup>. e Estimated. PERIOD OF RECORD.--June 1958 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,146.03 ft above sea level. Prior to Oct. 1, 1987 at site 1.7 miles downstream at datum 1.43 ft lower. REMARKS.—Estimated daily discharges: Nov. 26 to Dec. 3, Dec. 9-12, Dec. 23 to Mar. 10, and Mar. 18-21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of June 21, 1954, reached a stage of 15.61 ft, from floodmark, discharge, 7,000 ft3/s. | | DIS | SCHARGE | E, CUBIC | FEET PER | SECOND, V | VATER Y<br>MEAN V | EAR OCTO | DBER 1993 | TO SEP | TEMBER 19 | 94 | | |---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 309<br>287<br>272<br>273<br>258 | 243<br>243<br>236<br>243<br>230 | e220<br>e220<br>e210<br>193<br>192 | e310<br>e240<br>e190<br>e185<br>e200 | e80<br>e105<br>e120<br>e110<br>e140 | e400<br>e500<br>e580<br>e1200<br>e3650 | 200<br>191<br>183<br>191<br>189 | 258<br>249<br>236<br>241<br>316 | 187<br>193<br>186<br>176<br>208 | 688<br>610<br>558<br>553<br>548 | 180<br>146<br>127<br>123<br>116 | 62<br>62<br>59<br>239<br>373 | | 6<br>7<br>8 | 262<br>270<br>273 | 216<br>229<br>230 | 193<br>190<br>179 | e210<br>e150<br>e90 | e160<br>e120<br>e86 | e1850<br>e975<br>e870 | 183<br>183<br>182 | 540<br>807<br>772 | 247<br>383<br>588 | 498<br>838<br>855 | 101<br>90<br>82 | 327<br>219<br>184 | | 9<br>10 | 408<br>652 | 212<br>211 | e180<br>e190 | e120<br>e145 | e90<br>e76 | e720<br>e630 | 186<br>175 | 693<br>616 | 431<br>348 | 737<br>592 | 72<br>79 | 154<br>128 | | 11<br>12<br>13<br>14<br>15 | 576<br>515<br>462<br>435<br>421 | 215<br>219<br>234<br>225<br>208 | e140<br>e170<br>268<br>281<br>343 | e160<br>e120<br>e140<br>e110<br>e80 | e80<br>e82<br>e84<br>e90<br>e150 | 554<br>506<br>467<br>443<br>418 | 166<br>202<br>432<br>526<br>496 | 572<br>523<br>486<br>467<br>432 | 336<br>427<br>1510<br>2440<br>1970 | 513<br>450<br>482<br>753<br>860 | 77<br>108<br>791<br>803<br>571 | 112<br>98<br>91<br>84<br>78 | | 16<br>17<br>18<br>19<br>20 | 411<br>390<br>377<br>360<br>346 | 207<br>212<br>212<br>215<br>210 | 379<br>449<br>559<br>605<br>561 | e74<br>e100<br>e80<br>e74<br>e100 | e140<br>e160<br>e200<br>e400<br>e1000 | 362<br>323<br>e309<br>e295<br>e285 | 460<br>400<br>374<br>348<br>311 | 387<br>363<br>342<br>325<br>309 | 1430<br>1080<br>915<br>828<br>742 | 686<br>576<br>489<br>428<br>367 | 418<br>322<br>250<br>202<br>164 | 72<br>67<br>62<br>59<br>58 | | 21<br>22<br>23<br>24<br>25 | 334<br>320<br>312<br>307<br>301 | 210<br>204<br>199<br>202<br>191 | 513<br>451<br>e170<br>e180<br>e190 | e96<br>e140<br>e130<br>e200<br>e150 | e600<br>e350<br>e320<br>e250<br>e210 | -e275<br>263<br>260<br>250<br>238 | 301<br>283<br>267<br>271<br>265 | 296<br>285<br>273<br>265<br>255 | 791<br>911<br>1090<br>2550<br>2130 | 328<br>293<br>257<br>229<br>199 | 137<br>118<br>104<br>96<br>93 | 60<br>86<br>454<br>789<br>584 | | 26<br>27<br>28<br>29<br>30<br>31 | 285<br>274<br>280<br>268<br>251<br>243 | e150<br>e120<br>e130<br>e160<br>e200 | e140<br>e100<br>e64<br>e80<br>e130<br>e200 | e120<br>e98<br>e110<br>e100<br>e86<br>e74 | e220<br>e250<br>e300<br> | 233<br>226<br>221<br>212<br>200<br>195 | 242<br>230<br>215<br>233<br>249 | 247<br>231<br>221<br>232<br>218<br>201 | 1690<br>1330<br>1100<br>935<br>795 | 180<br>162<br>148<br>135<br>125<br>120 | 109<br>106<br>90<br>71<br>63<br>62 | 469<br>408<br>357<br>314<br>288 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 10732<br>346<br>652<br>243<br>21290<br>.49 | 6216<br>207<br>243<br>120<br>12330<br>.30 | 7940<br>256<br>605<br>64<br>15750<br>.37 | 4182<br>135<br>310<br>74<br>8290<br>.19 | 5973<br>213<br>1000<br>76<br>11850<br>.30 | 17910<br>578<br>3650<br>195<br>35520<br>.83 | 8134<br>271<br>526<br>166<br>16130<br>.39 | 11658<br>376<br>807<br>201<br>23120<br>.54 | 27947<br>932<br>2550<br>176<br>55430<br>1.33<br>1.49 | 14257<br>460<br>860<br>120<br>28280<br>.66 | 5871<br>189<br>803<br>62<br>11650<br>.27 | 6397<br>213<br>789<br>58<br>12690<br>.30 | | | | | | | YEARS 1959 | - | | | | • | ••• | • | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 258<br>1782<br>1983<br>6.39<br>1959 | 222<br>1005<br>1984<br>9.44<br>1959 | 139<br>641<br>1983<br>4.39<br>1959 | 95.1<br>498<br>1983<br>.87<br>1977 | 167<br>1038<br>1984<br>1.16<br>1959 | 662<br>2723<br>1983<br>27.2<br>1968 | 776<br>2726<br>1983<br>25.6<br>1967 | 618<br>2077<br>1991<br>31.9<br>1967 | 800<br>3344<br>1984<br>24.7<br>1977 | 505<br>3096<br>1993<br>23.0<br>1977 | 212<br>1188<br>1993<br>9.29<br>1976 | 256<br>1966<br>1962<br>7.80<br>1976 | | | STATIST | tcs | FOR | | ENDAR YEAR | E | FOR 1994 W | ATER YEAR | | WATER YE | ARS 1959 | - 1994 | | LOWEST<br>HIGHEST | MEAN<br>TANNUAL M<br>ANNUAL ME<br>DAILY ME | AN<br>AN | | 403481<br>1105<br>6090 | Mar 30 | | 127217<br>349<br>3650 | Mar 5 | | 393<br>1331<br>25.3<br>12400 | | 1983<br>1977<br>23 1979 | | ANNUAL<br>INSTANT<br>INSTANT<br>INSTANT<br>ANNUAL | DAILY MEA<br>SEVEN-DAY<br>FANEOUS PE<br>FANEOUS PE<br>FANEOUS LO<br>RUNOFF (A | MINIMUM<br>CAK FLOW<br>CAK STAGE<br>OW FLOW<br>(C-FT) | | 64<br>115<br>800300 | Dec 28<br>Feb 18 | | 58<br>65<br>4890<br>16.13<br>55<br>252300 | Sep 20 | | .01<br>13100<br>20.14<br>.00<br>284600 | Jan<br>Mar<br>Jun | 30 1977<br>29 1977<br>23 1979<br>17 1990<br>days | | ANNUAL<br>10 PERC<br>50 PERC | RUNOFF (C<br>RUNOFF (I<br>ENT EXCEE<br>ENT EXCEE | NCHES)<br>DS<br>DS | | 1.5<br>21.4<br>2820<br>488<br>150 | | | .50<br>6.76<br>690<br>239<br>90 | | | .56<br>7.63<br>1000<br>127<br>15 | | | ### 05482500 NORTH RACCOON RIVER NEAR JEFFERSON, IA LOCATION.--Lat 41°59'17", long 94°22'36", in SW1/4 NW1/4 sec.20, T.83 N., R.30 W., Greene County, Hydrologic Unit 07100006, on right bank 3 ft downstream from bridge on State Highway 4, 0.1 mi downstream from Drainage ditch 33 and 40, 1.9 mi south of Jefferson, 4.2 mi upstream from Hardin Creek, and at mile 292.5 upstream from mouth of Des Moines River. PERIOD OF RECORD. -- March 1940 to current year. Prior to April 1940, monthly discharge only, published in WSP 1308. Prior to October 1955, published as Raccoon River near Jefferson. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1940 (M), 1950-51. GAGE.--Water-stage encoder. Datum of gage is 967.09 ft above sea level. Prior to Apr. 22, 1946, nonrecording gage at site 4 mi upstream at different datum. Apr. 22 to June 25, 1946, nonrecording gage, June 26, 1946 to Sept. 30, 1955, water-stage recorder, Oct. 1, 1955 to Apr. 30, 1958, nonrecording gage, at present site and datum. REMARKS.--Estimated daily discharges: Dec. 8-12, Dec. 21 to Mar. 5, May 9, 10, 17-22, June 5, 6, 8-13, July 20, 21, 26-29, and Sept. 26, 27. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. | a | | | | | | | | | | | | | | | |-------------------|--------------------------------------------------------------------------------------------------|------------------|--------------|---------------------|-------------------|---------------|-----------------------|----------------|---------------|-----------------------|------------|--------------------|--|--| | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994<br>DAILY MEAN VALUES | | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 990 | 649 | 701 | e760 | e230 | e620 | 502 | 570 | 401 | 1200 | 257 | 133 | | | | 2 | 953 | 640 | 600 | e660 | e250 | e610 | 492 | 585 | 391 | 1030 | 307 | 117 | | | | 3 | 910 | 631 | 566 | e560 | e300 | e660 | 485 | 580 | 366 | 918 | 316 | 113 | | | | 4<br>5 | 975<br>847 | 622<br>612 | 535<br>523 | e500<br>e540 | e290<br>e350 | e800<br>e2500 | 473<br>468 | 578<br>599 | 352<br>e391 | 854<br>821 | 279<br>265 | 173<br>259 | | | | | | | | | | | | | | | | | | | | 6<br>7 | 818 | 593 | 466 | e500 | e390 | 5220 | 472 | 707 | e396 | 796 | 232 | 790 | | | | é | 801<br>846 | 553<br>544 | 432<br>e390 | e450<br>e270 | e350<br>e250 | 3780<br>2160 | 452<br>455 | 946<br>1410 | 582<br>e2110 | 780<br>848 | 203<br>183 | 764<br>590 | | | | 9 | 978 | 573 | e410 | e300 | e260 | 1670 | 445 | e1510 | e1770 | 1080 | 166 | 469 | | | | 10 | 1040 | 545 | e370 | e340 | e220 | 1390 | 441 | e1410 | e1440 | 1050 | 163 | 386 | | | | 11 | 1260 | 538 | e340 | e400 | e200 | 1210 | 424 | 1240 | e1080 | 868 | 155 | 324 | | | | 12 | 1320 | 549 | e400 | e340 | e210 | 1110 | 426 | .1120 | e876 | 735 | 180 | 275 | | | | 13<br>14 | 1220 | 576<br>581 | 443<br>540 | e360 | e220 | 1050 | 469 | 1040 | e967 | 692 | 216 | 240 | | | | 15 | 1140<br>1100 | 584 | 562 | e310<br>e250 | e250<br>e370 | 1030<br>1020 | 66 <b>6</b><br>1070 | 960<br>914 | 1560<br>e3140 | 6 <b>8 8</b><br>82 4 | 328<br>987 | 213<br>193 | | | | 16 | 1070 | 551 | 597 | e220 | -360 | 991 | 997 | 872 | 2670 | 1160 | 828 | 179 | | | | 17 | 1030 | 535 | 664 | e230 | e360<br>e450 | 936 | 985 | e788 | 2200 | 1040 | 646 | 162 | | | | 18 | 991 | 535 | 747 | e250 | e500 | 888 | 910 | e738 | 1880 | 874 | 520 | 151 | | | | 19 | 959 | 542 | 852 | e200 | e800 | 837 | 837 | e711 | 1650 | 804 | 425 | 142 | | | | 20 | 925 | 548 | 980 | e250 | e1300 | 790 | 782 | e726 | 1540 | e754 | 352 | 135 | | | | 21 | 898 | 546 | e820 | e240 | e1800 | 758 | 732 | e732 | 1500 | e634 | 296 | 126 | | | | 22 | 871 | 530 | e660 | e350 | e2500 | 725 | 699 | e632 | 1350 | 506 | 251 | 123 | | | | 23<br>24 | 847<br>821 | 527<br>516 | e450<br>e470 | e330<br>e420 | e2000<br>e1600 | 697<br>674 | 662<br>634 | 605<br>611 | 1530<br>1490 | 461<br>417 | 217<br>191 | 13 <b>4</b><br>172 | | | | 25 | 803 | 528 | e490 | e350 | e1200 | 652 | 630 | 654 | 2840 | 383 | 177 | 655 | | | | 26 | 778 | 480 | e340 | e300 | e1000 | 635 | 608 | 590 | 2870 | e344 | 181 | e867 | | | | 27 | 750 | 313 | e280 | e270 | e800 | 610 | 571 | 541 | 2420 | e319 | 194 | e713 | | | | 28 | 732 | 429 | e190 | e300 | e680 | 594 | 562 | 497 | 1970 | e295 | 195 | 597 | | | | 29 | 720<br>705 | 519 | e260 | e250 | | 565 | 550 | 475 | 1670 | e268 | 192 | 535 | | | | 30<br>31 | 705<br>670 | 712 | e360<br>e600 | e240<br>e210 | | 542<br>516 | 543 | 460<br>437 | 1390 | 249<br>228 | 191<br>152 | 487 | | | | TOTAL | 28668 | 16601 | 16038 | 10950 | 19130 | 36240 | 18442 | 24238 | 44792 | 21920 | 9245 | 10217 | | | | MEAN | 925 | 553 | 517 | 353 | 683 | 1169 | 615 | 782 | 1493 | 707 | 298 | 341 | | | | MAX | 1320 | 712 | 980 | 760 | 2500 | 5220 | 1070 | 1510 | 3140 | 1200 | 987 | 867 | | | | MIN | 670 | 313 | 190 | 200 | 200 | 516 | 424 | 437 | 352 | 228 | 152 | 113 | | | | AC-FT | 56860 | 32930 | 31810 | 21720 | 37940 | 71880 | 36580 | 48080 | 88840 | 43480 | 18340 | 20270 | | | | CFSM<br>IN. | .57<br>.66 | .34<br>.38 | .32 | .22<br>.25 | .42<br>.44 | .72<br>.83 | .38<br>.42 | .48<br>.56 | .92<br>1.03 | .44<br>.50 | .18<br>.21 | .21<br>.23 | | | | 0.00 T.00 | | | | | | | | | | | | | | | | MEAN | 448 | 391 391 | 270 | 205 | YEARS 1940<br>405 | 1273 | 1427 | 1321 | 1746 | 1010 | 488 | 414 | | | | MAX | 3654 | 2011 | 1228 | 1045 | 2407 | 4990 | 5650 | 4702 | 6827 | 7584 | 3007 | 2823 | | | | (WY) | 1974 | 1974 | 1974 | 1973 | 1984 | 1983 | 1983 | 1984 | 1984 | 1993 | 1993 | 1962 | | | | MIN | 5.04 | 19.8 | 13.4 | 3.58 | 6.89 | 68.5 | 46.3 | 54.7 | 61.9 | 18.1 | 12.1 | 16.6 | | | | (WY) | 1957 | 1956 | 1977 | 1977 | 1977 | 1956 | 1956 | 1967 | 1977 | 1956 | 1956 | 1955 | | | | SUMMARY<br>ANNUAL | (STATIST) | CS. | FOR | 1993 CALE<br>910471 | ENDAR YEAR | E | FOR 1994 WA<br>256481 | ATER YEAR | | WATER YE | ARS 1940 | - 1994 | | | | ANNUAL | | | | 2494 | | | 703 | | | 792 | | | | | | HIGHEST | ANNUAL M | | | | | | , , , | | | 2615 | | 1993 | | | | | ANNUAL ME | | | 1.5100 | | | | | | 32.8 | _ | 1956 | | | | | DAILY ME | | | 16100<br>190 | Jul 10<br>Feb 24 | | 5220<br>113 | Mar 6<br>Sep 3 | | 23 <b>2</b> 00<br>.60 | Jun | 24 1947<br>5 1956 | | | | | SEVEN-DAY | | | 230 | Feb 18 | | 139 | Sep 17 | | .91 | Oct | 4 1956 | | | | | ANEOUS PE | | | | | | 5640 | Mar 6 | | 29100 | | 23 1947 | | | | INSTANT | ANEOUS PE | EAK STAGE | | | | | a11.93 | | | 22.30 | Jun | 23 1947 | | | | INSTANT<br>ANNUAL | ANEOUS LO | W FLOW<br>AC-FT) | | 1806000 | | | 105<br>508700 | Sep 3b | | 573600 | | | | | | ANNUAL | | FSM) | | 1.5 | | | .43 | ١ | | .49 | | | | | | ANNUAL | | NCHES) | | 20.9 | 12 | | 5.89 | ) | | 6.64 | | | | | | 10 PERC | ENT EXCEE<br>ENT EXCEE | DS | | 6620<br>1380 | | | 1250 | | | 1970 | | | | | | 90 PERC | ENT EXCEE | DS | | 336 | | | 578<br>219 | | | 276<br>40 | | | | | | | | | | | | | | | | | | | | | e Estimated. a Ice affected. b Also Sept. 4. #### 05483343 HAZELBRUSH CREEK NEAR MAPLE RIVER, IA LOCATION.—Lat 42°07'36", long 94°58'32", in SW1/4 SW1/4 sec.31, T.85 N., R.35 W., Carroll County, Hydrologic Unit 07100007, on right bank 0.26 mi upstream from bridge on county road, 0.40 mi above mouth ,and 2.9 mi northeast of Maple River. DRAINAGE AREA.--9.22 mi<sup>2</sup>. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1990 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,268.17 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 26, Dec. 22-30, Jan. 3, 7, 8, 15, and Feb. 15 to Mar. 5. Records good except those for estimated daily discharges, which are poor. | | DIS | CHARGE | , CUBIC F | EET PER S | | WATER Y<br>MEAN V | EAR OCTO | BER 1993 | то ѕерт | EMBER 19 | 994 | | |--------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 10<br>9.8<br>9.8<br>9.7<br>9.8 | 5.4<br>5.5<br>5.5<br>5.4<br>4.9 | 3.3<br>3.5<br>3.6<br>3.7<br>3.5 | 2.3<br>2.0<br>e1.8<br>2.0<br>2.0 | 1.6<br>1.7<br>1.8<br>1.7 | e3.2<br>e5.0<br>e15<br>e13<br>e11 | 2.0<br>2.1<br>2.1<br>2.1<br>2.1 | 2.9<br>2.8<br>2.5<br>2.5<br>2.5 | 2.1<br>2.0<br>1.9<br>1.9<br>2.5 | 3.2<br>2.8<br>4.1<br>5.2<br>5.2 | 1.3<br>1.1<br>1.1<br>1.1<br>.97 | .67<br>.56<br>.56<br>1.6 | | 6<br>7<br>8<br>9 | 9.5<br>8.8<br>8.6<br>8.3<br>8.0 | 4.5<br>4.6<br>4.7<br>4.3<br>4.3 | 3.6<br>3.5<br>3.3<br>3.4<br>3.5 | 1.8<br>e1.4<br>e1.4<br>1.8<br>1.8 | 1.4<br>1.1<br>1.2<br>1.1 | 8.6<br>6.0<br>5.0<br>4.0<br>3.3 | 2.1<br>2.1<br>1.9 | 2.8<br>3.0<br>3.5<br>3.2<br>2.9 | 2.3<br>2.1<br>2.0<br>2.1<br>2.2 | 3.8<br>3.2<br>2.7<br>2.4<br>2.4 | 1.1<br>1.7<br>.96<br>.83<br>.88 | .83<br>.80<br>.86<br>.84<br>.73 | | 11<br>12<br>13<br>14<br>15 | 8.0<br>7.8<br>7.7<br>7.4<br>7.5 | 4.3<br>4.4<br>4.3<br>4.0<br>4.1 | 3.5<br>3.4<br>3.7<br>3.8<br>3.8 | 1.8<br>1.7<br>1.7<br>1.7<br>e1.5 | 1.1<br>1.1<br>1.1<br>1.4<br>el.7 | 3.2<br>2.9<br>3.0<br>3.1<br>3.1 | | 2.9<br>2.8<br>2.9<br>2.7<br>2.5 | 2.2<br>2.1<br>2.2<br>2.1<br>2.0 | 2.4<br>3.8<br>3.0<br>2.6<br>2.3 | .89<br>1.4<br>1.4<br>1.1<br>.91 | .70<br>.68<br>.75<br>.75 | | 16<br>17<br>18<br>19<br>20 | 7.2<br>6.8<br>6.6<br>6.5<br>6.5 | 4.0<br>4.3<br>4.4<br>4.0<br>3.8 | 3.9<br>4.0<br>4.3<br>4.3 | 1.8<br>1.7<br>1.4<br>1.8<br>1.7 | e3.5<br>e7.0<br>e15<br>e10<br>e6.0 | 3.0<br>2.8<br>3.0<br>3.0<br>3.2 | 2.4<br>2.4<br>3.0<br>2.2<br>2.0 | 2.7<br>2.7<br>2.7<br>2.7<br>2.8 | 2.0<br>2.0<br>6.9<br>3.2<br>5.7 | 2.6<br>2.3<br>9.0<br>3.9<br>2.8<br>2.5<br>2.2 | .89<br>.86<br>.72<br>.68<br>.65 | .70<br>.71<br>.71<br>.75<br>.49 | | 21<br>22<br>23<br>24<br>25 | 6.3<br>6.3<br>6.1<br>5.6 | 3.9<br>4.0<br>3.8<br>3.7<br>3.6 | 4.3<br>e3.5<br>e3.0<br>e3.1<br>e3.2 | 1.7<br>2.0<br>2.5<br>2.2<br>2.2 | e5.0<br>e3.2<br>e4.4<br>e4.0<br>e3.6 | 3.0<br>3.2<br>3.0<br>2.4<br>2.0 | 2.4<br>2.4<br>2.5<br>2.6<br>2.8 | 2.4<br>2.3<br>2.3<br>2.1<br>2.0 | 8.4<br>4.4<br>6.5<br>5.4<br>4.5 | 1.9<br>1.7<br>1.6<br>1.7<br>1.6 | .69<br>.69<br>.64<br>.59 | .39<br>.56<br>.96<br>.68 | | 26<br>27<br>28<br>29<br>30<br>31 | 5.7<br>5.7<br>5.8<br>5.5<br>5.4<br>5.5 | e3.2<br>3.3<br>3.1<br>3.2<br>3.3 | e2.3<br>e2.0<br>e1.8<br>e1.9<br>e2.1<br>2.6 | 2.0<br>2.2<br>2.0<br>1.9<br>1.8<br>1.7 | e4.2<br>e4.6<br>e4.0<br> | 2.2<br>2.0<br>2.1<br>2.1<br>2.1<br>2.0 | 2.4<br>2.1<br>2.0<br>1.9<br>2.7 | 1.9<br>1.9<br>2.0<br>2.1<br>1.9 | 3.7<br>3.4<br>3.1<br>2.8<br>2.6 | 1.5<br>1.3<br>1.3<br>1.3<br>1.2 | .67<br>.62<br>.59<br>.57<br>.64 | .64<br>.60<br>.60<br>.60 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM | 228.5<br>7.37<br>10<br>5.4<br>453<br>.80 | 125.8<br>4.19<br>5.5<br>3.1<br>250 | 103.8<br>3.35<br>4.4<br>1.8<br>206<br>.36 | 57.3<br>1.85<br>2.5<br>1.4<br>114 | 95.1<br>3.40<br>15<br>1.0<br>189 | 130.5<br>4.21<br>15<br>2.0<br>259 | 68.6<br>2.29<br>3.0<br>1.9<br>136 | 78.8<br>2.54<br>3.5<br>1.9<br>156 | 96.3<br>3.21<br>8.4<br>1.9<br>191<br>.35 | 85.7<br>2.76<br>9.0<br>1.1<br>170 | 1.1 | 21.73<br>.72<br>1.6<br>.39<br>43 | | STATIST | rics of M | ONTHLY ME. | AN DATA FO | OR WATER Y | EARS 1991 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 3.22<br>7.37<br>1994<br>.53<br>1992 | 3.70<br>7.25<br>1993<br>1.63<br>1991 | 4.22<br>6.83<br>1992<br>1.51<br>1991 | 2.66<br>4.49<br>1992<br>1.35<br>1991 | 3.27<br>5.02<br>1991<br>1.51<br>1993 | 16.4<br>37.4<br>1993<br>4.21<br>1994 | 12.4<br>23.7<br>1991<br>2.29<br>1994 | 11.6<br>20.5<br>1991<br>2.54<br>1994 | 11.9<br>25.4<br>1991<br>2.92<br>1992 | 12.1<br>36.6<br>1993<br>2.76<br>1992 | 3.95<br>11.1<br>1993<br>.89<br>1994 | 6.22<br>22.2<br>1993<br>.51<br>1991 | | SUMMARY | STATIST | cs | FOR : | 1993 CALEN | DAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | EARS 1991 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL 10 PERC | | AN CAN IN | | 5442.2<br>14.9<br>343<br>1.0<br>1.1<br>10790<br>1.62<br>31<br>9.5<br>2.3 | Jul 9<br>Feb 17<br>Feb 16 | | .61<br>114<br>a6.14 | Feb 18<br>Sep 21<br>Aug 23<br>Mar 3<br>Mar 3<br>Jan 20 | | 7.66<br>15.0<br>3.07<br>343<br>.36<br>42<br>1120<br>14.77<br>.20<br>5550<br>.83 | Jul<br>Sep 1<br>Sep Jul<br>Jul<br>Dec | 1993<br>1994<br>9 1993<br>0 1991<br>4 1991<br>9 1993<br>9 1993<br>3 1990 | | | | | | | | | | | | | | | e Estimated. a Ice affected. ### 05483343 HAZELBRUSH CREEK NEAR MAPLE RIVER, IOWA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- April 1991 to September 30, 1994 (discontinued). #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: April 1991 to September 30, 1994 (discontinued). WATER TEMPERATURES: April 1991 to September 30, 1994 (discontinued). SUSPENDED-SEDIMENT DISCHARGE: April 1991 to September 30, 1994 (discontinued). REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 742 microsiemens Oct. 9, 1992; minimum daily, 180 microsiemens Mar. 16, 1993. WATER TEMPERATURES: Maximum daily, 25.0°C Sept. 9, 1994; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,230 mg/L Mar. 3, 1994; minimum daily mean, 12 mg/L Mar. 24, Oct. 1, and Dec. 7, 1992. SEDIMENT LOADS: Maximum daily, 3,870 tons July 9, 1993; minimum daily, 0.02 tons Oct. 18, 19, 24, 25, 1991. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 659 microsiemens Sept. 23; minimum daily, 306 microsiemens Feb. 18. WATER TEMPERATURES: Maximum daily, 25.0 °C, Sept. 9; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,230 mg/L Mar. 3; minimum daily mean, 20 mg/L Apr. 7 SEDIMENT LOADS: Maximum daily, 131 tons Mar. 3; minimum daily, 0.09 tons Sept. 21. # SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-----|-----| | 1 | 515 | 458 | 451 | 482 | 577 | 458 | 504 | 480 | 434 | 496 | 437 | 427 | | 2 | 433 | 447 | 430 | 519 | 638 | 475 | 495 | 412 | 416 | 401 | 435 | 445 | | 3 | 424 | 451 | 452 | 461 | 477 | 416 | 447 | 413 | 403 | 416 | 432 | 440 | | 4 | 441 | 442 | 459 | 469 | 466 | 308 | 437 | 398 | 410 | 512 | 447 | 480 | | 5 | 511 | 454 | 464 | 559 | 458 | 523 | 464 | 408 | 426 | 547 | 429 | 503 | | 6 | 424 | 451 | 461 | 532 | 429 | 491 | 511 | 408 | 407 | 454 | 427 | 459 | | 7 | 444 | 454 | 464 | 480 | 452 | 497 | 459 | 476 | 417 | 450 | 433 | 465 | | 8 | 430 | 448 | 493 | | 517 | | 499 | 408 | 419 | 429 | 462 | | | 9 | 453 | 449 | 448 | 452 | 498 | | 539 | 403 | 437 | 433 | 420 | 436 | | 10 | 431 | 469 | 530 | 455 | 462 | 537 | 454 | 406 | 416 | 426 | 431 | 458 | | 11 | 431 | 459 | 466 | 451 | 492 | 458 | 464 | 394 | 414 | 441 | 414 | 462 | | 12 | 435 | 461 | 473 | 466 | 450 | 505 | 428 | 395 | 473 | 425 | 431 | 469 | | 13 | 442 | 488 | 535 | 448 | 493 | 421 | 493 | 398 | 431 | 461 | 578 | 467 | | 14 | 450 | 462 | 500 | 448 | 436 | 425 | 466 | 420 | 440 | 442 | 452 | 517 | | 15 | 434 | 485 | 492 | 457 | 560 | 473 | 480 | 398 | 401 | 434 | 444 | 460 | | 16 | 430 | 574 | 544 | 464 | 560 | 483 | 489 | 404 | 416 | 391 | 440 | 489 | | 17 | 428 | 468 | 480 | 453 | 383 | 451 | 465 | 404 | 416 | 439 | 452 | 513 | | 18 | 432 | 476 | | | 306 | | 439 | 420 | 536 | 445 | 434 | 471 | | 19 | 431 | 463 | | 445 | 486 | 497 | 435 | 422 | 432 | 442 | 435 | 495 | | 20 | 416 | 472 | | 453 | 453 | 488 | 444 | 406 | 504 | 441 | 426 | 525 | | 21 | 447 | 495 | 458 | 445 | 428 | 504 | 411 | 403 | 538 | 441 | 455 | 451 | | 22 | 428 | 469 | 463 | 451 | 497 | 429 | 406 | 425 | 416 | 438 | 427 | 563 | | 23 | 436 | 463 | 448 | 456 | 431 | 436 | 401 | 448 | 546 | 467 | 428 | 659 | | 24 | 461 | 476 | 457 | 500 | 434 | 52 <b>6</b> | 397 | 416 | 484 | 435 | 436 | 468 | | 25 | 445 | 485 | 449 | 444 | 441 | 448 | 401 | 410 | 501 | 433 | 458 | 587 | | 26 | 465 | 477 | 448 | | 487 | 493 | 409 | 405 | 510 | 436 | 463 | 476 | | 27 | 451 | 467 | 480 | 451 | 439 | 436 | 420 | 411 | 502 | 452 | 444 | 480 | | 28 | 464 | 544 | 467 | 577 | 440 | | 406 | 405 | 497 | 433 | 523 | 462 | | 29 | 478 | 468 | 470 | 528 | | | 403 | 406 | 436 | 435 | 448 | 462 | | 30 | 473 | 446 | 470 | 640 | | 458 | 404 | 438 | 496 | 423 | 433 | 455 | | จา | 494 | | 451 | 451 | | 505 | | 410 | | /31 | 430 | | # 05483343 HAZELBRUSH CREEK NEAR MAPLE RIVER, IOWA--Continued SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU | ARY | MARC | :H | | 1<br>2<br>3<br>4<br>5 | 114<br>86<br>118<br>134<br>143 | 3.2<br>2.3<br>3.1<br>3.5<br>3.8 | 46<br>44<br>42<br>57<br>59 | .67<br>.64<br>.63<br>.83 | 84<br>110<br>69<br>94<br>114 | .75<br>1.0<br>.67<br>.93<br>1.1 | 78<br>64<br>77<br>65<br>55 | .49<br>.35<br>.37<br>.35 | 56<br>45<br>47<br>61<br>49 | .24<br>.21<br>.22<br>.28<br>.21 | 94<br>120<br>3230<br>1820<br>710 | .81<br>1.6<br>131<br>64<br>21 | | 6<br>7<br>8<br>9<br>10 | 151<br>141<br>108<br>103<br>101 | 3.9<br>3.4<br>2.5<br>2.3<br>2.2 | 62<br>56<br>43<br>92<br>98 | .77<br>.69<br>.55<br>1.1<br>1.1 | 137<br>117<br>105<br>80<br>76 | 1.3<br>1.1<br>.96<br>.74<br>.72 | 45<br>49<br>65<br>116<br>112 | .22<br>.19<br>.25<br>.56 | 58<br>65<br>75<br>61<br>57 | .22<br>.20<br>.25<br>.17<br>.16 | 247<br>110<br>68<br>67<br>58 | 6.1<br>1.8<br>.93<br>.74 | | 11<br>12<br>13<br>14<br>15 | 115<br>122<br>93<br>130<br>101 | 2.5<br>2.6<br>1.9<br>2.6<br>2.0 | 40<br>78<br>103<br>51<br>48 | .46<br>.93<br>1.2<br>.55<br>.52 | 66<br>51<br>118<br>118<br>149 | .63<br>.47<br>1.2<br>1.2<br>1.5 | 96<br>103<br>97<br>117<br>130 | .46<br>.47<br>.44<br>.53 | 51<br>67<br>66<br>79<br>97 | .15<br>.20<br>.19<br>.31<br>.45 | 70<br>100<br>101<br>97<br>95 | .63<br>.78<br>.83<br>.82 | | 16<br>17<br>18<br>19<br>20 | 65<br>61<br>70<br>78<br>81 | 1.3<br>1.1<br>1.2<br>1.4<br>1.4 | 96<br>47<br>41<br>40<br>50 | 1.1<br>.54<br>.49<br>.43<br>.51 | 96<br>64<br>61<br>64<br>62 | 1.0<br>.70<br>.71<br>.75<br>.75 | 103<br>80<br>62<br>59<br>60 | .51<br>.36<br>.24<br>.29<br>.27 | 232<br>842<br>2180<br>499<br>188 | 2.2<br>16<br>88<br>13<br>3.0 | 74<br>55<br>58<br>72<br>56 | .60<br>.42<br>.47<br>.59 | | 21<br>22<br>23<br>24<br>25 | 77<br>61<br>64<br>62<br>65 | 1.3<br>1.0<br>1.1<br>1.0<br>.99 | 53<br>52<br>50<br>51<br>73 | .56<br>.56<br>.52<br>.51 | 57<br>58<br>70<br>63<br>66 | .67<br>.55<br>.57<br>.53 | 55<br>77<br>100<br>88<br>81 | .25<br>.43<br>.67<br>.51<br>.47 | 138<br>127<br>168<br>193<br>143 | 1.9<br>1.1<br>2.0<br>2.1<br>1.4 | 94<br>77<br>111<br>68<br>58 | .75<br>.67<br>.90<br>.44<br>.31 | | 26<br>27<br>28<br>29<br>30<br>31 | 66<br>63<br>66<br>75<br>46<br>36 | 1.0<br>.98<br>1.0<br>1.1<br>.68 | 85<br>54<br>69<br>43<br>65 | .73<br>.48<br>.58<br>.38 | 41<br>67<br>56<br>77<br>72<br>73 | .25<br>.36<br>.27<br>.40<br>.41 | 94<br>107<br>64<br>42<br>55<br>81 | .50<br>.63<br>.35<br>.22<br>.27 | 122<br>119<br>115 | 1.4<br>1.5<br>1.2 | 34<br>54<br>43<br>35<br>40<br>31 | .21<br>.29<br>.24<br>.20<br>.23 | | TOTAL | | 58.88 | | 20.11 | | 23.27 | | 12.39 | | 138.26 | | 239.31 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <b>A</b> PR1 | I <b>L</b> | MAY | | JUNE | 3 | JULY | ť | AUGUS | ST | SEPTEM | BER | | 1<br>2<br>3<br>4<br>5 | APRI<br>42<br>35<br>48<br>45<br>44 | .23<br>.19<br>.27<br>.26 | MAY<br>72<br>40<br>44<br>55<br>66 | .55<br>.30<br>.29<br>.37 | JUNE<br>131<br>114<br>92<br>114<br>138 | .74<br>.62<br>.46<br>.58 | JULY<br>132<br>97<br>200<br>195<br>199 | 1.2<br>.73<br>2.5<br>2.7<br>2.8 | AUGU:<br>99<br>138<br>113<br>89<br>97 | .36<br>.39<br>.35<br>.25 | SEPTEMI<br>148<br>137<br>146<br>189<br>224 | .27<br>.21<br>.22<br>.87 | | 2<br>3<br>4 | 42<br>35<br>48<br>45 | .23<br>.19<br>.27 | 72<br>40<br>44<br>55 | .30<br>.29<br>.37 | 131<br>114<br>92<br>114 | .74<br>.62<br>.46<br>.58 | 132<br>97<br>200<br>195 | 1.2<br>.73<br>2.5<br>2.7 | 99<br>138<br>113<br>89 | .36<br>.39<br>.35<br>.25 | 148<br>137<br>146<br>189 | .27<br>.21<br>.22<br>.87 | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 42<br>35<br>48<br>45<br>44<br>34<br>20<br>27<br>27 | .23<br>.19<br>.27<br>.26<br>.25 | 72<br>40<br>44<br>55<br>66<br>69<br>61<br>56<br>46 | .30<br>.29<br>.37<br>.44<br>.52<br>.49<br>.52 | 131<br>114<br>92<br>114<br>138<br>135<br>152<br>104 | .74<br>.62<br>.46<br>.58<br>.95<br>.82<br>.85<br>.57 | 132<br>97<br>200<br>195<br>199<br>164<br>176<br>125 | 1.2<br>.73<br>2.5<br>2.7<br>2.8<br>1.7<br>1.5<br>.92 | 99<br>138<br>113<br>89<br>97<br>94<br>117<br>123<br>133 | .36<br>.39<br>.35<br>.25<br>.25 | 148<br>137<br>146<br>189<br>224<br>168<br>87<br>73<br>69 | .27<br>.21<br>.22<br>.87<br>.62 | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 42<br>35<br>48<br>45<br>44<br>34<br>20<br>27<br>27<br>34<br>35<br>53<br>42<br>55 | .23<br>.19<br>.27<br>.26<br>.25<br>.23<br>.11<br>.15<br>.16<br>.17 | 72<br>40<br>44<br>55<br>66<br>69<br>61<br>56<br>64<br>70<br>67<br>67<br>77 | .30<br>.29<br>.37<br>.44<br>.52<br>.49<br>.51<br>.52<br>.39<br>.51 | 131<br>114<br>92<br>114<br>138<br>135<br>152<br>104<br>89<br>104 | .74<br>.62<br>.46<br>.58<br>.95<br>.82<br>.85<br>.57<br>.51<br>.62 | 132<br>97<br>200<br>195<br>199<br>164<br>176<br>125<br>107<br>119<br>158<br>208<br>201<br>159 | 1.2<br>.73<br>2.5<br>2.7<br>2.8<br>1.7<br>1.5<br>.92<br>.70<br>.76 | 99<br>138<br>113<br>89<br>97<br>94<br>117<br>123<br>133<br>152<br>172<br>136<br>85<br>148 | .36<br>.39<br>.35<br>.25<br>.25<br>.28<br>.53<br>.32<br>.30<br>.37 | 148<br>137<br>146<br>189<br>224<br>168<br>87<br>73<br>69<br>92<br>110<br>132<br>114 | .27<br>.21<br>.22<br>.87<br>.62<br>.38<br>.19<br>.16<br>.18 | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 42<br>35<br>48<br>45<br>44<br>34<br>20<br>27<br>34<br>35<br>53<br>42<br>55<br>66<br>49<br>46<br>24 | .23<br>.19<br>.27<br>.26<br>.25<br>.23<br>.11<br>.15<br>.16<br>.17<br>.18<br>.34<br>.26<br>.37<br>.51 | 72<br>40<br>44<br>55<br>66<br>69<br>61<br>56<br>46<br>70<br>67<br>67<br>76<br>63<br>84<br>100<br>91 | .30<br>.29<br>.37<br>.44<br>.52<br>.49<br>.52<br>.39<br>.51<br>.55<br>.43<br>.61<br>.72<br>.65 | 131<br>114<br>92<br>114<br>138<br>135<br>152<br>104<br>89<br>104<br>87<br>107<br>148<br>199<br>188<br>197<br>203 | .74<br>.62<br>.46<br>.58<br>.95<br>.82<br>.85<br>.57<br>.51<br>.62<br>.82<br>.88<br>.81<br>.11 | 132<br>97<br>200<br>195<br>199<br>164<br>176<br>125<br>107<br>119<br>158<br>208<br>201<br>159<br>141<br>541<br>121<br>130<br>168 | 1.2<br>.73<br>2.5<br>2.7<br>2.8<br>1.7<br>1.5<br>.92<br>.70<br>.76<br>1.0<br>2.4<br>1.7<br>1.1<br>.87 | 99<br>138<br>113<br>89<br>97<br>94<br>117<br>123<br>133<br>152<br>172<br>136<br>85<br>148<br>148<br>180<br>163 | .36<br>.39<br>.35<br>.25<br>.25<br>.28<br>.53<br>.32<br>.30<br>.37<br>.41<br>.49<br>.32<br>.43<br>.38 | 148<br>137<br>146<br>189<br>224<br>168<br>87<br>73<br>69<br>92<br>110<br>132<br>114<br>111<br>110 | .27<br>.21<br>.22<br>.87<br>.62<br>.38<br>.19<br>.17<br>.18<br>.21<br>.24<br>.23<br>.22<br>.23<br>.20<br>.15<br>.19 | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 42<br>35<br>48<br>44<br>34<br>20<br>27<br>34<br>35<br>35<br>42<br>55<br>66<br>49<br>44<br>48<br>39<br>44<br>39<br>45 | .23<br>.19<br>.27<br>.26<br>.25<br>.23<br>.11<br>.15<br>.16<br>.17<br>.18<br>.34<br>.26<br>.37<br>.51<br>.31<br>.29<br>.19<br>.29<br>.22 | 72<br>40<br>44<br>55<br>66<br>69<br>61<br>56<br>46<br>64<br>70<br>67<br>67<br>63<br>84<br>100<br>91<br>113<br>118<br>121<br>144<br>157 | .30<br>.29<br>.37<br>.44<br>.52<br>.49<br>.51<br>.54<br>.50<br>.55<br>.43<br>.65<br>.65<br>.65<br>.85 | 131<br>114<br>92<br>114<br>138<br>135<br>152<br>104<br>89<br>104<br>87<br>107<br>148<br>170<br>199<br>188<br>197<br>517<br>203<br>226<br>319<br>164<br>226<br>100 | .74<br>.62<br>.46<br>.58<br>.95<br>.82<br>.857<br>.57<br>.62<br>.52<br>.62<br>.95<br>1.1<br>1.0<br>1.1<br>12<br>1.8<br>9.1<br>9.8<br>9.0<br>4.2<br>1.5 | 132<br>97<br>200<br>195<br>199<br>164<br>176<br>125<br>107<br>119<br>158<br>208<br>201<br>159<br>141<br>541<br>121<br>130<br>168<br>160 | 1.2<br>.73<br>2.5<br>2.7<br>2.8<br>1.7<br>1.5<br>.70<br>.76<br>1.0<br>2.4<br>1.7<br>1.1<br>.87<br>17<br>1.3<br>.99<br>1.1<br>.93 | 99<br>138<br>113<br>897<br>97<br>94<br>117<br>123<br>133<br>135<br>152<br>172<br>136<br>85<br>148<br>157<br>148<br>180<br>163<br>156 | .36<br>.39<br>.35<br>.25<br>.25<br>.28<br>.53<br>.30<br>.37<br>.41<br>.49<br>.32<br>.43<br>.38<br>.34<br>.35<br>.27 | 148<br>137<br>146<br>189<br>224<br>168<br>87<br>73<br>699<br>110<br>132<br>114<br>111<br>110<br>105<br>78<br>96<br>118<br>105 | .27<br>.21<br>.22<br>.87<br>.62<br>.38<br>.19<br>.17<br>.16<br>.18<br>.21<br>.23<br>.22<br>.23<br>.22<br>.23<br>.29<br>.15<br>.19<br>.24<br>.14 | # 05483343 HAZELBRUSH CREEK NEAR MAPLE RIVER, IOWA--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------------|---------------------------------|---------------------------------|-----------------------|--------------------------|--------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------| | 1<br>2<br>3<br>4<br>5 | 12.0<br>10.0<br>11.0<br>12.0<br>9.0 | 5.0<br>7.0<br>7.0<br>9.0<br>4.0 | 4.0<br>3.0<br>5.0<br>4.0<br>3.0 | 1.0<br>.0<br>.0<br>.0 | .0 | .0<br>1.0<br>2.5<br>5.0<br>5.0 | 3.0<br>6.0<br>1.0<br>5.0 | 4.0<br>9.0<br>8.0<br>10.0<br>9.0 | 14.0<br>13.0<br>12.0<br>14.0<br>16.0 | 18.0<br>18.0<br>17.0<br>18.0<br>20.0 | 19.0<br>19.0<br>20.0<br>19.0<br>14.0 | 14.0<br>14.0<br>17.0<br>16.0<br>18.0 | | 6<br>7<br>8<br>9<br>10 | 15.0<br>16.0<br>14.0<br>8.0<br>7.0 | 3.0<br>3.0<br>4.0<br>4.0<br>3.0 | 1.0<br>1.0<br>1.0<br>3.0<br>3.0 | .0<br> | .0 | 3.0<br>3.0<br><br>2.0 | .0<br>5.0<br>7.0<br>4.0 | 7.0<br>7.0<br>8.0<br>9.0<br>9.0 | 18.0<br>18.0<br>15.0<br>14.0<br>16.0 | 18.0<br>19.0<br>15.0<br>16.0<br>18.0 | 16.0<br>18.0<br>19.0<br>16.0<br>20.0 | 14.0<br>14.0<br><br>25.0<br>19.0 | | 11<br>12<br>13<br>14<br>15 | 7.0<br>8.0<br>7.0<br>10.0<br>12.0 | 4.0<br>4.0<br>6.0<br>5.0<br>3.0 | .0<br>4.0<br>4.0<br>2.0<br>3.0 | .0 | .0 | .0<br>3.0<br>2.0<br>3.0<br>3.0 | 5.0<br>5.0<br>5.0<br>6.0<br>7.0 | 13.0<br>12.0<br>13.0<br>15.0<br>13.0 | 16.0<br>15.0<br>19.0<br>22.0<br>22.0 | 18.0<br>18.0<br>16.0<br>17.0<br>16.0 | 17.0<br>17.0<br>18.0<br>14.0<br>13.0 | 18.0<br>19.0<br>20.0<br>21.0<br>21.0 | | 16<br>17<br>18<br>19<br>20 | 12.0<br>11.0<br>10.0<br>10.0<br>9.0 | 4.0<br>4.0<br>5.0<br>5.0<br>3.0 | 3.0<br>4.0<br> | .0<br><br>.0 | 1.0<br>1.0<br>2.0<br>5.0 | 1.0<br>3.0<br><br>5.0<br>7.0 | 6.0<br>6.0<br>10.0<br>8.0<br>11.0 | 13.0<br>13.0<br>13.0<br>14.0 | 21.0<br>21.0<br>21.0<br>20.0<br>21.0 | 18.0<br>17.0<br>17.0<br>19.0<br>18.0 | 15.0<br>19.0<br>19.0<br>20.0<br>17.0 | 16.0<br>14.0<br>12.0<br>12.0<br>16.0 | | 21<br>22<br>23<br>24<br>25 | 8.0<br>7.0<br>10.0<br>10.0 | 4.0<br>4.0<br>6.0<br>2.0 | .0<br>.0<br>.0 | .0<br>.0<br>1.0<br>.0 | .0<br>.0<br>.0 | 2.0<br>6.0<br>3.0<br>.0 | 8.0<br>7.0<br>8.0<br>15.0 | 17.0<br>16.0<br>17.0<br>17.0<br>15.0 | 18.0<br>17.0<br>17.0<br>16.0<br>17.0 | 17.0<br>17.0<br>17.0<br>18.0<br>17.0 | 15.0<br>16.0<br>17.0<br>19.0<br>22.0 | 17.0<br>12.0<br>10.0<br>11.0<br>14.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 9.0<br>7.0<br>9.0<br>4.0<br>4.0<br>7.0 | .0<br>.0<br>.0<br>1.0<br>2.0 | .0<br>.0<br>.0<br>.0 | .0<br>.0<br>.0 | .0<br>.0<br>.0 | 3.0<br>3.0<br><br>1.0<br>3.0 | 13.0<br>6.0<br>5.0<br>3.0<br>4.0 | 12.0<br>12.0<br>14.0<br>17.0<br>17.0 | 24.0<br>15.0<br>16.0<br>18.0<br>15.0 | 17.0<br>15.0<br>14.0<br>16.0<br>16.0 | 19.0<br>21.0<br>18.0<br>15.0<br>18.0<br>16.0 | 11.0<br>9.0<br>9.0<br>9.0<br>14.0 | ### 05483450 MIDDLE RACCOON RIVER NEAR BAYARD, IA LOCATION.--Lat 41°46'43", long 94°29'33", in SW1/4 SW1/4 sec. 32, T.81 N., R.31 W., Guthrie County, Hydrologic Unit 07100007, on left bank 15 ft downstream from bridge on State Highway 25, 0.2 mi downstream from Battle Run Creek, 1.8 mi upstream from Springbrook Creek, 5.8 mi southeast of Bayard, 10.4 mi upstream from dam at Lake Panorama, and at mile 279.2 upstream from mouth of Des Moines River. DRAINAGE AREA.--375 mi<sup>2</sup>. PERIOD OF RECORD.--March 1979 to current year. Occasional low-flow measurements, water years 1976, 1977. GAGE.--Water-stage encoder. Datum of gage is 1,040.00 ft above sea level. Prior to June 23, 1979, nonrecording gage on downstream side of State Highway 25 bridge. REMARKS.--Estimated daily discharges: Nov. 26 to Dec. 1 and Dec. 21 to Mar. 5. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. Gage-height telemeter at station. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD .- Flood of July 3, 1973 reached a stage of 21.63 ft, from contracted-opening measurement, discharge, 14,600 ft<sup>3</sup>/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | | DIS | CHARGE, | COBIC P | EEI PEK | | MEAN V | | DEK 1993 | IU SEP. | I EMIDEK 195 | 14 | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-----------|-----------|------------|------------|---------|------------|-----------|---------|--------------|---------|--------| | 2 295 193 145 6120 e94 6160 127 106 83 145 64 33 13 145 64 32 34 145 145 145 145 145 145 145 145 145 14 | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3 285 184 142 e110 e110 e200 124 103 81 112 55 32 55 32 50 185 139 e300 e100 e100 e650 122 102 104 87 141 69 97 14 | 1 | 315 | 208 | e140 | e140 | e84 | e170 | 129 | 107 | 76 | 115 | 56 | 37 | | 4 280 183 139 e100 e100 e760 122 102 75 119 85 54 55 56 517 138 e110 e110 e120 e620 123 104 87 111 e110 e110 e760 123 104 87 111 e110 e760 97 67 67 67 67 67 67 67 67 67 67 67 67 67 | | | | 145 | e120 | e94 | e160 | | | | | | | | 5 | 3 | | | | | | | | | | | 55 | | | 6 261 171 137 e120 e120 493 119 115 103 165 52 72 72 72 72 72 72 72 72 72 72 72 72 72 | | | | | | | | | | | | | | | The color of | J | 203 | 1,, | 130 | 6110 | 6110 | 6020 | 123 | 103 | ٠, | 474 | 0,5 | | | 8 254 172 133 e98 e88 244 116 121 95 101 44 38 10 292 166 130 e110 e76 225 113 116 92 93 45 37 112 11 276 168 130 e110 e76 225 113 116 92 93 45 37 112 268 164 125 e130 e82 228 112 111 92 90 46 35 12 112 2268 164 122 e110 e88 198 119 109 138 88 48 33 1256 169 128 e120 e92 190 133 106 121 97 58 32 14 250 163 125 e100 e98 189 119 109 138 88 48 33 14 250 163 125 e100 e98 189 124 105 163 95 55 31 15 228 159 126 e92 e100 177 156 105 109 86 45 31 15 228 159 126 e92 e100 177 156 105 109 86 45 31 16 227 176 157 131 e100 e180 166 133 96 93 80 38 32 14 250 157 131 e100 e180 166 133 96 93 80 38 32 18 267 155 151 132 e94 e260 164 122 955 172 81 37 30 18 20 275 136 132 e94 e260 164 122 955 172 81 37 30 120 275 136 132 e94 e260 164 122 955 172 81 37 30 120 275 136 132 e94 e260 164 122 955 172 81 37 30 120 275 136 132 e94 e260 164 121 93 151 68 35 39 22 22 251 153 161 0 e100 e210 156 114 89 162 65 34 29 22 22 251 153 e110 e120 e100 e100 156 114 89 162 65 34 29 22 22 251 153 e110 e120 e100 e100 e100 e100 e100 e100 | | | | | | | | | | | | | | | 9 287 168 131 e98 e88 244 116 121 95 101 44 38 10 292 166 130 e110 e76 225 113 116 92 93 45 37 11 276 164 125 e130 e82 208 112 111 92 90 46 31 13 256 169 128 e120 e92 1190 133 106 121 97 58 32 14 250 163 125 e100 e98 183 124 105 163 95 57 31 15 282 159 126 e82 e130 177 156 105 109 86 45 31 15 282 159 126 e82 e120 177 156 105 109 86 45 31 16 302 157 126 e84 e120 177 156 105 109 86 45 31 17 276 157 131 e100 e180 166 133 96 93 80 38 32 18 262 155 132 e94 e260 164 129 95 172 81 37 30 19 257 156 132 e84 e500 160 121 95 172 81 37 30 19 257 156 132 e84 e500 160 121 95 172 81 37 30 19 257 156 132 e84 e500 160 121 95 172 81 37 30 20 256 152 131 e100 e210 156 114 91 181 68 35 29 21 22 251 153 e110 e120 e120 e170 151 112 98 179 61 34 32 23 23 248 151 e100 e120 e170 151 112 88 179 61 34 32 23 248 151 e100 e120 e100 e100 150 160 87 197 58 33 42 24 243 150 e110 e120 e100 e100 e130 160 87 197 58 33 42 25 239 153 e120 e100 e100 e100 150 160 87 197 58 33 42 25 239 153 e120 e00 e00 e94 e140 142 99 e11 152 49 41 82 26 233 e120 e100 e100 e100 130 141 106 86 199 54 32 47 27 225 e100 e80 e94 e140 142 99 e11 152 49 41 53 28 225 e110 e60 e94 e140 142 99 e11 152 49 41 53 28 225 e110 e60 e94 e100 e130 141 106 86 199 54 32 47 27 225 e100 e80 e94 e100 130 141 104 83 172 51 35 71 27 225 e100 e80 e94 e100 130 141 104 83 172 51 35 71 28 225 e110 e62 e110 e60 130 141 104 83 172 51 35 71 27 225 e100 e80 e94 e100 130 141 104 83 172 51 35 71 28 225 e110 e60 e94 e100 e130 141 106 86 129 9 54 32 47 28 225 e110 e60 e90 e90 e94 e100 e130 141 106 86 125 49 41 53 41 104 104 104 104 104 104 104 104 104 | | | | | | | | | | | | | | | 10 292 166 130 e110 e76 225 113 116 92 93 45 37 11 276 164 125 e110 e82 208 112 111 92 90 46 35 13 256 669 128 e110 e92 108 112 110 188 e84 66 33 14 250 163 125 e100 e98 183 124 105 163 95 57 31 15 282 159 126 e82 e130 177 156 105 109 86 45 31 16 302 157 126 e84 e120 e120 e130 177 156 105 109 86 45 31 17 276 157 126 e84 e120 e120 e130 177 156 105 109 86 45 31 18 252 159 126 e92 e130 170 147 101 96 81 40 32 17 275 156 153 12 e100 e100 e100 e100 e100 e100 e100 e | | | | | e90 | | | | | | | | | | 11 276 | | | | | | | | | | | | | | | 12 | 44 | | 100 | 130 | 0110 | -70 | 223 | 113 | *** | | | | | | 13 | | | | | | | | | | | | | | | 14 250 163 125 e100 e38 183 124 105 163 95 57 91 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 16 302 157 126 e84 e120 170 147 101 96 81 40 32 17 276 157 131 e100 e180 166 133 96 93 80 38 32 32 32 32 34 25 33 19 257 156 132 e84 e560 164 129 95 172 81 37 30 30 32 32 32 34 25 33 25 33 25 35 35 35 | | | | | | | | | | | | | | | 17 | | | 102 | 120 | | 0200 | | 100 | | | | | | | 21 255 154 e120 e96 e180 154 114 89 162 65 34 29 22 251 153 e110 e120 e170 151 112 88 179 61 34 32 23 248 151 e100 e110 e140 e140 145 107 87 238 55 33 48 25 239 153 e120 e120 e120 e120 141 106 86 199 54 32 47 26 233 e120 e100 e100 e100 e101 142 193 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 21 28 225 e100 e80 e94 e140 142 99 81 152 49 41 21 29 220 e120 e70 e100 e160 137 101 80 138 48 36 46 29 220 e120 e70 e94 e140 142 99 81 152 49 41 21 30 213 e120 e120 e80 e94 e140 142 99 81 152 49 41 21 30 213 e130 e100 e94 e140 142 99 81 152 49 41 21 30 213 e130 e100 e94 e140 142 29 98 81 152 49 41 21 30 213 e130 e100 e94 e140 142 29 98 81 152 49 41 21 31 210 e1 e120 e80 e140 e160 137 101 80 138 48 36 46 29 220 e120 e70 e80 e94 e140 142 29 98 86 115 47 33 39 31 210 e140 e80 e140 e150 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 137 132 101 80 138 11 1252 138 11 106 140 221 119 98.7 129 85.5 44.5 41.7 11 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | | | | | | | 21 255 154 e120 e96 e180 154 114 89 162 65 34 29 22 251 153 e110 e120 e170 151 112 88 179 61 34 32 23 248 151 e100 e110 e140 e140 145 107 87 238 55 33 48 25 239 153 e120 e120 e120 e120 141 106 86 199 54 32 47 26 233 e120 e100 e100 e100 e101 142 193 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 21 28 225 e100 e80 e94 e140 142 99 81 152 49 41 21 29 220 e120 e70 e100 e160 137 101 80 138 48 36 46 29 220 e120 e70 e94 e140 142 99 81 152 49 41 21 30 213 e120 e120 e80 e94 e140 142 99 81 152 49 41 21 30 213 e130 e100 e94 e140 142 99 81 152 49 41 21 30 213 e130 e100 e94 e140 142 29 98 81 152 49 41 21 30 213 e130 e100 e94 e140 142 29 98 81 152 49 41 21 31 210 e1 e120 e80 e140 e160 137 101 80 138 48 36 46 29 220 e120 e70 e80 e94 e140 142 29 98 86 115 47 33 39 31 210 e140 e80 e140 e150 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 137 132 101 80 138 11 1252 138 11 106 140 221 119 98.7 129 85.5 44.5 41.7 11 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | 96 | 93 | 80 | | | | 21 255 154 e120 e96 e180 154 114 89 162 65 34 29 22 251 153 e110 e120 e170 151 112 88 179 61 34 32 23 248 151 e100 e110 e140 e140 145 107 87 238 55 33 48 25 239 153 e120 e120 e120 e120 141 106 86 199 54 32 47 26 233 e120 e100 e100 e100 e101 142 193 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 21 28 225 e100 e80 e94 e140 142 99 81 152 49 41 21 29 220 e120 e70 e100 e160 137 101 80 138 48 36 46 29 220 e120 e70 e94 e140 142 99 81 152 49 41 21 30 213 e120 e120 e80 e94 e140 142 99 81 152 49 41 21 30 213 e130 e100 e94 e140 142 99 81 152 49 41 21 30 213 e130 e100 e94 e140 142 29 98 81 152 49 41 21 30 213 e130 e100 e94 e140 142 29 98 81 152 49 41 21 31 210 e1 e120 e80 e140 e160 137 101 80 138 48 36 46 29 220 e120 e70 e80 e94 e140 142 29 98 86 115 47 33 39 31 210 e140 e80 e140 e150 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 137 132 101 80 138 11 1252 138 11 106 140 221 119 98.7 129 85.5 44.5 41.7 11 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | 95 | 172 | 81 | | | | 21 255 154 e120 e96 e180 154 114 89 162 65 34 29 22 251 153 e110 e120 e170 151 112 88 179 61 34 32 23 248 151 e100 e110 e140 e140 145 107 87 238 55 33 48 25 239 153 e120 e120 e120 e120 141 106 86 199 54 32 47 26 233 e120 e100 e100 e100 e101 142 193 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 21 28 225 e100 e80 e94 e140 142 99 81 152 49 41 21 29 220 e120 e70 e100 e160 137 101 80 138 48 36 46 29 220 e120 e70 e94 e140 142 99 81 152 49 41 21 30 213 e120 e120 e80 e94 e140 142 99 81 152 49 41 21 30 213 e130 e100 e94 e140 142 99 81 152 49 41 21 30 213 e130 e100 e94 e140 142 29 98 81 152 49 41 21 30 213 e130 e100 e94 e140 142 29 98 81 152 49 41 21 31 210 e1 e120 e80 e140 e160 137 101 80 138 48 36 46 29 220 e120 e70 e80 e94 e140 142 29 98 86 115 47 33 39 31 210 e140 e80 e140 e150 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 101 80 138 48 36 46 46 47 137 137 132 101 80 138 11 1252 138 11 106 140 221 119 98.7 129 85.5 44.5 41.7 11 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | 93<br>91 | 181 | /3<br>68 | | | | 26 233 e120 e100 e100 e100 e130 141 104 83 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 53 28 225 e110 e62 e110 e160 137 101 80 138 48 36 46 29 220 e120 e70 e100 135 107 86 125 48 34 41 30 213 e130 e100 e94 133 108 86 115 47 33 39 31 210 e120 e80 130 79 44 35 TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 REAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 712 RINN 215 208 145 140 500 760 130 99 728 RINN 259 138 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 728 RINN 250 9380 7410 6500 7780 13600 700 6070 7680 5260 2740 2480 CFSM .69 .42 33 2.28 .37 159 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 MAX 587 376 347 175 645 907 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994 1990 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | 230 | 132 | +51 | | 62.10 | 130 | | | | | | | | 26 233 e120 e100 e100 e100 e130 141 104 83 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 53 28 225 e110 e62 e110 e160 137 101 80 138 48 36 46 29 220 e120 e70 e100 135 107 86 125 48 34 41 30 213 e130 e100 e94 133 108 86 115 47 33 39 31 210 e120 e80 130 79 44 35 TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 REAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 712 RINN 215 208 145 140 500 760 130 99 728 RINN 259 138 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 728 RINN 250 9380 7410 6500 7780 13600 700 6070 7680 5260 2740 2480 CFSM .69 .42 33 2.28 .37 159 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 MAX 587 376 347 175 645 907 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994 1990 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | e96 | | | 114 | 89 | 162 | 65 | 34 | | | 26 233 e120 e100 e100 e100 e130 141 104 83 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 53 28 225 e110 e62 e110 e160 137 101 80 138 48 36 46 29 220 e120 e70 e100 135 107 86 125 48 34 41 30 213 e130 e100 e94 133 108 86 115 47 33 39 31 210 e120 e80 130 79 44 35 TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 REAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 712 RINN 215 208 145 140 500 760 130 99 728 RINN 259 138 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 728 RINN 250 9380 7410 6500 7780 13600 700 6070 7680 5260 2740 2480 CFSM .69 .42 33 2.28 .37 159 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 MAX 587 376 347 175 645 907 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994 1990 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | 112 | 88 | 179 | 61 | 34 | | | 26 233 e120 e100 e100 e100 e130 141 104 83 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 53 28 225 e110 e62 e110 e160 137 101 80 138 48 36 46 29 220 e120 e70 e100 135 107 86 125 48 34 41 30 213 e130 e100 e94 133 108 86 115 47 33 39 31 210 e120 e80 130 79 44 35 TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 REAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 712 RINN 215 208 145 140 500 760 130 99 728 RINN 259 138 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 728 RINN 250 9380 7410 6500 7780 13600 700 6070 7680 5260 2740 2480 CFSM .69 .42 33 2.28 .37 159 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 MAX 587 376 347 175 645 907 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994 1990 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | 108 | 87 | 197 | 58 | 33 | | | 26 233 e120 e100 e100 e100 e130 141 104 83 172 51 35 71 27 225 e100 e80 e94 e140 142 99 81 152 49 41 53 28 225 e110 e62 e110 e160 137 101 80 138 48 36 46 29 220 e120 e70 e100 135 107 86 125 48 34 41 30 213 e130 e100 e94 133 108 86 115 47 33 39 31 210 e120 e80 130 79 44 35 TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 REAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 712 RINN 215 208 145 140 500 760 130 99 728 RINN 259 138 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 130 99 728 RINN 250 9380 7410 6500 7780 13600 700 6070 7680 5260 2740 2480 CFSM .69 .42 33 2.28 .37 159 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 MAX 587 376 347 175 645 907 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994, BY MATER YEAR (WY) MEAN 125 128 135 97.9 198 3199 1994 1990 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | 107 | 86 | 199 | 53<br>54 | 33 | | | TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 MEAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 156 122 238 165 85 97 MIN 210 100 62 80 76 130 99 79 75 44 32 29 AC-FT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | 2.5 | 233 | 133 | 6120 | 6120 | 6120 | *** | | | | | | | | TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 MEAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 156 122 238 165 85 97 MIN 210 100 62 80 76 130 99 79 75 44 32 29 AC-FT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | 104 | 83 | 172 | 51 | | | | TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 MEAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 156 122 238 165 85 97 MIN 210 100 62 80 76 130 99 79 75 44 32 29 AC-FT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | 99 | 81 | 152 | 49 | | 53 | | TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 MEAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 156 122 238 165 85 97 MIN 210 100 62 80 76 130 99 79 75 44 32 29 AC-FT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | 101 | 80 | 138 | 48 | | | | TOTAL 8043 4730 3738 3276 3922 6857 3564 3060 3874 2650 1381 1252 MEAN 259 158 121 106 140 221 119 98.7 129 85.5 44.5 41.7 MAX 315 208 145 140 500 760 156 122 238 165 85 97 MIN 210 100 62 80 76 130 99 79 75 44 32 29 AC-FT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | 108 | 86 | 115 | 47 | | | | MAX 315 208 145 140 500 760 156 122 238 165 85 97 MIN 210 100 66 280 76 130 99 79 75 44 32 29 AC-FT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 1993 1993 1993 199 | | | | | | | | | 79 | | | | | | MAX 315 208 145 140 500 760 156 122 238 165 85 97 MIN 210 100 66 280 76 130 99 79 75 44 32 29 AC-FT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 1993 1993 1993 199 | | | | | _ | | | | | | | | | | MAX 315 208 145 140 500 760 156 122 238 165 85 97 MIN 210 100 66 280 76 130 99 79 75 44 32 29 AC-FT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 1993 1993 1993 199 | | | | | | | 6857 | 3564 | 3060 | 3874 | | | | | MIN 210 100 62 80 76 130 99 79 75 44 32 29 AC-PT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 IN80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 1993 1991 1984 1990 1993 1993 1993 1993 1991 1984 1990 1993 1993 1993 1993 1991 1984 1990 1993 1993 1993 1993 1991 1984 1990 1993 1993 1993 1993 1991 1984 1990 1993 1993 1993 1993 1991 1984 1980 1985 1980 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1979 - 1994 ANNUAL MEAN 646 127 255 1800 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1985 1980 1980 1980 1980 1985 1980 1980 1980 1980 1980 1980 1980 1980 | | | | | | | | | | | | | | | AC-PT 15950 9380 7410 6500 7780 13600 7070 6070 7680 5260 2740 2480 CFSM .69 .42 .32 .28 .37 .59 .32 .26 .34 .23 .12 .11 .11 .80 .47 .37 .32 .39 .68 .35 .30 .38 .26 .14 .12 .12 .13 .14 .12 .14 .12 .15 .14 .12 .15 .14 .12 .15 .15 .15 .15 .15 .15 .15 .15 .15 .15 | | | | | | | | | | | | | | | CFSN | | | | | 6500 | 7780 | 13600 | | 6070 | 7680 | 5260 | 2740 | 2480 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1994, BY WATER YEAR (WY) | | | | | .28 | .37 | .59 | | .26 | .34 | .23 | .12 | .11 | | MEAN 125 128 135 97.9 198 324 392 428 469 435 176 120 MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 1993 1993 1993 199 | IN. | .80 | .47 | .37 | .32 | .39 | .68 | .35 | .30 | .38 | .26 | .14 | .12 | | MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 1993 1993 1993 199 | STATIST | TICS OF MC | NTHLY MEA | N DATA FO | OR WATER | YEARS 1979 | - 1994, | BY WATER | YEAR (WY) | | | | | | MAX 587 376 347 175 645 907 1035 993 1667 2653 673 466 (WY) 1987 1993 1993 1993 1993 1993 1993 1993 199 | MEAN | 125 | 128 | 135 | 97.9 | 198 | 324 | 392 | 428 | 469 | 435 | 176 | 120 | | MIN 20.1 18.3 12.5 13.8 27.4 23.3 22.9 51.6 106 40.2 35.6 18.8 (WY) 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | | | 1667 | 2653 | 673 | 466 | | SUMMARY STATISTICS | | | | | | | | | | | | | | | SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1979 - 1994 ANNUAL TOTAL 235803 46347 ANNUAL MEAN 646 127 255 HIGHEST ANNUAL MEAN 57, 1993 LOWEST ANNUAL MEAN 54,1 1981 HIGHEST DAILLY MEAN 18100 Jul 9 760 Mar 4 18100 Jul 9 1993 LOWEST DAILLY MEAN 62 Dec 28 29 Sep 20 5.5. Jun 13 1981 ANNUAL SEVEN-DAY MINIMUM 79 Feb 21 30 Sep 15 7.3 Jun 8 1981 INSTANTANEOUS PEAK FLOW 2000 Feb 19 27500 Jul 9 1993 INSTANTANEOUS PEAK STAGE 319.94 Feb 19 29.02 Jul 9 1993 INSTANTANEOUS LOW FLOW 328 Sep 20b ANNUAL RUNOFF (AC-FT) 467700 91930 184500 ANNUAL RUNOFF (CFSM) 1.72 .34 .68 ANNUAL RUNOFF (INCHES) 23.39 4.60 9.23 10 PERCENT EXCEEDS 1110 225 570 | | | | | | | 23.3 | | | | | | 18.8 | | ANNUAL TOTAL 235803 46347 ANNUAL MEAN 646 127 255 HIGHEST ANNUAL MEAN 54.1 1993 LOWEST ANNUAL MEAN 54.1 1991 HIGHEST DAILY MEAN 62 Dec 28 29 Sep 20 5.5 Jun 13 1981 ANNUAL SEVEN-DAY MINIMUM 79 Feb 21 30 Sep 15 7.3 Jun 8 1981 INSTANTANEOUS PEAK FLOW 2000 Feb 19 27500 Jul 9 1993 INSTANTANEOUS PEAK STAGE 319.94 Feb 19 29.02 Jul 9 1993 INSTANTANEOUS PEAK STAGE 328 Sep 20b ANNUAL RUNOFF (AC-FT) 467700 91930 184500 ANNUAL RUNOFF (CFSM) 1.72 .34 .68 ANNUAL RUNOFF (INCHES) 23.39 4.60 9.23 10 PERCENT EXCEEDS 1110 225 570 | (WI) | 1981 | 1981 | 1981 | 1981 | 1990 | 1981 | 1981 | 1 98 1 | 1901 | 1980 | 1962 | 1360 | | ANNUAL MEAN 646 127 255 | SUMMARY | Y STATISTI | cs | FOR 1 | 1993 CALEI | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | RS 1979 | - 1994 | | HIGHEST ANNUAL MEAN | ANNUAL | TOTAL | | | 235803 | | | 46347 | | | | | | | LOWEST ANNUAL MEAN | | | | | 646 | | | 127 | | | | | | | HIGHEST DAILY MEAN | | | | | | | | | | | | | | | LOWEST DAILY MEAN 62 Dec 28 29 Sep 20 5.5 Jun 13 1981 | | | | | 10100 | 751 0 | | 760 | Mar 4 | | | .Trr1 | | | ANNUAL SEVEN-DAY HAIRFUM 79 Feb 21 30 Sep 15 7.3 July 8 1991 INSTANTANEOUS PEAK FLOW 2000 Feb 19 27500 July 9 1993 INSTANTANEOUS LOW FLOW 28 Sep 20b ANNUAL RUNOFF (AC-FT) 467700 91930 184500 ANNUAL RUNOFF (CFSM) 1.72 .34 .68 ANNUAL RUNOFF (INCHES) 23.39 4.60 9.23 10 PERCENT EXCEEDS 1110 225 570 50 PERCENT EXCEEDS 400 114 121 | | | | | | | | 29 | | | | | | | INSTANTANEOUS PEAK STAGE | | | | | 79 | | | 30 | Sep 15 | | 7.3 | Jun | 8 1981 | | INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 467700 91930 184500 ANNUAL RUNOFF (CFSM) 1.72 .34 .68 ANNUAL RUNOFF (INCHES) 23.39 4.60 9.23 10 PERCENT EXCEEDS 1110 225 570 50 PERCENT EXCEEDS 400 114 121 | | | | | | | | | | | | | | | ANNUAL RUNOFF (AC-FT) 467700 91930 184500 ANNUAL RUNOFF (CFSM) 1.72 .34 .68 ANNUAL RUNOFF (INCHES) 23.39 4.60 9.23 10 PERCENT EXCEEDS 1110 225 570 50 PERCENT EXCEEDS 400 114 121 | INSTANT | PANEOUS PE | AK STAGE | | | | | | Feb 19 | | 29.02 | Jul | 9 1993 | | ANNUAL RUNOFF (CFSM) 1.72 | INSTAN'I<br>ANNITAT | RINOPP /* | M F.TOM | | 467700 | | | | sep 200 | | 184500 | | | | ANNUAL RUNOFF (INCHES) 23.39 4.60 9.23 10 PERCENT EXCEEDS 1110 225 570 50 PERCENT EXCEEDS 400 114 121 | | | | | 1.72 | 2 | | .34 | | | | | | | 10 PERCENT EXCEEDS 1110 225 570<br>50 PERCENT EXCEEDS 400 114 121 | ANNUAL | RUNOFF (I | NCHES) | | 23.39 | • | | 4.60 | | | 9.23 | | | | | 10 PERC | CENT EXCEE | :DS | | 1110 | | | | | | | | | | AN LEWICHUT EVICEDIZ TYA de de 21 | | | | | | | | | | | | | | | | AO PERC | PENT EXCEE | כתי | | 129 | | | 42 | | | 21 | | | e Estimated. a Ice affected. b Also Sept. 21. #### 05483470 LAKE PANORAMA AT PANORA, IOWA LOCATION.--Lat 41°41'44", long 94°22'53", in SW1/4 NE1/4 sec.31, T.80 N., R.30 W., Guthrie County, Hydrologic Unit 07100007, in gate control building of dam on Middle Raccoon River, 0.5 mi upstream from State Highway 44, 1.0 mi west of Panora, 4.4 mi upstream from Bay Branch, and at mile 268.8 upstream from mouth of Des Moines River. DRAINAGE AREA.--433 mi<sup>2</sup>. PERIOD OF RECORD .-- May 1979 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,000.00 ft above sea level. REMARKS.--No missing gage-height record. Lake is formed by earthfill dam with 100 ft bascule gate and concrete chute spillway, and 300 ft earthen emergency spillway. Low-flow outlet is 30-inch conduit and gate valve through dam. Dam was completed in August, 1970 and began filling April 27, 1971. Total storage, 60,000 acre-ft, surface area, 2,900 acres, at top of dam, elevation 1,068 ft. Storage unknown at top of spillway, elevation 1,048 ft. Normal storage, 19,700 acre-ft, surface area, 1,270 acres with bascule gate closed, elevation 1,045 ft. Dead storage unknown with bascule gate open, elevation 1,036 ft. Present lake classification is utility (industrial) but is also used for recreation. Gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 50.68 ft July 9, 1993; minimum, 41.56 ft Oct. 15, 1989. EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 45.87 ft June 18; minimum recorded, 44.44 ft Oct. 21. ### GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 1 | 45.61 | 45.47 | 45.32 | 45.41 | 45.38 | 45.27 | 45.17 | 45.33 | 45.39 | 45.52 | 45.28 | 45.18 | | 2 | 45.55 | 45.49 | 44.97 | 45.39 | 45.41 | 45.12 | 45.17 | 45.35 | 45.43 | 45.49 | 45.26 | 45.16 | | 3 | 45.59 | 45.47 | 44.84 | 45.37 | 45.42 | 45.16 | 45.15 | 45.35 | 45.42 | 45.48 | 45.22 | 45.14 | | 4 | 45.63 | 45.40 | 45.10 | 45.41 | 45.41 | 45.44 | 45.19 | 45.38 | 45.41 | 45.48 | 45.32 | 45.33 | | 5 | 45.59 | 45.43 | 45.28 | 45.41 | 45.40 | 45.19 | 45.25 | 45.38 | 45.47 | 45,50 | 45.35 | 45.41 | | 6 | 45.54 | 45.39 | 45.41 | 45.40 | 45.42 | 45.17 | 45.28 | 45.36 | 45.50 | 45.53 | 45.31 | 45.42 | | 7 | 45.52 | 45.36 | 45.45 | 45.38 | 45.41 | 45.26 | 45.33 | 45.40 | 45.50 | 45.56 | 45.27 | 45.38 | | 8 | 45.56 | 45.41 | 45.47 | 45.39 | 45.43 | 45.15 | 45.29 | 45.40 | 45.46 | 45.51 | 45.27 | 45.32 | | 9 | 45.61 | 45.52 | 45.51 | 45.38 | 45.41 | 45.35 | 45.30 | 45.43 | 45.46 | 45.47 | 45.22 | 45.30 | | 10 | 45.62 | 45.57 | 45.52 | 45.37 | 45.38 | 45.37 | 45.25 | 45.41 | 45.47 | 45.41 | 45.23 | 45.27 | | 11 | 45.62 | 45.55 | 45.48 | 45.40 | 45.39 | 45.36 | 45.23 | 45.43 | 45.46 | 45.39 | 45.22 | 45.37 | | 12 | 45.59 | 45.45 | 45.49 | 45.41 | 45.41 | 45.37 | 45.27 | 45.39 | 45.54 | 45.37 | 45.23 | 45.52 | | 13 | 45.51 | 45.34 | 45.55 | 45.42 | 45.41 | 45.40 | 45.25 | 45.33 | 45.54 | 45.37 | 45.25 | 45.34 | | 14 | 45.39 | 45.41 | 45.57 | 45.43 | 45.42 | 45.34 | 45.22 | 45.37 | 45.59 | 45.37 | 45,26 | 45.17 | | 15 | 45.37 | 45.45 | 45.60 | 45.43 | 45.46 | 45.20 | 45.35 | 45.42 | 45.60 | 45.36 | 45.24 | 45.14 | | 16 | 45.33 | 45.44 | 45.58 | 45.39 | 45.49 | 45.15 | 45.26 | 45.40 | 45.55 | 45.35 | 45.21 | 45.14 | | 17 | 45.21 | 45.50 | 45.56 | 45.37 | 45.36 | 45.14 | 45.17 | 45.37 | 45.52 | 45.33 | 45,20 | 45.12 | | 18 | 45.07 | 45.49 | 45.53 | 45.39 | 45.16 | 45.13 | 45.24 | 45.40 | 45.69 | 45.31 | 45.19 | 45.10 | | 19 | 44.98 | 45.46 | 45.53 | 45.38 | 45.21 | 45.17 | 45.27 | 45.42 | 45.57 | 45.31 | 45.19 | 45.08 | | 20 | 44.83 | 45.44 | 45.51 | 45.36 | 45.14 | 45.21 | 45.29 | 45.41 | 45.68 | 45.30 | 45.17 | 45.06 | | 21 | 44.57 | 45.42 | 45.43 | 45.32 | 45.15 | 45.15 | 45.27 | 45.43 | 45.64 | 45.29 | 45.14 | 45.05 | | 22 | 44.96 | 45.40 | 45.39 | 45.31 | 45.27 | 45.16 | 45.21 | 45.43 | 45.62 | 45.27 | 45.12 | 45.06 | | 23 | 45.29 | 45.39 | 45.34 | 45.35 | 45.18 | 45.19 | 45.11 | 45.44 | 45.59 | 45.26 | 45.10 | 45.06 | | 24 | 45.38 | 45.40 | 45.39 | 45.38 | 45.25 | 45.17 | 45.09 | 45.42 | 45.57 | 45.25 | 45.10 | 45.10 | | 25 | 45.46 | 45.42 | 45.50 | 45.40 | 45.40 | 45,18 | 45.16 | 45.41 | 45.59 | 45.24 | 45.09 | 45.20 | | 26 | 45.47 | 45.40 | 45.53 | 45.45 | 45.42 | 45.23 | 45.20 | 45.34 | 45.57 | 45.23 | 45.12 | 45.24 | | 27 | 45.43 | 45.37 | 45.51 | 45.49 | 45.39 | 45.30 | 45.23 | 45.34 | 45.57 | 45.22 | 45.12 | 45.26 | | 28 | 45.42 | 45.35 | 45.47 | 45.45 | 45.34 | 45.37 | 45.20 | 45.36 | 45.63 | 45.19 | 45.15 | 45.27 | | 29 | 45.44 | 45.33 | 45.48 | 45.42 | | 45.42 | 45.24 | 45.39 | 45.62 | 45.16 | 45.12 | 45.24 | | 30 | 45.47 | 45.32 | 45.46 | 45.42 | | 45.33 | 45.31 | 45.42 | 45.55 | 45.14 | 45.22 | 45.23 | | 31 | 45.46 | | 45.43 | 45.41 | | 45.25 | | 45.41 | | 45.14 | 45,22 | | | MEAN | 45.39 | 45.43 | 45.43 | 45.40 | 45.35 | 45.25 | 45.23 | 45.39 | 45.54 | 45.35 | 45.21 | 45.22 | | MAX | 45.63 | 45.57 | 45.60 | 45.49 | 45.49 | 45.44 | 45.35 | 45.44 | 45.69 | 45.56 | 45.35 | 45.52 | | MIN | 44.57 | 45.32 | 44.84 | 45.31 | 45.14 | 45.12 | 45.09 | 45.33 | 45.39 | 45.14 | 45.09 | 45.05 | #### 05483600 MIDDLE RACCOON RIVER AT PANORA, IA LOCATION.-Lat 41°41'14", long 94°22'15", in NE1/4 NW1/4 sec.5, T.79 N., R.30 W., Guthrie County, Hydrologic Unit 07100007, on left bank 15 ft downstream from bridge on county highway, 0.2 mi southwest of Panora, 1.5 mi upstream from Andy's Branch, 1.6 mi downstream from Lake Panorama, 18.2 mi upstream from mouth, and at mile 267.2 upstream from mouth of Des Moines River. DRAINAGE AREA .-- 440 mi<sup>2</sup>. PERIOD OF RECORD .-- June 1958 to current year. REVISED RECORDS.--WDR IA-74-1: 1973 (P). GAGE.--Water-stage recorder and concrete control. Datum of gage is 991.20 ft above sea level. REMARKS.--Estimated daily discharges: Dec. 24-31, Jan. 15-19, 31, Feb. 1, 8-10, 12-14, 16-20, and Feb. 25 to Mar. 5. Records good except those for estimated daily discharges, which are poor. City of Panora diverts approximately 100 acre-ft/yr upstream of station. Flow regulated by dam on Lake Panorama since August 1970. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 10, 1953, reached a stage of 14.3 ft, from floodmark, discharge, about 14,000 ft<sup>3</sup>/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | Di | SCHARGE, | COBIC | EEIFER | | MEAN V | | DEK 1993 | IO SEF. | I EMIDEN 199 | <b>'4</b> | | |------------------|------------------------|-----------------------|-------------|---------------|-----------------------------|---------------------|-----------------|------------------|--------------|----------------------------------|-----------------------------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 333 | 207 | 274 | 144 | e90 | e140 | 121 | 111 | 86 | 158 | 69 | 52 | | 2<br>3 | 276<br>250 | 231<br>238 | 519<br>49 | 151<br>124 | e90<br>98<br>97<br>97<br>81 | e130<br>e180 | 97<br>92 | 115<br>112 | 96<br>105 | 155<br>139 | 135<br>61 | 45<br>40 | | 4 | 275 | 223 | 56 | 110 | 97 | e780 | 115 | 121 | 91 | 136 | 75 | 85 | | 5 | 277 | 187 | 96 | 124 | 81 | e600 | 81 | 151 | 112 | 147 | 78 | 110 | | 6<br>7 | 279<br>251 | 195<br>185 | 112<br>142 | 132<br>114 | 80<br>84 | 447<br>427 | 53<br>66 | 168<br>142 | 119<br>112 | 160<br>155 | 72<br>65 | 99<br>79 | | é | 233 | 129 | 144 | 104 | e86 | 194 | 83 | 135 | 102 | 153 | 60 | 69 | | 9 | 272 | 160 | 153 | 111 | e115 | 160 | 121 | 147 | 104 | 121 | 58 | 59 | | 10 | 300 | 193 | 176 | 108 | e100 | 211 | 102 | 132 | 108 | 117 | 57 | 62 | | 11<br>12 | 308<br>307 | 222<br>248 | 135 | 94<br>106 | 100<br>e105 | 182<br>173 | 96<br>135 | 140<br>155 | 138<br>235 | 104<br>110 | 58<br>55 | 54<br>49 | | 13 | 312 | 284 | 131<br>165 | 107 | e105 | 177 | 160 | 118 | 211 | 112 | 64 | 45 | | 14 | 317 | 160 | 161 | 99 | e110 | 217 | 122 | 108 | 145 | 111 | 67 | 42 | | 15 | 372 | 190 | 161 | e92 | 116 | 228 | 157 | 110 | 158 | 106 | 58 | 38 | | 16 | 393 | 153 | 177 | e86 | e130 | 151 | 221 | 138 | 138 | 95 | 59 | 42 | | 17<br>18 | 382<br>349 | 163<br>187 | 188<br>187 | e98<br>e90 | e220<br>e400 | 166<br>154 | 135<br>116 | 93<br>94 | 130<br>415 | 99<br>83 | 52<br>49 | 39<br>39 | | 19 | 337 | 200 | 176 | e92 | e450 | 144 | 111 | 87 | 202 | 85 | 47 | 37 | | 20 | 404 | 171 | 191 | 96 | e320 | 172 | 120 | 96 | 213 | 73 | 49 | 36 | | 21 | 211 | 184 | 162 | 95 | 245 | 164 | 145 | 91 | 243 | 74 | 45 | 35 | | 22 | 46 | 170 | 133 | 90 | 189 | 120 | 156 | 97<br>02 | 222 | 66<br>62 | 42<br>40 | 35<br>36 | | 23<br>24 | 156<br>220 | 148<br>173 | 130<br>e110 | 84<br>94 | 141<br>79 | 148<br>136 | 137 | 93 | 324<br>255 | 63 | 38 | 38 | | 25 | 226 | 195 | e120 | 94 | | 117 | 157<br>99<br>89 | 131 | | 58<br>55<br>58<br>66<br>48<br>49 | 38 | 46 | | 26 | 256 | 149 | e100 | 95 | e110 | 138 | 88 | 99 | 196 | 58 | 41 | 52 | | 27 | 234 | 126 | e90 | 110 | e120 | 154 | 98 | 73 | 157<br>142 | 55 | 41 | 56 | | 28<br>29 | 232<br>218 | 160<br>153 | e80<br>e90 | 112<br>102 | e130 | 168<br>189 | 108<br>102 | 75<br>82 | 142<br>155 | 58<br>66 | 48<br>42 | 54<br>55 | | 30 | 203 | 208 | e120 | 91 | | 189<br>148 | 112 | 94 | 154 | 48 | 56 | 51 | | 31 | 195 | | e130 | e84 | | 140 | | 95 | | | 57 | | | TOTAL | 8424 | 5592 | 4658 | 3233 | 4108 | 6655 | 3458 | 3501 | 5127<br>171 | 3079 | 1776<br>57.3<br>135<br>38<br>3520 | 1579 | | MEAN | 272 | 186<br>· 284 | 150 | 104 | | | 3458<br>115 | 113 | 171 | 99.3 | 57.3 | 52.6 | | MAX<br>MIN | 404<br>46 | 126 | 519<br>49 | 151<br>84 | 450<br>79 | 117 | 221<br>53 | 168<br>73 | 415<br>86 | 160<br>48 | 38 | 110<br>35 | | AC-FT | 16710 | 11090 | 9240 | 6410 | 8150 | 780<br>117<br>13200 | 6860 | 6940 | 10170 | 6110 | 3520 | 3130 | | CFSM | .62 | .42 | .34 | .24 | | | .26 | .26 | .39 | .23 | .13 | .12 | | IN. | .71 | .47 | .39 | .27 | .35 | .56 | .29 | .30 | .43 | .26 | .15 | .13 | | STATIST | rics of M | ONTHLY MEA | N DATA F | | | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 121 | 125 | 104 | 84.0 | 178 | 431 | 365 | 412 | 423 | 320<br>2731 | 137 | 128<br>528 | | MAX<br>(WY) | 670<br>1987 | 588<br>1973 | 356<br>1993 | 439<br>1973 | 838<br>1971 | 1479<br>1979 | 1222<br>1984 | 1458<br>1974 | 1646<br>1990 | 1993 | 605<br>1993 | 1973 | | MIN | 19.5 | 12.8 | 7.60 | 6.95 | 24.1 | 20.2 | 26.4 | 20.0 | 9.40 | 5.56 | 22.2 | 19.3 | | (WY) | 1981 | 1971 | 1971 | 1971 | 1968 | 1981 | 1977 | 1977 | 1977 | 1977 | 1971 | 1980 | | SUMMAR | Y STATIST | ics | FOR : | 1993 CALE | NDAR YEAR | F | OR 1994 WA | ER YEAR | | WATER YEA | RS 1959 | - 1994 | | ANNUAL | | | | 240073 | | | 51190 | | | | | | | ANNUAL | | ME SAT | | 658 | • | | 140 | | | 2 <b>36</b><br>701 | | 1973 | | | ANNUAL 1<br>ANNUAL MI | | | | | | | | | 38.6 | | 1977 | | HIGHEST | DAILY M | EAN | | 17500 | Jul 10 | | 780 | Mar 4 | | 17500 | Jul 1 | 0 1993 | | | DAILY ME | | | 46 | Oct 22 | | 35 | Sep 21 | | .00 | | 9 1977 | | | SEVEN-DA:<br>ANEOUS PI | Y MINIMUM<br>EAK FLOW | | 101 | Dec 24 | | 37<br>1300 | Sep 18<br>Feb 18 | | 3.1<br>22400 | Jul<br>Jul | 8 1977<br>9 1993 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | a7.28 | Feb 18, | | 20.04 | Jul | 9 1993 | | | ANEOUS LO | | | 436900 | | | 34 | Aug 25b | ı | 170900 | | | | ANNUAL<br>ANNUAL | RUNOFF ( | RC-FT)<br>CFSM) | | 476200<br>1.4 | Q. | | 101500<br>.32 | | | .54 | | | | ANNUAL | RUNOFF ( | INCHES) | | 20.3 | | | 4.33 | | | 7.28 | | | | 10 PERC | ENT EXCE | EDS | | 1160 | | | 244 | | • | 519 | | | | | ENT EXCER | | | 356<br>132 | | | 117<br>53 | | | 91<br>27 | | | | SO EEVI | THI ENCE! | au 3 | | 132 | | | 33 | | | -, | | | e Estimated. a Ice affected. b Also Sept. 21-23. # 05484000 SOUTH RACCOON RIVER AT REDFIELD, IA LOCATION.--Lat 41°35'22", long 94°09'04", in SW1/4 NE1/4 sec. 2, T.78 N., R.29 W., Dallas County, Hydrologic Unit 07100007, on right bank 20 ft upstream from bridge on county highway at Redfield, 3.2 mi downstream from bridge on U.S. Highway 6, 3.4 mi downstream from Middle Raccoon River, 14.0 mi upstream from mouth, and at mile 245.6 upstream from mouth of Des Moines River. DRAINAGE AREA.--994 mi<sup>2</sup>. PERIOD OF RECORD .-- March 1940 to current year. REVISED RECORDS.-WSP 1438: Drainage area. WSP 1508: 1940. GAGE.--Water-stage encoder. Datum of gage is 888.88 ft (revised) above sea level. Prior to June 12, 1946, nonrecording gage, June 12, 1946 to Sept. 30, 1986, water-stage recorder at site 2.4 mi upstream at datum 7.55 ft higher. REMARKS.--Estimated daily discharges: Dec. 19 to Mar. 13. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and data collection platform at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994<br>DAILY MEAN VALUES | | | | | | | | | | | | |-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 959<br>904<br>825<br>830<br>813 | 545<br>558<br>559<br>569<br>524 | 404<br>402<br>375<br>350<br>327 | e250<br>e280<br>e230<br>e190<br>e210 | e200<br>e220<br>e220<br>e210<br>e180 | e330<br>e450<br>e540<br>e660<br>e860 | 297<br>270<br>243<br>256<br>274 | 316<br>278<br>281<br>259<br>334 | 205<br>231<br>232<br>224<br>272 | 340<br>355<br>330<br>325<br>323 | 187<br>183<br>214<br>194<br>223 | 122<br>114<br>108<br>197<br>297 | | 6<br>7<br>8<br>9<br>10 | 801<br>795<br>747<br>788<br>802 | 513<br>505<br>476<br>444<br>465 | 304<br>312<br>336<br>333<br>351 | e250<br>e230<br>e210<br>e230<br>e210 | e160<br>e170<br>e200<br>e240<br>e230 | e753<br>e761<br>e584<br>e401<br>e469 | 203<br>206<br>211<br>250<br>265 | 371<br>388<br>378<br>343<br>336 | 331<br>315<br>277<br>263<br>266 | 321<br>331<br>326<br>296<br>272 | 176<br>156<br>148<br>143<br>146 | 210<br>167<br>147<br>131<br>122 | | 11<br>12<br>13<br>14<br>15 | 793<br>789<br>762<br>767<br>937 | 489<br>513<br>552<br>413<br>394 | 338<br>317<br>354<br>374<br>352 | e190<br>e210<br>e200<br>e190<br>e180 | e230<br>e250<br>e270<br>e250<br>e340 | e440<br>e410<br>e426<br>426<br>448 | 224<br>271<br>333<br>328<br>428 | 306<br>318<br>316<br>272<br>286 | 320<br>381<br>637<br>415<br>371 | 252<br>372<br>632<br>382<br>301 | 149<br>151<br>161<br>160<br>151 | 122<br>113<br>110<br>105<br>101 | | 16<br>17<br>18<br>19<br>20 | 1010<br>904<br>839<br>820<br>803 | 444<br>438<br>433<br>422<br>405 | 355<br>370<br>380<br>e317<br>e240 | e170<br>e200<br>e170<br>e180<br>e190 | e400<br>e470<br>e540<br>e580<br>e500 | 373<br>359<br>372<br>347<br>360 | 399<br>366<br>272<br>289<br>259 | 286<br>286<br>228<br>229<br>236 | 326<br>312<br>694<br>737<br>668 | 262<br>257<br>230<br>222<br>210 | 140<br>137<br>128<br>125<br>121 | 99<br>101<br>98<br>97<br>95 | | 21<br>22<br>23<br>24<br>25 | 853<br>550<br>542<br>651<br>630 | 425<br>380<br>384<br>385<br>376 | e210<br>e200<br>e190<br>e180<br>e200 | e190<br>e180<br>e170<br>e200<br>e200 | e380<br>e300<br>e240<br>e220<br>e300 | 387<br>337<br>334<br>345<br>293 | 311<br>326<br>317<br>304<br>233 | 223<br>233<br>214<br>239<br>231 | 552<br>488<br>803<br>679<br>555 | 190<br>187<br>177<br>171<br>173 | 123<br>113<br>110<br>107<br>103 | 94<br>94<br>98<br>104<br>120 | | 26<br>27<br>28<br>29<br>30<br>31 | 658<br>623<br>622<br>602<br>565<br>559 | 375<br>381<br>389<br>394<br>399 | e180<br>e160<br>e150<br>e160<br>e180<br>e210 | e190<br>e210<br>e230<br>e210<br>e200<br>e180 | e320<br>e330<br>e350<br> | 299<br>324<br>322<br>340<br>326<br>291 | 254<br>220<br>242<br>270<br>267 | 277<br>204<br>191<br>198<br>218<br>210 | 492<br>415<br>355<br>340<br>351 | 167<br>163<br>156<br>163<br>152<br>136 | 112<br>111<br>108<br>111<br>130<br>163 | 135<br>138<br>127<br>121<br>119 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 23543<br>759<br>1010<br>542<br>46700<br>.76 | 13549<br>452<br>569<br>375<br>26870<br>.45 | 8911<br>287<br>404<br>150<br>17670<br>.29 | 6330<br>204<br>280<br>170<br>12560<br>.21 | 8300<br>296<br>580<br>160<br>16460<br>.30<br>.31 | 13367<br>431<br>860<br>291<br>26510<br>.43<br>.50 | 8388<br>280<br>428<br>203<br>16640<br>•28<br>•31 | 8485<br>274<br>388<br>191<br>16830<br>.28<br>.32 | 12507<br>417<br>803<br>205<br>24810<br>.42<br>.47 | 8174<br>264<br>632<br>136<br>16210<br>.27<br>.31 | 4484<br>145<br>223<br>103<br>8890<br>.15 | 3806<br>127<br>297<br>94<br>7550<br>.13 | | | | | | | YEARS 1941 | | | | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 236<br>1501<br>1987<br>28.6<br>1941 | 234<br>1162<br>1973<br>36.2<br>1956 | 190<br>826<br>1993<br>32.4<br>1956 | 173<br>565<br>1983<br>30.4<br>1950 | 390<br>1785<br>1971<br>35.5<br>1956 | 860<br>3112<br>1979<br>74.2<br>1981 | 741<br>2474<br>1984<br>50.0<br>1956 | 832<br>3005<br>1974<br>62.9<br>1967 | 966<br>5017<br>1947<br>43.2<br>1977 | 615<br>5494<br>1993<br>57.4<br>1954 | 363<br>2745<br>1993<br>37.8<br>1955 | 294<br>1385<br>1993<br>36.0<br>1955 | | SUMMARY | STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 W | ATER YEAR | | WATER YEA | RS 1941 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | | EAN EAN IN (MINIMUM EAK FLOW EAK STAGE DW FLOW IC-FT) EFSM) ENCHES) EDS | | 576764<br>1580<br>33600<br>150<br>173<br>1144000<br>1.5<br>21.5<br>2980<br>984<br>320 | | | 119844<br>328<br>1010<br>94<br>97<br>2400<br>a7.79<br>3237700<br>.33<br>4.49<br>622<br>286<br>133 | Oct 16<br>Sep 21<br>Sep 17<br>Mar 5<br>Mar 5<br>Sep 20, | | 491<br>1632<br>91.4<br>33600<br>17<br>20<br>44000<br>29.04<br>355800<br>6.71<br>1080<br>198<br>58 | Aug<br>Jan 2<br>Jul 1 | 1993<br>1968<br>0 1993<br>4 1977<br>24 1954<br>0 1993<br>2 1958 | e Estimated. a Ice affected. #### 05484500 RACCOON RIVER AT VAN METER, IA (National stream-quality accounting network station) LOCATION.--Lat 41°32'02", long 93°56'59", in SW1/4 SW1/4 sec.22, T.78 N., R.27 W., Dallas County, Hydrologic Unit 07100006, on right bank 10 ft downstream from bridge on county highway R16, 0.3 mi northeast of Van Meter, 0.7 mi upstream from small left bank tributary, 1.1 mi downstream from confluence of North and South Raccoon Rivers, 29.0 mi upstream from mouth, and at mile 230.5 upstream from mouth of Des Moines River. DRAINAGE AREA.--3,441 mi<sup>2</sup>. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1915 to current year. Prior to October 1934, monthly discharge only, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1927 (M), WSP 1438: Drainage area, WSP 1508: 1915 (M), 1925 (M), 1926, 1933 (M), 1939 (M), 1947 (M), 1949 (M). GAGE.--Water-stage encoder. Datum of gage is 841.16 ft above sea level. See WSP 1308 for history of changes prior to Aug. 8, 1934. REMARKS.--Estimated daily discharges: Dec. 21 to Mar. 3. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain-gage and data collection platform and U.S. Weather Service Limited Automatic Remote Collector telemeter at station. | | DI | SCHARGE | E, CUBIC | FEET PER | | WATER Y | | OBER 1993 | TO SEP | TEMBER 19 | 94 | | |--------------|-----------------------|--------------|--------------|---------------------------------|----------------|----------------|----------------|--------------|---------------|--------------------------|--------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2960 | 1610 | 1270 | e800 | e680 | e1100 | 1080 | 1190 | 853 | 2190 | 515 | 413 | | 2 | 2760 | 1610 | 1340 | e960 | e750 | e1200 | 1030 | 1160 | 862 | 1930 | 532 | 358 | | 3 | 2520 | 1600 | 1490 | e900 | e740 | e1500 | 985 | 1150 | 848 | 1710 | 579 | 324 | | 4 | 2410 | 1600 | 1070 | e700 | e730 | 5400 | 968 | 1150 | 821 | 1560 | 585 | 461 | | 5 | 2310 | 1530 | 1040 | e760 | e650 | 6780 | 975 | 1230 | 870 | 1450 | 614 | 662 | | 6<br>7 | 2230<br>2160 | 1470<br>1450 | 1070<br>1040 | e860<br>e800 | e560<br>e600 | 8030<br>8100 | 916<br>882 | 1360<br>1490 | 995<br>998 | 1390<br>1360 | 518<br>480 | 556<br>678 | | 8 | 2080 | 1410 | 991 | e700 | e700 | 6310 | 891 | 1690 | 1270 | 1350 | 437 | 925 | | ğ | 2150 | 1340 | 993 | e780 | e840 | 4160 | 901 | 2110 | 3610 | 1290 | 396 | 821 | | 10 | 2280 | 1370 | 1040 | e720 | e800 | 3320 | 946 | 2350 | 2890 | 1480 | 380 | 677 | | 11 | 2410 | 1400 | 1010 | e 650 | e780 | 2820 | 899 | 2200 | 2440 | 1480 | 370 | 592 | | 12 | 2560 | 1420 | 928 | e700 | e800 | 2490 | 933 | 2010 | 2140 | 1660 | 375 | 514 | | 13 | 2640<br>2540 | 1510 | 1080 | e 680 | e860 | 2270 | 1050 | 1880 | 2470<br>2200 | 2280<br>1470 | 404<br>417 | 462<br>419 | | 14<br>15 | 2870 | 1470<br>1380 | 1110<br>1130 | e 640<br>e 600 | e950<br>e1000 | 2140<br>2120 | 1090<br>1420 | 1730<br>1640 | 2410 | 1280 | 428 | 382 | | | | | | | | | | | | | | | | 16<br>17 | 3100<br>2810 | 1380<br>1300 | 1160<br>1180 | e580<br>e660 | e1200<br>e1900 | 1990<br>1840 | 1890<br>1950 | 1550<br>1470 | 4170<br>3750 | 1290<br>1510 | 731<br>969 | 350<br>335 | | 18 | 2580 | 1280 | 1260 | e590 | e3000 | 1770 | 1760 | 1330 | 3510 | 1500 | 830 | 321 | | 19 | 2500 | 1290 | 1310 | e610 | e4500 | 1640 | 1660 | 1250 | 4760 | 1310 | 726 | 306 | | 20 | 2400 | 1270 | 1400 | e 640 | e3000 | 1560 | 1540 | 1190 | 4330 | 1170 | 626 | 292 | | 21 | 2470 | 1250 | e1100 | e640 | e2000 | 1550 | 1520 | 1150 | 3820 | 1060 | 5 62 | 282 | | 22 | 2010 | 1260 | e900 | e610 | e1400 | 1470 | 1480 | 1110 | 3490 | 971 | 505 | 270 | | 23 | 1890 | 1210 | e760 | e570 | e900 | 1390 | 1420 | 1070 | 3580 | 903 | 466 | 265 | | 24<br>25 | 1990<br>1960 | 1190<br>1250 | e660<br>e810 | e660<br>e660 | e700<br>e800 | 1370<br>1280 | 1390<br>1260 | 1080<br>1060 | 3840<br>3400 | 842<br>788 | 438<br>425 | 282<br>343 | | | | | | | | | | | | | | | | 26<br>27 | 1950<br>1900 | 1130<br>858 | e710<br>e600 | e640<br>e700 | e880<br>e1000 | 1240<br>1250 | 1210<br>1150 | 1170<br>1070 | 4640<br>4530 | 723<br>667 | 411<br>401 | 458<br>866 | | 28 | 1860 | 934 | e530 | e780 | e1050 | 1230 | 1110 | 969 | 3700 | 619 | 392 | 839 | | 29 | 1780 | 1030 | e570 | e740 | 61020 | 1210 | 1120 | 916 | 2980 | 577 | 409 | 741 | | 30 | 1710 | 1100 | e660 | e670 | | 1180 | 1140 | 910 | 2500 | 553 | 455 | 678 | | 31 | 1680 | | e700 | e 620 | | 1100 | | 892 | | 505 | 498 | | | TOTAL | 71470 | 39902 | 30912 | 21620 | 33770 | 80810 | 36566 | 42527 | 82677 | 38868 | 15874 | 14872 | | MEAN | 2305 | 1330 | 997 | 697 | 1206 | 2607 | 1219 | 1372 | 2756 | 1254 | 512 | 496 | | MAX | 3100 | 1610 | 1490 | 960 | 4500 | 8100 | 1950 | 2350 | 4760 | 2280 | 969 | 925 | | MIN<br>AC-FT | 1680<br>141800 | 858<br>79150 | 530<br>61310 | 570<br>42880 | 560<br>66980 | 1100<br>160300 | 882<br>72530 | 892<br>84350 | 821<br>164000 | 505<br>770 <b>9</b> 0 | 370<br>31490 | 265<br>29500 | | CFSM | .67 | .39 | .29 | .20 | .35 | .76 | .35 | .40 | .80 | .36 | .15 | .14 | | IN. | .77 | .43 | .33 | .23 | .37 | .87 | .40 | .46 | .89 | .42 | .17 | .16 | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 191 | 6 - 1992 | , BY WATER | YEAR (WY | ) | | | | | MEAN | 818 | 727 | 532 | 479 | 965 | 2599 | 2488 | 2417 | 3081 | 1620 | 887 | 848 | | MAX | 6840 | 4774 | 3085 | 3461 | 5438 | 10480 | 10630 | 9257 | 13970 | 8909 | 4309 | 6692 | | (WY) | 1974 | 1973 | 1983 | 1932 | 1984 | 1979 | 1983 | 1984 | 1947 | 1973 | 1951 | 1926 | | MIN | 48.6 | 51.5 | 31.0 | 17.2 | 31.5 | 146 | 125 | 121 | 112 | 68.1 | 28.1 | 43.1 | | (WY) | 1940 | 1938 | 1938 | 1940 | 1940 | 1931 | 1956 | 1934 | 1977 | 1936 | 1936 | 1939 | | SUMMAR | Y STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | 1 | FOR 1994 W | ATER YEAR | | WATER YE | ARS 1916 | - 1992 | | ANNUAL | TOTAL | | | 2008471 | | | 509868 | | | | | | | ANNUAL | | | | 5503 | | | 1397 | | | 1455 | | | | | T ANNUAL | | | | | | | | | 4840<br>166 | | 1973<br>1956 | | | ANNUAL M<br>T DAILY M | | | E7E00 | Jul 10 | | 8100 | Mar 7 | | 36400 | Jul 1 | 1 1096 | | | DAILY ME | | | 57500<br>530<br>649 | Dec 28 | | 265 | Sen 23 | | 166<br>36400<br>10<br>10 | Jan | 22 1940 | | | SEVEN-DA | | | 649 | Dec 24 | | 288 | Sep 18 | | 10 | Jan | 22 1940 | | | TANEOUS P | | | | | | | | | 70100 | Jui . | 10 1993 | | | TANEOUS P | | | | | | | 4 Feb 19 | | 26.34 | Jul | 10 1993 | | | TANEOUS LA | | | 3984000<br>1.6<br>21.7<br>12000 | | | 265<br>1011000 | Sep 22 | | 1054000 | | | | | RUNOFF ( | | | 1.6 | 0 | | .4 | 1 | | .42 | | | | ANNUAL | RUNOFF ( | INCHES) | | 21.7 | | | 5.5 | 1 | | 5.75 | | | | 10 PER | CENT EXCE | ED <b>S</b> | | 12000 | | | 2530 | | | 3650 | | | | | CENT EXCE | | | 3820 | | | 1110 | | | 560 | | | | 90 PER | CENT EXCE | ±D2 | | 1020 | | | 502 | | | 108 | | | e Estimated. #### 05484500 RACCOON RIVER AT VAN METER, IA -- Continued (National stream-quality accounting network station) ### WATER-QUALITY RECORDS #### PERIOD OF RECORD: Chemical analyses: Partial record station September 1968 to September 1973, February 1974 to September 1979, and October 1986 to current year. Water temperatures: Partial record station September 1968 to September 1973 and February 1974 to September 1979. Biological analyses: February 1974 to September 1979. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | ******* | it Quiller | - D | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | D.M. 177. | 7 10 511 | | | | | |----------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------| | DATE | CH<br>I<br>C<br>TIME<br>S | ARGE, SP<br>NST. CI<br>UBIC CO<br>FEET DU<br>PER AN<br>ECOND (US | E- WA' FIC WHO N- FII CT- (STA CE AI /CM) UN | TER OLE ELD TEM AND- AT RD WA ITS) (DE | URE AT<br>TER A<br>G C) (DE | URE<br>IR<br>G C) ( | BID-<br>ITY<br>NTU) | DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | METE<br>PRES<br>SUF<br>(MM | RIC FORM,<br>S- FECAL<br>RE 0.7<br>M UM-MF<br>COLS.<br>100 ML | | CT<br>26 | 1045 2 | 040 6 | 82 8. | .5 11 | .0 10 | .0 3 | .3 | 10.1 | 94 | 742 | . 62 | | 3C | | | | | | - | | | 99 | 742 | | | AR | | | | | | | | 10.0 | 99 | 724 | | | AY | 0835 2 | 380 6 | | | | | | | 104 | 742 | 430 | | JN | 0915 2 | 060 6 | | | | | | 7.0 | 91 | 736 | 1700 | | JG | 0830 | 372 4 | | | | | .5 | 6.8 | 80 | 741 | 480 | | | | | | | | | | | | | CAR- | | DATE | FECAL,<br>KF AGAI<br>(COLS.<br>PER<br>100 ML) | NESS TOTAL (MG/L AS CACO3) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | PERCEN' | AD<br>SORP<br>TIO<br>M RATI | - S<br>- D<br>N SO<br>O (M<br>AS | IUM, WA<br>IS- TO<br>DLVED F<br>IG/L MG<br>K) C | T DIS<br>T IT<br>IELD<br>/L AS<br>ACO3 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | | OCT | 6.0 | 350 | 93 | 30 | 0.0 | | 0.2 | . 1 | 6 | 30 | 1 | | DEC | | | | | | | | | | | 8 | | MAR | | | | | | | | | | | 3 | | MAY | | | | | | _ | - | | | | 5 | | JUN | | | | | | | | | | | 4 | | AUG | | | | | - | | | | | | 3 | | 10 | 360 | 200 | 31 | | 17 | 13 | 0.4 | 2. | <b>.</b> | 101 | 3 | | DATE | нсоз | AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | SUM OF CONST: TUENT: DIS- SOLVE (MG/) | F SOLI<br>I- D<br>S, SOI<br>- (TO<br>ED PI<br>L) AC- | IS- I LVED SC ONS (T ER F -FT) I | DIS-<br>DLVED (<br>TONS<br>PER<br>DAY) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | | OCT 26 | 34 | 34 | 15 | 0 - 4 | 19 | 411 | 25.6 | 0 1 | 56 22 | 260 | 0.18 | | DEC | | | | | | | | | | | 0.26 | | MAR | | | | | | | | | | | 0.65 | | MAY | | | | | | | | | | | 1.3 | | JUN | | | | | | | - | | | | 1.5 | | AUG | | | | | | | | - | | | 1.1 | | ±0 | 133 | 73 | 21 | 0.3 | 7.3 | 313 | 233 | 0.4 | 3 | 20 | +•1 | | | DATE OCT 26 DEC 06 MAR 23 JUN 15 JG 10 DATE OCT 26 DEC 06 MAY 10 JUN 15 AUG 10 DATE | CH I C C C C C C C C C C C C C C C C C C | DATE TIME FEET DUST. CUBIC CONT. FEET DUST. SECOND (US. (00061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061) (000061 | CHARGE, SPE— WALL INST. CIFIC WHAT COOL WIN (00061) (00095) (000-100-100-100-100-100-100-100-100-100 | DATE TIME FEET DUCT (STAND AND WAS SECOND (US/CM) UNITS) (DE COM FIELD TEM FEET DUCT) (STAND AND WAS SECOND (US/CM) UNITS) (DE COM FIELD TEM FEET DUCT) (STAND AND WAS SECOND (US/CM) UNITS) (DE COM FIELD TEM FEET DUCT) (STAND AND WAS SECOND (US/CM) UNITS) (DE COM FIELD TEM FEET DUCT) (STAND AND WAS SECOND (US/CM) UNITS) (DE COM FIELD TEM FEET DUCT) (STAND AND WAS SECOND (US/CM) UNITS) (DE COM FIELD TEM FEET DUCT) (STAND AND WAS SECOND (US/CM) UNITS) (DE COM FIELD TEM FEET DUCT) (STAND AND WAS SECOND (US/CM) UNITS) (DE COM FIELD TEM FEET DUCT) (US/CM) (U | DATE TIME CHARGE, SER WATER INST. CIFIC WHOLE TEMPER TEM | DATE TIME FRET LOCAL HARD- FECAL, NESS CALCIUM FECAL, NESS CALCIUM FECAL, NESS CALCIUM SIDE SOLVED | CHARGE, SPE NATER NATER NATER NATER NATER CON- FIELD TEMPER TEMPER TURE FEET DUCT (STAMD ATURE ATURE BID NATER ATURE BID NATER ATURE ATURE BID NATER ATURE ATURE BID NATER ATURE | CHARGE, SPE- WATER LINT. CITE CHOOLE CON- | CHARGE, SPET WATER INST. CIFIC WHOLE CUBIC CON- FIELD TEMPER- TEMPER- TUR- OXYGEN, CPRI- CUBIC CON- FIELD TEMPER- TUR- TEMPER- TUR- OXYGEN, CPRI- CUBIC CON- CON- CON- CUBIC CON- CON- CUBIC | CHARGE, SPR- MATER INST. CIPIC CUB- CUB- CUB- CUB- CUB- CUB- CUB- CUB | # 05484500 RACCOON RIVER AT VAN METER, IA -- Continued (National stream-quality accounting network station) | DATE | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>FINER<br>THAN<br>.062 MM<br>(70331) | |-----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------| | OCT<br>26 | 8.00 | 0.02 | 0.02 | 0.2 | 0.05 | 0.05 | 0.07 | 208 | 1150 | 52 | | DEC<br>06 | 8.00 | 0.02 | 0.04 | 0.3 | 0.08 | 0.07 | 0.10 | 174 | 484 | 79 | | MAR<br>23 | 5.80 | 0.03 | 0.05 | 0.7 | 0.17 | 0.18 | 0.25 | 478 | 1820 | 25 | | MAY<br>10 | 8.60 | 0.03 | 0.03 | 1.3 | 0.07 | 0.07 | 0.31 | 335 | 2150 | 76 | | JUN<br>15 | 8.80 | 0.03 | 0.05 | 1.6 | 0.13 | 0.14 | 0.41 | 437 | 2430 | 95 | | AUG<br>10 | 0.77 | 0.01 | 0.02 | 1.1 | <0.01 | 0.02 | 0.18 | 87 | 87 | 98 | | DATE | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145) | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | | OCT 26 | <10 | 110 | <3 | 10 | 17 | 15 | <10 | <1 | 1 | <1 | | DEC 06 | | | | | | | | | | | | MAR<br>23 | | 97 | <3 | 14 | 13 | 13 | <10 | 2 | 2 | <1 | | MAY<br>10 | <10 | 98 | <3 | 5 | 14 | 4 | 20 | <1 | 2 | <1 | | JUN<br>15 | | | | | | | | | | | | AUG<br>10 | 40 | 81 | <3 | 320 | 14 | 12 | 10 | 3 | 1 | <1 | | DATE | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | ATRA-<br>ZINE<br>WATER<br>UNFLTRD<br>REC<br>(UG/L)<br>(39630) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>(81757) | METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030) | BUTY-<br>LATE<br>TOTAL<br>(UG/L)<br>(99901) | DEETHYL<br>ATRA-<br>2 INE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | | OCT 26 | 250 | <6 | 0.1 | <0.10 | <0.1 | <0.10 | <0.10 | <0.1 | <0.1 | | | DEC 06 | | | | | | | | | | | | MAR<br>23 | 230 | <6 | <0.1 | <0.10 | <0.1 | <0.10 | <0.10 | <0.1 | <0.1 | | | MAY<br>10 | 250 | <6 | 0.3 | 0.13 | <0.1 | 0.12 | 0.55 | <0.1 | <0.1 | | | JUN<br>15 | | | 1,1 | 0.58 | <0.1 | <0.10 | 0.74 | <0.1 | <0.1 | 0.13 | | AUG<br>10 | 180 | <6 | | | | | | | | | #### 05484800 WALNUT CREEK AT DES MOINES, IA LOCATION.--Lat 41°35'14", long 93°42'11", in SW1/4 SE1/4 sec.2, T.78 N., R.25 W., Polk County, Hydrologic Unit 07100006, on left bank, 25 ft downstream from bridge on 63rd Street in Des Moines, and 2.2 mi upstream from Raccoon River. DRAINAGE AREA.--78.4 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1971 to current year. REVISED RECORDS.--WDR IA-73-1: 1972. WDR IA-75-1: 1973-74. GAGE .-- Water-stage encoder. Datum of gage is 801.04 ft above sea level (levels by Iowa Natural Resources Council). REMARKS.-Estimated daily discharges: Oct. 9-20, Nov. 24-29, and Dec. 20 to Mar. 3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES SEP JUL AUG DAY OCT NOV DEC JAN FEB MAR APR MAY JUN 156 138 129 121 110 56 54 51 30 27 25 e21 e20 ell el2 el0 24 19 85 59 435 31 8.9 23 33 15 23 17 5.1 4.8 7.7 5.6 e50 e19 e21 18 18 e90 18 24 5 e12 e15 19 1.9 47 622 163 18 87 11 38 46 44 13 23 22 25 e14 e13 e12 17 17 18 16 12 24 13 6 7 e19 e17 96 72 40 9.1 106 44 1.1 100 35 39 9.4 .61 e15 8 128 58 41 23 22 49 19 18 23 21 30 44 6.4 5.7 8.0 10 6.1 e140 e19 e13 67 94 122 40 63 47 11 28 16 33 1.5 e120 e18 e15 12 13 14 15 32 34 31 26 18 17 31 18 114 163 77 52 5.8 2.6 1.6 46 3.2 e110 e19 el4 41 e90 e110 e18 e17 37 41 36 44 54 79 21 5.4 e16 e21 e30 e130 el4 12 7.2 5.2 5.5 5.5 7.2 35 34 33 16 14 13 16 17 e125 e120 23 27 e16 e15 e40 e100 33 32 25 25 .86 36 18 19 e13 .40 e100 e200 33 31 30 23 6.9 7.3 e95 23 e15 e150 13 26 4.1 - 48 20 34 20 23 e90 e20 e13 e80 21 22 31 28 22 20 25 2.9 2.2 1.6 .00 7.0 31 e18 **e**15 e60 12 11 64 29 23 30 e16 e17 24 93 30 80 el6 e50 .04 23 24 25 3.1 29 e40 30 9.4 78 75 e20 .86 e26 e22 e19 e17 48 77 40 29 e50 22 12 e16 24 24 23 26 27 e20 19 16 16 12 17 15 .75 1.5 15 16 1.1 3.1 1.2 7.8 e13 e11 65 e23 e40 28 e26 e12 e12 22 11 4.0 6.8 e38 e28 29 29 60 e13 e15 el1 e10 22 18 11 57 57 30 39 10 5.4 153 31 e18 e10 20 9.1 6.1 21 TOTAL 654.81 3150 685 1158 1528 627.1 1231.8 342.81 591.7 1133 503 732 21.1 122 .75 19.7 195 3.2 MEAN MAX 102 170 37.8 63 22.1 16.2 22 10 998 20.2 11.1 41.4 49.3 24.4 54 41.1 9.1 1240 MIN 57 20 12 10 20 16 .00 6250 1170 AC-FT 1360 2300 2440 1300 680 2250 3030 1450 .53 .27 .14 CFSM 1.30 .28 .21 .63 .31 .52 1.49 .54 IN. .33 .24 .35 .30 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 1994, BY WATER YEAR (WY) 35.3 166 1974 24.8 123 1974 86.2 427 1993 MEAN 35.1 104 110 118 51.5 34.3 40.6 81.1 310 1973 2.71 1981 147 1973 119 1983 172 1973 214 1990 327 1986 385 1990 329 1993 214 1993 MAX (WY) MIN 1.33 1972 .88 1977 .17 1977 .001 1977 .48 1977 3.17 1981 6.36 1977 7.62 1977 2.96 1985 1976 (WY) SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1972 -1994 ANNUAL TOTAL 57264 157 12337.22 ANNUAL MEAN HIGHEST ANNUAL MEAN 33.8 63.7 1993 158 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 10.3 1989 1973 3540 Aug 29 Feb 17 245 Mar 4280 Jul .00 Jan 3 1977 Jan 3 1977 May 10 1986 May 10 1986 LOWEST DAILY MEAN Aug 21 .00 12500 ANNUAL SEVEN-DAY MINIMUM Aug 16 Aug 30 .46 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 792 18.32 7.89 Aug 30 INSTANTANEOUS LOW FLOW .00 Aug 19a .00 many days ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 46150 113600 24470 2.00 27.17 11.04 5.85 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 100 22 5.2 25 2.2 e Estimated. a Also 20-23. ### 05485500 DES MOINES RIVER BELOW RACCOON RIVER AT DES MOINES, IA LOCATION.--Lat 41°34'30", long 93°35'48", in NE1/4 SE1/4 sec.10, T.78 N., R.24 W., Polk County, Hydrologic Unit 07100008, on right bank 10 ft downstream from bridge on Southeast 14th Street at Des Moines, 0.8 mi downstream from Raccoon River and Scott Street Dam, and at mile 200.7. DRAINAGE AREA..-9,879 mi<sup>2</sup>. PERIOD OF RECORD.--April 1940 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1943 (P). GAGE.--Water-stage encoder. Datum of gage is 762.52 ft above sea level. Prior to Oct. 1, 1951, and Oct. 1, 1953 to Sept. 30, 1959, water-stage recorder upstream of Scott Street Dam, 0.8 mi upstream at datum 11.16 ft higher. Oct. 1, 1951 to Sept. 30, 1953, and Oct. 1, 1959 to Sept. 30, REMARKS.--Estimated daily discharges: Oct. 6, Jan. 7 to Feb. 24, and Apr. 26, to May 1. Records good except those for estimated daily discharges, which are poor. Des Moines municipal water supply is taken from infiltration galleries on Raccoon River, 3.5 mi upstream from station. Average daily pumpage was about 29 ft<sup>2</sup>/s. At times, water is pumped from Raccoon River into recharge basins, or into Waterworks Reservoir, and the state of sta capacity 4,800 acre-ft. Effluent from sewage treatment plant enters the river 2.3 mi downstream from station. Net effect diversions not known. Flow regulated by Saylorville Lake (station 05481630) 13.0 mi upstream, since Apr. 12, 1977. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform and Weather Service Limited Automatic Remote Collector (LARC) at station. COOPERATION.--Average monthly pumpage from galleries provided by Des Moines Water Works. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 116,000 ft<sup>3</sup>/s July 11, 1993, gage height, 34.29; minimum daily discharge, 26 ft<sup>3</sup>/s Jan. 16-29, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.-Maximum stage since at least 1893, that of June 26, 1947, site and datum then in use. Flood of May 31, 1903, reached a stage of 20.9 ft, from flood profile, at Scott Street site and datum, by office of Des Moines City Engineer. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB JUN JUL AUG SEP MAR APR MAY 5760 e1600 4470 e5800 e1800 6460 2530 e1700 e1600 e1500 e9370 e1400 e1400 e1600 3100 e2700 e2400 e2200 e1700 e2200 e1700 11700 e1950 e1700 e2100 e1750 7440 e1900 e2000 15 e1900 e1900 e2000 17 18 e2000 e2400 1430 1430 e1900 e1700 8990 7670 14000 15000 e3200 e4500 e1750 e5900 e5600 e7000 22 e1700 e8400 e1700 25 e1800 e8600 28 3390 2540 1890 2570 e1700 e1800 e1700 5350 e5000 3910 2520 2200 2910 17000 e5000 e5400 e1550 TOTAL 5940 2530 3220 MEAN 4910 9200 7670 3270 18600 5410 2910 16500 MAX MIN AC-FT CFSM 1.07 . 52 1.15 TN. .97 .39 .57 1.19 YEAR (WY) a STATISTICS OF MONTHLY MEAN DATA FOR WATER **YEARS 1978** BY WATER 28190 26050 1993 MEAN 10610 27620 1983 1984 1983 1984 1993 MAX 560 739 (WY) 1990 1988 MTN (WY) 1993 CALENDAR YEAR 6768750 SUMMARY STATISTICS FOR 1994 WATER YEAR WATER YEARS 1978 -1994a ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 1036 1989 HIGHEST DAILY MEAN LOWEST DAILY MEAN Jul 11 Feb 28 Mar Feb Jul 11 Mar 12 6.7 236 ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW Sep 16 Mar 8 Mar 7 Jul 11 1993 INSTANTANEOUS PEAK STAGE 20.29 34.29 Jul 11 1993 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 1.88 25.49 7.99 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS Estimated a Post regulation. # 05485640 FOURMILE CREEK AT DES MOINES, IA LOCATION.--Lat 41°36'50", long 93°32'43", in NE1/4 NE1/4 sec.32, T.79 N., R.23 W., Polk County, Hydrologic Unit 07100008, on right bank 20 ft downstream from bridge on Easton Blvd., 4.4 mi downstream from Muchikinock Creek and 5.0 mi upstream from Des Moines River. DRAINAGE AREA.--92.7 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1971 to current year. REVISED RECORDS.--WDR IA-75-1: 1974 (P). GAGE.--Water-stage encoder. Datum of gage is 795.87 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 25-29, Dec. 21 to Mar. 4, and July 9-19.. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | |-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | OCT | VON | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 167<br>138<br>127<br>118<br>106 | 65<br>61<br>60<br>59<br>56 | 33<br>33<br>32<br>32<br>32 | e30<br>e28<br>e26<br>e28<br>e30 | e12<br>e13<br>e11<br>e13<br>e18 | e43<br>e54<br>e90<br>e250<br>200 | 27<br>26<br>25<br>24<br>24 | 35<br>31<br>29<br>29<br>30 | 33<br>41<br>33<br>28<br>48 | 75<br>40<br>36<br>40<br>36 | 37<br>13<br>10<br>13<br>6.2 | 13<br>8.0<br>6.0<br>105<br>44 | | | 102<br>96<br>99<br>170<br>147 | 53<br>53<br>53<br>49<br>47 | 31<br>30<br>30<br>31<br>29 | e26<br>e23<br>e21<br>e25<br>e28 | e17<br>e15<br>e14<br>e13<br>e15 | 141<br>109<br>87<br>72<br>64 | 23<br>22<br>23<br>22<br>20 | 37<br>39<br>37<br>36<br>34 | 37<br>65<br>525<br>248<br>192 | 34<br>35<br>31<br>e28<br>e26 | 3.8<br>3.0<br>3.6<br>2.4<br>5.8 | 21<br>13<br>12<br>12<br>8.1 | | | 124<br>111<br>98<br>94<br>149 | 47<br>55<br>65<br>50<br>50 | 28<br>35<br>35<br>34<br>33 | e26<br>e28<br>e25<br>e22<br>e19 | e17<br>e16<br>e18<br>e21<br>e30 | 56<br>52<br>49<br>46<br>46 | 19<br>33<br>31<br>36<br>59 | 33<br>30<br>30<br>35<br>36 | 161<br>117<br>213<br>115<br>80 | e25<br>e25<br>e28<br>e30<br>e24 | 5.1<br>11<br>13<br>7.5<br>5.3 | 7.0<br>6.6<br>5.0<br>3.7<br>3.4 | | | 141<br>119<br>110<br>108<br>102 | 47<br>46<br>46<br>45<br>43 | 31<br>32<br>32<br>32<br>32 | e21<br>e20<br>e18<br>e20<br>e18 | e40<br>e100<br>e200<br>e250<br>e150 | 42<br>41<br>41<br>39<br>41 | 45<br>38<br>35<br>32<br>30 | 29<br>27<br>25<br>24<br>24 | 61<br>54<br>47<br>46<br>43 | e20<br>e17<br>e14<br>e11<br>9.3 | 3.5<br>2.9<br>3.4<br>2.2<br>3.7 | 3.5<br>3.7<br>3.8<br>2.8<br>3.2 | | | 98<br>93<br>88<br>84<br>82 | 41<br>41<br>41<br>41<br>e30 | e29<br>e25<br>e27<br>e28<br>e24 | e20<br>e23<br>e30<br>e29<br>e27 | e90<br>e66<br>e45<br>e58<br>e70 | 41<br>39<br>38<br>36<br>33 | 33<br>32<br>28<br>34<br>30 | 23<br>23<br>224<br>142<br>76 | 39<br>36<br>148<br>95<br>67 | 7.0<br>5.0<br>5.6<br>6.2<br>4.3 | 2.5<br>2.5<br>1.8<br>2.0<br>6.7 | 3.2<br>6.6<br>5.8<br>8.3<br>71 | | | 77<br>74<br>76<br>70<br>67<br>67 | e20<br>e25<br>e30<br>e33<br>34 | e22<br>e20<br>e17<br>e20<br>e23<br>e28 | e21<br>e17<br>e19<br>e15<br>e12<br>e11 | e60<br>e54<br>e46<br> | 33<br>33<br>32<br>30<br>28<br>27 | 28<br>27<br>29<br>29<br>35 | 58<br>46<br>41<br>37<br>35<br>32 | 55<br>47<br>42<br>39<br>35 | 4.2<br>4.7<br>4.4<br>3.9<br>3.6<br>4.1 | 8.8<br>3.4<br>4.1<br>3.0<br>100<br>26 | 34<br>21<br>13<br>11<br>8.7 | | | 3302<br>107<br>170<br>67<br>6550<br>1.15<br>1.33 | 1386<br>46.2<br>65<br>20<br>2750<br>.50 | 900<br>29.0<br>35<br>17<br>1790<br>.31 | 706<br>22.8<br>30<br>11<br>1400<br>.25<br>.28 | 1472<br>52.6<br>250<br>11<br>2920<br>.57 | 1933<br>62.4<br>250<br>27<br>3830<br>.67<br>.78 | 899<br>30.0<br>59<br>19<br>1780<br>.32<br>.36 | 1367<br>44.1<br>224<br>23<br>2710<br>.48<br>.55 | 2790<br>93.0<br>525<br>28<br>5530<br>1.00 | 637.3<br>20.6<br>75<br>3.6<br>1260<br>.22<br>.26 | 316.2<br>10.2<br>100<br>1.8<br>627<br>.11 | 467.4<br>15.6<br>105<br>2.8<br>927<br>.17 | | | ICS OF MO | NTHLY MEA | N DATA FO | R WATER | EARS 1972 | - 1994, | BY WATER | YEAR (WY) | | | | | | | 47.5<br>258<br>1987<br>1.36<br>1989 | 51.2<br>317<br>1984<br>1.57<br>1977 | 39.1<br>124<br>1983<br>.25<br>1977 | 26.0<br>118<br>1974<br>.001<br>1977 | 47.0<br>206<br>1973<br>.55<br>1977 | 108<br>292<br>1979<br>4.04<br>1981 | 128<br>354<br>1973<br>3.67<br>1981 | 136<br>462<br>1974<br>6.67<br>1977 | 152<br>500<br>1974<br>.73<br>1977 | 110<br>607<br>1993<br>.074<br>1977 | 54.0<br>363<br>1993<br>1.66<br>1988 | 43.5<br>270<br>1993<br>1.37<br>1988 | | | STATISTI | Cs | FOR 1 | 993 CALEN | IDAR YEAR | FC | OR 1994 WA | TER YEAR | | WATER YE | ARS 1972 | - 1994 | | | ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY ANEOUS PE ANEOUS LO RUNOFF (A RUNOFF (I RUNOFF (I ENT EXCEE | AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) | : | 2.25<br>30.50<br>426 | | | 16175.9<br>44.3<br>525<br>1.8<br>2.6<br>779<br>7.98<br>1.4<br>32080<br>.48<br>6.49<br>99 | Jun 8<br>Aug 23<br>Aug 18<br>Jun 8<br>Jun 8<br>Aug 25 | | 3570<br>.00<br>.00<br>5380<br>14.84<br>.00<br>56920<br>.85<br>11.52 | Jun<br>Jan<br>Jan<br>Aug 2<br>Jun<br>many | 1993<br>1981<br>9 1974<br>2 1977<br>2 1977<br>2 1977<br>9 1974<br>days | | | | OCT 167 138 127 118 106 102 96 97 170 147 124 111 98 94 141 119 110 108 102 98 93 88 84 82 77 74 76 70 67 67 67 67 67 67 67 170 67 67 170 67 115 1.33 ICS OF MO 47.5 258 1987 1.36 1989 STATISTI FOTAL MENUAL ME DAILY MEA ANNUAL ME DAILY MEA ANNUAL ME DAILY MEA ANNUAL ME DAILY MEA SEVEN-DAY ANEOUS PE | OCT NOV 167 65 138 61 127 60 118 59 106 56 102 53 96 53 99 53 170 49 147 47 124 47 111 55 98 65 94 50 149 50 141 47 119 46 110 46 110 46 110 46 110 45 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 46 110 | OCT NOV DEC 167 65 33 138 61 33 127 60 32 118 59 32 106 56 32 102 53 31 96 53 30 170 49 31 147 47 29 124 47 28 111 55 35 98 65 35 94 50 34 149 50 34 149 50 33 141 47 31 119 46 32 110 46 32 110 46 32 110 46 32 110 46 32 110 46 32 110 46 32 102 43 32 98 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 41 929 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 | OCT NOV DEC JAN 167 65 33 e30 138 61 33 e28 127 60 32 e26 118 59 32 e28 106 56 32 e30 102 53 31 e26 96 53 30 e23 99 53 30 e23 170 49 31 e25 147 47 29 e28 124 47 28 e26 111 55 35 e28 98 65 35 e25 94 50 34 e22 149 50 34 e22 149 50 33 e19 141 47 31 e21 119 46 32 e20 110 46 32 e18 108 45 32 e20 102 43 32 e18 98 41 e29 e20 93 41 e25 e23 88 41 e27 e30 88 41 e27 e30 88 41 e28 e29 82 e30 e24 e27 77 e20 e22 e21 77 e20 e22 e21 77 e25 e20 e17 76 e30 e17 e19 70 e33 e20 e15 67 34 e23 e12 67 e28 e11 3302 1386 900 706 107 46.2 29.0 22.8 170 e33 e20 e15 67 20 17 11 6550 2750 1790 1400 1.15 550 .31 .25 1.33 .56 .36 .28 ICS OF MONTHLY MEAN DATA FOR WATER N 47.5 51.2 39.1 26.0 258 317 124 118 1987 1984 1983 1974 1.36 1.57 .25 .001 1989 1977 1977 1977 STATISTICS FOR 1993 CALEN FOTAL 76007 STATISTICS FOR 1993 CALEN INDIANA MEAN ANNUAL ANNUA | DAILY OCT NOV DEC JAN FEB 167 65 33 e30 e12 138 61 33 e26 e13 127 60 32 e26 e11 118 59 32 e28 e13 106 56 32 e30 e18 102 53 31 e26 e17 96 53 30 e23 e15 99 53 30 e21 e14 170 49 31 e25 e13 147 47 29 e28 e15 147 47 28 e26 e17 111 55 35 e28 e16 98 65 35 e25 e18 94 50 34 e22 e21 149 50 33 e19 e30 141 47 31 e21 e40 119 46 32 e20 e100 110 46 32 e18 e200 102 43 32 e18 e150 98 41 e29 e20 e20 102 43 32 e18 e150 98 41 e29 e20 e20 102 43 32 e18 e150 98 41 e29 e20 e20 102 43 32 e18 e150 98 41 e29 e20 e20 102 43 32 e18 e150 98 41 e29 e20 e58 84 41 e27 e30 e45 84 41 e27 e30 e45 84 41 e28 e29 e58 82 e30 e24 e27 e70 77 e20 e22 e21 e60 74 e25 e20 e17 e54 76 e30 e17 e19 e46 70 e33 e20 e15 67 34 e23 e12 19 e30 e15 67 20 17 11 11 16550 2750 1790 1400 2920 1.15 .50 .31 .25 .57 1.33 .56 .36 .28 .59 ICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 47.5 51.2 39.1 26.0 47.0 258 317 124 118 206 1.1987 1984 1983 1974 1973 1.36 1.57 .25 .00 1.35 .56 .36 .28 .59 ICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 47.5 51.2 39.1 26.0 47.0 258 317 124 118 206 1.987 1984 1983 1974 1973 1.36 1.57 .25 .00 1.37 .55 .50 1.999 1977 1977 1977 1977 STATISTICS FOR 1993 CALENDAR YEAR NOVALL MEAN NANUAL NANU | DAILY MEAN V. OCT NOV DEC JAN FEB MAR 167 65 33 e30 e12 e43 127 60 32 e26 e13 e54 127 60 32 e26 e13 e25 118 59 32 e28 e13 e25 110 65 6 32 e30 e18 200 102 53 31 e26 e17 141 96 53 30 e23 e15 109 99 53 30 e23 e15 109 170 49 31 e25 e13 72 147 47 29 e28 e15 64 124 47 29 e28 e16 52 98 65 35 e25 e18 49 94 50 33 e19 e26 e17 56 141 47 31 e21 e40 42 119 46 32 e20 e100 41 110 46 32 e18 e200 41 108 45 32 e20 e20 e250 39 102 43 32 e18 e150 41 98 41 e29 e20 e90 41 102 43 32 e18 e150 41 98 41 e25 e23 e66 39 88 41 e27 e30 e45 38 89 e10 e27 e27 e28 e16 32 77 e20 e22 e21 e60 33 107 46.2 29.0 22.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 22.8 52.6 62.4 170 65 35 30 22.8 52.6 62.4 170 65 35 30 22.8 52.6 62.4 170 65 35 30 22.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.8 52.6 62.4 170 65 35 30 25.0 55 1.13 .56 .36 .28 .59 .78 ICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 1994, 47.5 51.2 39.1 26.0 47.0 108 1987 1984 1983 1974 1973 1979 1936 1.13 .56 .36 .28 .59 .78 ICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 1994, 47.5 51.2 39.1 26.0 47.0 108 200 200 200 200 200 200 200 200 200 200 | DAILY MRAN VALUES OCT NOV DEC JAN FEB MAR APR | OCT NOV DEC JAN FEB MAR APR MAY 167 65 33 e30 e12 e43 27 35 127 60 32 e26 e11 e90 25 29 116 56 32 e30 e18 200 24 30 116 56 32 e30 e18 200 24 30 106 56 32 e30 e18 200 24 30 107 96 53 30 e23 e15 109 22 39 108 59 33 30 e21 e14 87 23 37 170 49 31 e25 e13 72 22 36 117 47 29 e28 e15 64 20 34 112 47 28 e26 e17 56 19 33 112 55 35 e28 e16 52 33 30 114 47 28 e26 e17 56 19 33 114 55 35 e28 e16 52 33 30 124 47 28 e26 e17 56 19 33 114 55 35 e28 e16 52 33 30 124 47 28 e26 e17 56 19 33 114 55 35 e28 e16 52 33 30 124 47 31 e27 e21 e40 42 45 29 119 46 32 e18 e20 e100 41 38 27 110 46 32 e18 e20 e100 41 38 27 110 46 32 e18 e20 e100 41 38 27 110 46 32 e18 e20 e20 e100 41 38 27 110 46 32 e18 e20 e20 410 41 35 25 108 45 32 e20 e20 250 39 32 24 102 43 32 e18 e150 41 30 24 104 e27 e23 e66 39 32 22 4 105 e30 e24 e27 e30 e46 33 22 9 106 e66 30 e17 e19 e46 32 29 41 107 e33 e20 e17 e54 33 27 46 108 e30 e24 e27 e30 e46 33 29 37 109 e30 e24 e27 e30 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 41 100 e33 e20 e17 e19 e46 32 29 354 462 107 e33 e20 e17 e19 e46 32 29 354 462 108 e30 e275 e179 1400 2920 3830 1780 2710 1.15 .50 .31 .25 .57 .67 .33 .29 310 1386 900 706 1472 1933 899 1367 1.15 .50 .31 .25 .57 .67 .73 .24 .49 1.16 .57 .51 .2 39.1 26.0 47.0 108 128 136 1.17 .98 Jun 8 200 e17 e19 e46 32 .99 .37 .49 1.18 .50 .50 .31 .25 .57 .67 .73 .24 .49 1.19 .50 .50 .31 .25 .57 .67 .79 .30 .90 1.15 .50 .31 .25 .57 .67 .79 .30 .90 1.15 .50 .31 .25 .57 .67 .79 .30 .90 1.15 .50 .31 .25 .57 .67 .79 .30 .90 1.15 .50 .31 .24 .11 .27 .29 .35 .40 1.10 .46 .27 .29 .35 .40 1.10 .46 .27 .29 .30 .40 1.10 .46 .27 .20 .40 .40 .40 .40 .40 .66 .67 1.10 .40 .40 .20 .40 .40 .40 .40 .40 .40 .40 .40 .40 .4 | OCT NOV DEC JAN FEB MAR APR MAY JUN 167 65 33 e30 e12 e43 27 35 33 117 118 60 32 e28 e13 e50 25 29 38 119 117 60 32 e28 e13 e20 25 29 38 119 117 60 32 e28 e13 e20 25 29 38 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e18 200 24 30 48 1106 56 32 630 e23 e15 109 22 39 65 1107 49 31 e25 e13 72 22 36 248 1107 49 31 e25 e13 72 22 36 248 1107 49 31 e25 e13 72 22 36 248 1107 49 31 e25 e13 72 22 36 248 1107 49 31 e25 e13 72 22 36 248 111 55 35 e28 e16 52 33 30 117 98 65 35 e25 e18 49 31 30 213 94 50 33 e19 e30 46 59 36 80 111 9 46 32 e20 e21 e46 36 35 115 149 50 33 e19 e30 46 59 36 80 111 9 46 32 e20 e100 41 38 27 54 110 46 32 e20 e100 41 38 27 54 110 46 32 e18 e20 e100 41 38 27 54 110 46 32 e20 e20 e100 41 38 27 54 110 46 32 e20 e20 e100 41 38 27 54 110 46 32 e20 e20 e100 41 38 27 54 110 46 32 e20 e20 e100 41 38 27 54 110 46 32 e20 e20 e100 41 38 27 54 110 46 32 e20 e20 e100 41 33 23 39 93 41 e25 e23 e66 39 32 22 44 46 1102 43 32 e18 e200 e10 41 33 23 39 93 41 e25 e23 e66 39 32 22 4 46 1102 43 32 e18 e200 e10 41 33 23 39 88 41 e27 e30 e66 39 32 22 33 36 88 41 e27 e30 e66 39 32 22 33 36 88 41 e27 e30 e66 39 32 22 33 36 88 41 e27 e30 e66 39 32 22 33 36 88 41 e27 e30 e66 39 32 23 37 39 e67 e30 e20 e20 e20 e20 e20 e20 e20 e20 e20 e2 | DAILY MEAN VALUES CCT NOV DEC JAN FEB MAR APR MAX JUN JUL | DAILY MEAN VALUES OCT NOV DEC JAN FEB MA APR MAY JUN JUL AUG 167 65 33 630 630 612 643 27 35 33 75 37 138 61 127 650 32 628 613 654 26 31 41 40 13 117 65 61 32 628 613 625 29 33 36 10 118 55 63 32 628 613 625 24 29 28 40 13 118 55 63 32 628 613 625 24 29 28 40 13 118 65 63 32 628 618 620 624 30 68 36 62 11 69 0 25 29 13 36 61 10 118 55 63 32 628 618 620 41 19 22 23 39 628 13 30 621 613 625 61 12 12 12 12 12 12 12 12 12 12 12 12 12 | | e Estimated. #### 05486000 NORTH RIVER NEAR NORWALK, IA LOCATION.--Lat 41°27'25", long 93°39'10", in NW1/4 SW1/4 sec.20, T.77 N., R.24 W., Warren County, Hydrologic Unit 07100008, on left bank 10 ft downstream from bridge on county highway R57, 1.7 mi southeast of Norwalk, 5.2 mi upstream from Middle Creek, and 6.2 mi downstream from Badger Creek. DRAINAGE AREA.--349 mi<sup>2</sup>. PERIOD OF RECORD .-- February 1940 to current year. REVISED RECORDS.--WSP 1438; Drainage area. WSP 1508: 1946. WDR IA-76-1: 1975 (P). GAGE.--Water-stage encoder. Datum of gage is 788.45 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to June 12, 1946, nonrecording gage at same site and datum. Jan. 7 to Oct. 11, 1960, nonrecording gage at site 2.1 mi upstream at different datum. REMARKS.--Estimated daily discharges: Nov. 25-30, Dec. 17 to Feb. 18, Mar. 6-17, and Aug. 11-19. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. | | DIS | CHARGE, | CUBIC F | EET PER | SECOND, V<br>DAILY | WATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEP | TEMBER 199 | 4 | | |-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 589<br>512<br>445<br>416<br>383 | 179<br>176<br>173<br>170<br>165 | 119<br>120<br>122<br>123<br>122 | e48<br>e45<br>e40<br>e35<br>e43 | e72<br>e65<br>e56<br>e58<br>e63 | 83<br>83<br>142<br>693<br>1490 | 67<br>65<br>63<br>62<br>60 | 122<br>130<br>127<br>118<br>117 | 61<br>66<br>75<br>85 | 133<br>152<br>141<br>127<br>119 | 65<br>62<br>68<br>68<br>59 | 28<br>32<br>32<br>43<br>66 | | 6<br>7<br>8<br>9 | 348<br>335<br>331<br>418<br>413 | 157<br>148<br>149<br>151<br>145 | 117<br>112<br>103<br>97<br>109 | e40<br>e37<br>e33<br>e35<br>e41 | e56<br>e50<br>e40<br>e37<br>e40 | e1000<br>e500<br>e300<br>e190<br>e160 | 56<br>53<br>49<br>48<br>48 | 149<br>182<br>221<br>201<br>174 | 105<br>125<br>126<br>105<br>94 | 115<br>105<br>98<br>98<br>96 | 59<br>60<br>59<br>57<br>53 | 100<br>64<br>35<br>21<br>13 | | 11<br>12<br>13<br>14<br>15 | 333<br>306<br>283<br>263<br>315 | 143<br>149<br>186<br>182<br>168 | 100<br>80<br>112<br>141<br>149 | e39<br>e41<br>e38<br>e35<br>e33 | e42<br>e43<br>e45<br>e54<br>e60 | e140<br>e135<br>e130<br>e125<br>e125 | 47<br>55<br>81<br>91<br>98 | 154<br>142<br>132<br>124<br>123 | 96<br>110<br>114<br>104<br>92 | 87<br>81<br>865<br>908<br>286 | e40<br>e45<br>e43<br>e40<br>e35 | 10<br>7.9<br>7.3<br>6.5<br>5.7 | | 16<br>17<br>18<br>19<br>20 | 512<br>466<br>367<br>370<br>380 | 158<br>166<br>145<br>142<br>136 | 138<br>e120<br>e110<br>e100<br>e90 | e36<br>e35<br>e33<br>e35<br>e33 | e110<br>e300<br>e600<br>1010<br>725 | e120<br>e110<br>110<br>109<br>109 | 114<br>122<br>101<br>85<br>74 | 119<br>110<br>99<br>93<br>86 | 77<br>66<br>59<br>101<br>183 | 185<br>152<br>137<br>123<br>117 | e32<br>e28<br>e25<br>e21<br>17 | 5.3<br>4.6<br>4.1<br>3.8<br>4.0 | | 21<br>22<br>23<br>24<br>25 | 344<br>318<br>295<br>279<br>267 | 131<br>126<br>125<br>124<br>e90 | e76<br>e66<br>e58<br>e52<br>e47 | e39<br>e45<br>e55<br>e70<br>e67 | 351<br>199<br>128<br>130<br>135 | 116<br>113<br>110<br>102<br>91 | 76<br>122<br>160<br>136<br>129 | 81<br>77<br>77<br>102<br>100 | 259<br>154<br>148<br>783<br>392 | 111<br>99<br>90<br>83<br>76 | 15<br>13<br>11<br>10<br>11 | 4.2<br>4.7<br>4.9<br>4.1<br>7.1 | | 26<br>27<br>28<br>29<br>30<br>31 | 255<br>237<br>222<br>211<br>197<br>184 | e64<br>e70<br>e84<br>e100<br>e110 | e40<br>e38<br>e35<br>e40<br>e45<br>e50 | e60<br>e45<br>e71<br>e67<br>e62<br>e68 | 115<br>101<br>91<br> | 85<br>82<br>79<br>76<br>72<br>69 | 124<br>111<br>97<br>95<br>103 | 96<br>90<br>80<br>69<br>64<br>62 | 235<br>186<br>161<br>146<br>134 | 76<br>79<br>79<br>71<br>64<br>63 | 14<br>11<br>15<br>19<br>18<br>19 | 7.4<br>14<br>18<br>11<br>8.7 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 10594<br>342<br>589<br>184<br>21010<br>.98<br>1.13 | 4212<br>140<br>186<br>64<br>8350<br>.40 | 2831<br>91.3<br>149<br>35<br>5620<br>.26 | 1404<br>45.3<br>71<br>33<br>2780<br>.13 | 4776<br>171<br>1010<br>37<br>9470<br>.49 | 6849<br>221<br>1490<br>69<br>13580<br>.63 | 2592<br>86.4<br>160<br>47<br>5140<br>-25 | 3621<br>117<br>221<br>62<br>7180<br>.33<br>.39 | 4503<br>150<br>783<br>59<br>8930<br>.43<br>.48 | 5016<br>162<br>908<br>63<br>9950<br>.46<br>.53 | 1092<br>35.2<br>68<br>10<br>2170<br>.10 | 577.3<br>19.2<br>100<br>3.8<br>1150<br>.06 | | | | | | | | | BY WATER | | | | • | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 82.6<br>593<br>1987<br>.20<br>1950 | 104<br>747<br>1973<br>.37<br>1956 | 78.5<br>567<br>1993<br>.36<br>1956 | 82.9<br>739<br>1973<br>.38<br>1954 | 161<br>911<br>1973<br>3.21<br>1956 | 351<br>1041<br>1965<br>3.90<br>1954 | 350<br>1401<br>1973<br>1.22<br>1956 | 326<br>1402<br>1984<br>3.71<br>1967 | 370<br>3260<br>1947<br>1.58<br>1977 | 193<br>1722<br>1993<br>1.10<br>1977 | 120<br>1185<br>1993<br>.21<br>1968 | 99.4<br>1007<br>1993<br>.26<br>1957 | | SUMMARY | STATISTI | CS | FOR 1 | 993 CALEN | NDAR YEAR | F | OR 1994 WAS | TER YEAR | | WATER YEA | RS 1941 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC | MEAN F ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY FANEOUS PE FANEOUS PE FANEOUS LO FANEOUS LO RUNOFF (A RUNOFF (C | AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS | | 242972<br>666<br>7290<br>35<br>42<br>481900<br>1.91<br>25.90<br>1940<br>338<br>102 | Aug 31<br>Dec 28<br>Dec 25 | | 1490<br>3.8<br>4.3<br>1600<br>16.43<br>3.7<br>95340<br>.38<br>5.12<br>284<br>96<br>27 | Mar 5<br>Sep 19<br>Sep 18<br>Mar 5<br>Mar 5<br>Sep 19 | | 193<br>709<br>8.08<br>21600<br>.00<br>32000<br>25.30<br>.00<br>139900<br>.55<br>7.52<br>440<br>43<br>2.0 | Jul<br>Jul<br>Jun | 1993<br>1968<br>13 1947<br>20 1954<br>25 1954<br>13 1947<br>13 1947<br>days | e Estimated. #### 05486490 MIDDLE RIVER NEAR INDIANOLA, IA LOCATION.-Lat 41°25'27", long 93°35'09", in SW1/4 SE1/4 sec.35, T.77 N., R.24 W., Warren County, Hydrologic Unit 07100008, on right bank 10 ft downstream from bridge on county highway, 0.4 mi upstream from Cavitt Creek, 1.5 mi upstream from bridge on U.S. Highway 69, and 4.6 mi northwest of Indianola. DRAINAGE AREA.--503 mi<sup>2</sup>. PERIOD OF RECORD .-- March 1940 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1940 (M), 1941, 1944, 1946, 1949 (M). GAGE.-Water-stage encoder. Datum of gage is 776.15 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to June 11, 1946, June 9, 1947 to Nov. 23, 1948, and Sept. 8, 1951 to Oct. 30, 1952, nonrecording gage; and June 11, 1946 to June 8, 1947 (destroyed by flood), Nov. 24, 1948 to Sept. 7, 1951, Oct. 31, 1952 to Sept. 30, 1962, water-stage recorder at site 1.6 mi downstream at datum 2.81 ft lower. REMARKS.--Estimated daily discharges: Nov. 25-30, Dec. 21 to Feb. 19, and Feb. 23 to Mar. 2. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. | | DI | SCHARGE, | CUBIC F | EET PER | SECOND, V<br>DAILY | WATER Y<br>MEAN V | EAR OCTO | OBER 1993 | TO SEP | TEMBER 199 | 94 | | |-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 529<br>472<br>426<br>397<br>371 | 224<br>217<br>213<br>207<br>198 | 151<br>153<br>154<br>150<br>158 | e100<br>e86<br>e78<br>e80<br>e90 | e60<br>e64<br>e57<br>e66<br>e80 | e190<br>e230<br>362<br>2140<br>2580 | 106<br>104<br>99<br>98<br>94 | 302<br>303<br>266<br>227<br>220 | 80<br>688<br>479<br>213<br>262 | 142<br>163<br>194<br>151<br>127 | 56<br>52<br>60<br>68<br>54 | 23<br>20<br>20<br>35<br>44 | | 6<br>7<br>8<br>9<br>10 | 348<br>333<br>384<br>1150<br>730 | 185<br>177<br>172<br>171<br>169 | 149<br>140<br>128<br>132<br>136 | e85<br>e75<br>e68<br>e70<br>e78 | e75<br>e70<br>e60<br>e55<br>e <b>6</b> 0 | 1320<br>619<br>394<br>299<br>255 | 90<br>88<br>84<br>82<br>80 | 294<br>591<br>418<br>341<br>289 | 687<br>298<br>219<br>172<br>159 | 130<br>110<br>103<br>88<br>88 | 48<br>49<br>41<br>35<br>34 | 70<br>78<br>49<br>35<br>28 | | 11<br>12<br>13<br>14<br>15 | 415<br>359<br>330<br>312<br>404 | 166<br>183<br>265<br>249<br>220 | 126<br>117<br>138<br>194<br>220 | e74<br>e80<br>e75<br>e70<br>e62 | e68<br>e63<br>e68<br>e74<br>e85 | 227<br>214<br>208<br>202<br>197 | 80<br>103<br>126<br>132<br>121 | 254<br>212<br>180<br>168<br>166 | 160<br>160<br>143<br>134<br>118 | 77<br>68<br>740<br>455<br>215 | 33<br>35<br>34<br>32<br>30 | 25<br>23<br>22<br>21<br>20 | | 16<br>17<br>18<br>19<br>20 | 673<br>544<br>417<br>470<br>464 | 199<br>181<br>171<br>166<br>161 | 183<br>166<br>161<br>156<br>152 | e64<br>e66<br>e57<br>e60<br>e57 | el10<br>e200<br>e900<br>e1200<br>1770 | 189<br>182<br>177<br>173<br>172 | 106<br>145<br>128<br>102<br>90 | 155<br>142<br>132<br>122<br>113 | 106<br>92<br>80<br>111<br>111 | 155<br>121<br>103<br>90<br>80 | 30<br>27<br>26<br>25<br>23 | 18<br>18<br>17<br>17 | | 21<br>22<br>23<br>24<br>25 | 387<br>347<br>327<br>312<br>301 | 156<br>152<br>149<br>148<br>e100 | e120<br>e100<br>e110<br>e120<br>e100 | e62<br>e80<br>e110<br>e105<br>e100 | 539<br>340<br>e160<br>e200<br>e250 | 177<br>173<br>164<br>157<br>149 | 624<br>1000<br>451<br>339<br>338 | 106<br>102<br>101<br>153<br>183 | 122<br>98<br>148<br>466<br>451 | 70<br>63<br>56<br>51<br>56 | 23<br>22<br>21<br>21<br>20 | 16<br>18<br>18<br>17<br>20 | | 26<br>27<br>28<br>29<br>30<br>31 | 287<br>275<br>267<br>259<br>247<br>233 | e70<br>e80<br>e90<br>e110<br>e140 | e80<br>e70<br>e60<br>e70<br>e80<br>e90 | e85<br>e67<br>e73<br>e64<br>e58<br>e54 | e230<br>e210<br>e200<br> | 142<br>137<br>130<br>126<br>119<br>112 | 292<br>267<br>213<br>207<br>219 | 135<br>112<br>98<br>90<br>84<br>79 | 240<br>183<br>156<br>136<br>122 | 88<br>191<br>118<br>80<br>62<br>52 | 23<br>20<br>20<br>21<br>27<br>25 | 25<br>23<br>24<br>20<br>20 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 12770<br>412<br>1150<br>233<br>25330<br>.82<br>.94 | 5089<br>170<br>265<br>70<br>10090<br>.34<br>.38 | 4064<br>131<br>220<br>60<br>8060<br>.26<br>.30 | 2333<br>75.3<br>110<br>54<br>4630<br>.15 | 7314<br>261<br>1770<br>55<br>14510<br>.52<br>.54 | 11916<br>384<br>2580<br>112<br>23640<br>.76<br>.88 | 6008<br>200<br>1000<br>80<br>11920<br>.40 | 6138<br>198<br>591<br>79<br>12170<br>.39<br>.45 | 6594<br>220<br>688<br>80<br>13080<br>.44<br>.49 | 4287<br>138<br>740<br>51<br>8500<br>.27 | 1035<br>33.4<br>68<br>20<br>2050<br>.07 | 801<br>26.7<br>78<br>16<br>1590<br>.05 | | STATIST<br>MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 122<br>928<br>1974<br>4.28<br>1969 | 141<br>961<br>1973<br>2.80<br>1956 | 123<br>1070<br>1983<br>1.62<br>1956 | 112<br>646<br>1973<br>1.02<br>1977 | YEARS 1941<br>234<br>1415<br>1973<br>4.68<br>1977 | - 1994,<br>486<br>1417<br>1962<br>7.35<br>1954 | 484<br>1983<br>1973<br>4.81<br>1956 | YEAR (WY)<br>467<br>1716<br>1944<br>10.1<br>1956 | 495<br>4094<br>1947<br>3.81<br>1977 | 268<br>3121<br>1993<br>5.20<br>1977 | 180<br>1419<br>1993<br>4.47<br>1968 | 190<br>1460<br>1992<br>3.92<br>1968 | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT ANNUAL ANNUAL 10 PERC 50 PERC | MEAN ANNUAL MANUAL MANU | ME AN EAN EAN AN AN AN AN EAK FLOW EAK STAGE AC-FT) FSM) ENCHES) EDS | FOR : | 1993 CALEI 339371 930 6950 60 79 673100 1.88 25.10 2830 464 145 | | F | 68349<br>187<br>2580<br>16<br>17<br>3580<br>a14.91<br>135600<br>376<br>122<br>27 | Mar 5<br>Sep 21<br>Sep 18<br>Mar 5<br>L Feb 19 | | 275<br>1006<br>17.8<br>21400<br>.11<br>34000<br>.51<br>34000<br>.55<br>7.42<br>606<br>71 | Jun 1<br>Jul<br>Jun 2<br>Jun 1 | - 1994<br>1993<br>1968<br>3 1947<br>2 1977<br>9 1977<br>3 1947<br>3 1947 | e Estimated. a Ice affected. #### 05487470 SOUTH RIVER NEAR ACKWORTH, IA LOCATION.--Lat 41°20'14", long 93°29'10", in SE1/4 SE1/4 sec.34, T.76 N., R.23 W., Warren County, Hydrologic Unit 07100008, on right bank 15 ft downstream from bridge on county highway, 0.5 mi downstream from Otter Creek, and 2.2 mi southwest of Ackworth. DRAINAGE AREA.--460 mi<sup>2</sup>. PERIOD OF RECORD .-- February 1940 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1941, 1945 (M), 1946. GAGE.--Water-stage encoder. Datum of gage is 769.97 ft above sea level. Prior to June 12, 1946, nonrecording gage, June 13, 1946 to Apr. 13, 1960, water-stage recorder, and Apr. 14, 1960 to Sept. 30, 1961, nonrecording gage, all at site 4.0 mi downstream at datum 8.06 ft lower. REMARKS.--Estimated daily discharges: Nov. 25-30, Dec. 21 to Feb. 18, Feb. 23 to Mar. 2, Mar. 5-17, Apr. 22-29, and Aug. 14-17.Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1930 reached a stage of 24.5 ft, from information by local residents, discharge, about 30,000 ft<sup>3</sup>/s, at site 4.0 mi downstream. | | DIS | CHARGE, | CUBIC F | EET PER | SECOND, V | VATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEP | FEMBER 19 | 94 | | |------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 380<br>316<br>276<br>255<br>229 | 110<br>113<br>111<br>110<br>99 | 114<br>117<br>115<br>110<br>102 | e60<br>e54<br>e50<br>e54<br>e56 | e49<br>e54<br>e51<br>e54<br>e80 | e180<br>e250<br>e632<br>2960<br>e2280 | 80<br>78<br>72<br>71<br>69 | 254<br>190<br>133<br>114<br>116 | 47<br>860<br>553<br>204<br>651 | 88<br>251<br>229<br>117<br>90 | 27<br>26<br>13<br>15<br>8.7 | 8.9<br>6.3<br>4.8<br>66<br>77 | | 6<br>7<br>8<br>9<br>10 | 210<br>196<br>207<br>793<br>461 | 90<br>88<br>95<br>93<br><b>9</b> 1 | 91<br>78<br>75<br>85<br>84 | e52<br>e47<br>e42<br>e46<br>e54 | e76<br>e60<br>e56<br>e49<br>e56 | e1360<br>e919<br>e638<br>e395<br>e284 | 68<br>68<br>68<br>68<br>67 | 319<br>884<br>463<br>261<br>174 | 879<br>302<br>175<br>134<br>138 | 69<br>58<br>64<br>66<br>52 | 7.2<br>6.0<br>5.9<br>5.9<br>7.2 | 35<br>16<br>9.0<br>8.0<br>6.1 | | 11<br>12<br>13<br>14<br>15 | 286<br>233<br>201<br>188<br>282 | 92<br>114<br>293<br>200<br>150 | 83<br>83<br>105<br>214<br>210 | e51<br>e54<br>e50<br>e46<br>e45 | e60<br>e56<br>e58<br>e66<br>e80 | e215<br>e209<br>e196<br>e190<br>e190 | 67<br>95<br>153<br>135<br>89 | 131<br>114<br>100<br>100<br>123 | 168<br>149<br>163<br>138<br>97 | 43<br>33<br>36<br>114<br>63 | 7.1<br>8.3<br>8.8<br>e8.4<br>e7.0 | 4.8<br>4.6<br>4.5<br>4.5 | | 16<br>17<br>18<br>19<br>20 | 333<br>242<br>209<br>312<br>315 | 136<br>126<br>113<br>109<br>100 | 160<br>137<br>129<br>121<br>108 | e48<br>e45<br>e43<br>e45<br>e43 | e110<br>e200<br>e500<br>1260<br>3020 | e180<br>e170<br>160<br>154<br>150 | 65<br>55<br>53<br>46<br>39 | 106<br>84<br>73<br>66<br>61 | 80<br>99<br>86<br>279<br>113 | 44<br>35<br>29<br>28<br>31 | e6.8<br>e5.8<br>5.1<br>4.7<br>4.0 | 4.3<br>3.8<br>3.6<br>3.6 | | 21<br>22<br>23<br>24<br>25 | 231<br>191<br>172<br>161<br>153 | 97<br>94<br>93<br>93<br>e60 | e79<br>e72<br>e66<br>e69<br>e62 | e51<br>e60<br>e78<br>e76<br>e62 | 757<br>405<br>e150<br>e160<br>e210 | 148<br>136<br>130<br>117<br>101 | 1120<br>e1120<br>e468<br>e319<br>e296 | 57<br>54<br>68<br>248<br>179 | 454<br>171<br>852<br>548<br>232 | 28<br>17<br>17<br>20<br>29 | 3.9<br>3.9<br>3.9<br>3.9<br>4.1 | 3.4<br>6.4<br>6.0<br>5.5 | | 26<br>27<br>28<br>29<br>30<br>31 | 140<br>130<br>130<br>120<br>112<br>110 | e47<br>e54<br>e80<br>e100<br>e110 | e52<br>e43<br>e45<br>e50<br>e56<br>e60 | e54<br>e50<br>e54<br>e47<br>e42<br>e45 | e190<br>e175<br>e170 | 101<br>101<br>92<br>84<br>78<br>78 | e208<br>e146<br>e217<br>e141<br>147 | 112<br>82<br>65<br>58<br>56<br>52 | 160<br>124<br>108<br>93<br>78 | 30<br>15<br>11<br>9.2<br>8.5<br>7.3 | 7.8<br>5.7<br>4.9<br>5.5<br>14<br>21 | 16<br>19<br>6.9<br>4.7<br>4.5 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 7574<br>244<br>793<br>110<br>15020<br>.53<br>.61 | 3261<br>109<br>293<br>47<br>6470<br>.24<br>.26 | 2975<br>96.0<br>214<br>43<br>5900<br>.21<br>.24 | 1604<br>51.7<br>78<br>42<br>3180<br>.11 | 8212<br>293<br>3020<br>49<br>16290<br>.64 | 12878<br>415<br>2960<br>78<br>25540<br>.90<br>1.04 | 5688<br>190<br>1120<br>39<br>11280<br>.41<br>.46 | 4897<br>158<br>884<br>52<br>9710<br>.34 | 8135<br>271<br>879<br>47<br>16140<br>.59 | 1732.0<br>55.9<br>251<br>7.3<br>3440<br>.12<br>.14 | 266.5<br>8.60<br>27<br>3.9<br>529<br>.02 | 364.2<br>12.1<br>77<br>3.4<br>722<br>.03 | | STATIS | rics of Mo | NTHLY MEA | N DATA FO | R WATER | YEARS 1941 | | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 119<br>1283<br>1974<br>.35<br>1957 | 133<br>906<br>1962<br>1.05<br>1957 | 119<br>1022<br>1983<br>.88<br>1956 | 110<br>901<br>1974<br>1.05<br>1956 | 225<br>1209<br>1973<br>3.70<br>1989 | 458<br>1568<br>1960<br>3.61<br>1957 | 454<br>1937<br>1973<br>1.70<br>1956 | 426<br>1962<br>1959<br>7.14<br>1980 | 483<br>4305<br>1947<br>1.79<br>1977 | 271<br>3870<br>1993<br>1.48<br>1977 | 140<br>1546<br>1993<br>2.02<br>1957 | 169<br>1332<br>1993<br>1.05<br>1957 | | SUMMAR | STATIST | Cs | FOR 1 | .993 CALE | NDAR YEAR | F | OR 1994 WAT | ER YEAR | | WATER YE | ARS 1941 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL M ANNUAL ME ANIUAL ME DAILY ME DAILY MEA SEVEN-DAY FANEOUS PE TANEOUS PE TANEOUS LO RUNOFF (A RUNOFF (A | AN A | | 331279<br>908<br>19500<br>43<br>53<br>657100<br>1.9<br>26.7<br>2500<br>291<br>92 | | | 57586.7<br>158<br>3020<br>3.4<br>3.8<br>4100<br>15.44<br>3.3<br>114200<br>.34<br>4.66<br>289<br>83<br>7.0 | Feb 20<br>Sep 21<br>Sep 15<br>Mar 4<br>Mar 4<br>Sep 21 | | 259<br>966<br>16.1<br>31400<br>.00<br>38100<br>32.85<br>.00<br>187300<br>.56<br>490<br>41<br>3.0 | Sep 1 Sep 1 Jun 1 Jul many day | 1993<br>1989<br>17 1990<br>1956<br>19 1956<br>17 1990<br>5 1981<br>78 1956 | e Estimated. #### 05487500 DES MOINES RIVER NEAR RUNNELLS, IA LOCATION.--Lat 41°29'19", long 93°20'17", in SE1/4 NW1/4 sec.12, T.77 N., R.22 W., Polk County, Hydrologic Unit 07100008, on left bank 10 ft downstream from bridge on State Highway 316, 0.2 mi downstream from South River River, 0.5 mi upstream from Camp Creek, 2.2 mi southeast of Runnells, 37.2 mi upstream from Red Rock Dam and at mi 179.5. DRAINAGE AREA.--11,655 mi<sup>2</sup>. PERIOD OF RECORD.--October 1985 to current year. GAGE. -- Water-stage encoder. Datum of gage is 700.00 ft above sea level (U.S. Army Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Oct. 13, Nov. 25, 26, Dec. 23 to Feb. 21, Feb. 26 to Mar. 2, Apr. 13-18, 21, July 9, 10, Aug. 2, 3, and Sept. 1-4, 8-10, 15-30. Records good except those for estimated daily discharge, which are poor. Flow regulated by Saylorville Lake (station 05481630) 34.2 mi upstream. Stage-discharge relation is affected at times by backwater from Lake Red Rock (05488100). U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Floods occurred on May 31, 1903; June 14, 1947; June 26, 1947; and June 24, 1954. No gage height or discharge was determined. Gage height and discharge information is available for these floods at other sites on the Des Moines River. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------------|----------------|--------------|--------------|----------------|----------------|----------------|-----------------------|------------|--------------|----------------|----------------|------------------------------| | 1 | 17400 | 6710 | 3840 | e3600 | e1750 | e5000 | 5430 | 6850 | 3620 | 16500 | 5300 | 2190 | | 2 | 16600 | 6610 | 3890 | e3800 | e1800 | e5200 | 5330 | | 4140 | 16100 | e5000 | 2110 | | 3 | 16000 | 6040 | 4590 | e3750 | e1700 | 5930 | 4940 | 7290 | 3720 | 15900 | e4700 | 1900 | | <b>4</b><br>5 | 15100<br>12700 | 5150<br>4780 | 5070<br>5000 | e3600<br>e3600 | e1650<br>e1600 | 12400<br>20200 | 4590<br>3880 | | 4450<br>4710 | 15600<br>15200 | 4510<br>3880 | 2570<br>2950 | | 3 | 12700 | 4/80 | 3000 | 63600 | 61000 | 20200 | 3880 | /190 | 4/10 | 15200 | 3880 | 2930 | | 6, | 10900 | 4900 | 4760 | e3500 | e1550 | 19400 | 3720 | | 5790 | 14900 | 3500 | 2840 | | 7 | 9930 | 4730 | 4750 | e3200 | e1500 | 20300 | 3700 | | 5140 | 11800 | 3310 | 2330 | | 8 | 9660 | 4670 | 3560 | e3000 | e1500 | 21600 | 3890 | 9110 | 6010 | 6080 | 2840 | 1990 | | . 9 | 11500 | 4360 | 3340 | e2800 | e1450 | 20300 | 3860 | | 7410 | e5320 | 2430 | 2150 | | 10 | 11800 | 4150 | 4080 | e2500 | e1500 | 18400 | 3920 | 9620 | 9930 | e5310 | 2350 | 2340 | | 11 | 11100 | 4160 | 4330 | e2100 | e1600 | 17100 | 4090 | 9690 | 9820 | 6350 | 2260 | 2260 | | 12 | 8570 | 4310 | 4290 | e2200 | e1550 | 16200 | 4210 | 9210 | 9270 | 10700 | 2250 | 1870 | | 13 | e6500 | 4960 | 3420 | e2000 | e1700 | 15200 | e4500 | 8550 | 9080 | 14000 | 2590 | 1730 | | 14 | 6600 | 4930 | 3970 | e2000 | e1700 | 13100 | e5200 | 7920 | 9130 | 16300 | 3160 | 1680 | | 15 | 9330 | 4760 | 5070 | e1900 | e1700 | 11400 | e6000 | 7770 | 10100 | 14600 | 4380 | e1650 | | 16 | 11600 | 4780 | 5470 | e2300 | e1650 | 11200 | e7000 | 7520 | 11600 | 13700 | 4840 | e1600 | | 17 | 12200 | 4310 | 5490 | e2200 | e4000 | 10900 | e7800 | 6840 | 13800 | 14200 | 5250 | e1500 | | 18 | 11600 | 4190 | 5420 | e2000 | e6000 | 10100 | e8200 | 6530 | 13800 | 14600 | 5 <b>5 9</b> 0 | e1500 | | 19 | 11300 | 4150 | 5650 | e2050 | e9000 | 9950 | 8100 | 5750 | 13600 | 14600 | 5440 | e1500 | | 20 | 10200 | 4700 | 5820 | e2100 | e13000 | 9850 | 7980 | 5060 | 13900 | 14500 | 4760 | e1500 | | 21 | 8630 | 4800 | 6100 | e2000 | e11500 | 9620 | e8960 | 4850 | 13900 | 14200 | 4560 | e1500 | | 22 | 8270 | 4860 | 6010 | e2050 | 13700 | 9450 | 9870 | 4760 | 13700 | 14200 | 4440 | e1600 | | 23 | 7730 | 4830 | e5000 | e2100 | 14300 | 8870 | 8270 | 4790 | 14600 | 14000 | 3680 | e1650 | | 24 | 7460 | 4810 | e2500 | e2100 | 13200 | 8050 | 7800 | 6150 | 15700 | 13800 | 3490 | e2000 | | 25 | 7430 | e4660 | e2000 | e1900 | 11400 | 7760 | 7560 | 5760 | 17600 | 13600 | 3400 | e2400 | | 26 | 7270 | e4420 | e1900 | e1800 | e9000 | 7190 | 7220 | 5580 | 17500 | 12600 | 3010 | e2600 | | 27 | 6420 | 4090 | e1800 | e1950 | e6500 | 6730 | 6470 | 5020 | 18200 | 11300 | 2940 | e2800 | | 28 | 4800 | 3550 | e2000 | e2000 | e5200 | 6590 | 6130 | 4490 | 18200 | 9050 | 2700 | e3100 | | 29 | 4250 | 3740 | e3000 | e1900 | | 6270 | 5790 | 4030 | 17200 | 6390 | 2250 | e3000 | | 30 | 4970 | 3780 | e3700 | e1850 | | 5870 | 6330 | 3620 | 16400 | 5750 | 2690 | e2800 | | 31 | 6530 | | e3500 | e1750 | | 5590 | | 3490 | | 5550 | 2670 | | | TOTAL | 304350 | 140890 | 129320 | 75600 | 142700 | 355720 | 180740 | 207750 | 332020 | 376700 | 114170 | 63610 | | MEAN | 9818 | 4696 | 4172 | 2439 | 5096 | 11470 | 6025 | 6702 | 11070 | 12150 | 3683 | 2120 | | MAX | 17400 | 6710 | 6100 | 3800 | 14300 | 21600 | 9870 | 9690 | 18200 | 16500 | 5590 | 3100 | | MIN | 4250 | 3550 | 1800 | 1750 | 1450 | 5000 | 3700 | 3490 | 3620 | 5310 | 2250 | 1500 | | AC-FT | 603700 | 279500 | 256500 | 150000 | 283000 | 705600 | 358500 | 412100 | 658600 | 747200 | 226500 | 126200 | | STATIS | TICS OF N | MONTHLY ME | AN DATA | FOR WATER | YEARS 198 | 6 - 1994 | . BY WATE | R YEAR (W) | 2) | | | | | | | | | | | | • | | | | | | | MEAN | 4802 | 4419 | 4372 | 2322 | 3084 | 10280 | 12570 | 13660 | 15360 | 16210 | 8495 | 5875 | | MAX | 18040 | 12660 | 10000 | 6237 | 8190 | 18390 | 30380 | 32740 | 40530 | 68140 | 32990 | 26320 | | (WY) | 1987 | 1993 | 1992 | 1992 | 1992 | 1993 | 1993 | 1993 | 1991 | 1993 | 1993 | 1993 | | MIN | 621 | 524<br>1990 | 473<br>1990 | 450<br>1990 | 500 | 1805 | 1151 | 2372 | 1777 | 840 | 534 | 506 | | (WY) | 1990 | 1990 | 1990 | 1990 | 1990 | 1989 | 1989 | 1989 | 1988 | 1988 | 1988 | 1988 | | SUMMAR | Y STATIST | rics | FOR | 1993 CAL | ENDAR YEAR | 1 | FOR 1994 | WATER YEAR | Į. | WATER Y | EARS 1986 | - 1994 | | ANNUAL | TOTAL | | | 8121690 | | | 2423570 | | | | | | | ANNUAL | | | | 22250 | | | 6640 | | | 8482 | | | | | T ANNUAL | MEAN | | | | | 40.10 | | | 22980 | | 1993 | | | ANNUAL N | AR A N | | | | | | | | 1200 | | 1989 | | | T DAILY N | MEAN . | | 133000 | Jul 11 | | 21600 | Mar 8 | | 133000 | | 11 1993 | | | DAILY ME | EAN | | 1800 | Dec 27 | | 1450<br>1520<br>22000 | Feb 9 | | 390 | Jan | 10 1990 | | | | MUMINIM Y | | 2340 | Feb 23 | | 1520 | Feb 6 | | 407 | Jan | 6 1990<br>11 1993<br>11 1993 | | | | EAK FLOW | | | | | 22000 | Mar 8 | | 134000<br>82.8 | Jul | 11 1993 | | | | EAK STAGE | : | 16110000 | | | a54.<br>4807000 | 05 Feb 20 | | 6145000 | s Jul | TT TAA3 | | | RUNOFF ( | FDC | | 45000 | | | 14100 | | | 23000 | | | | | CENT EXCE | | | 21400 | | | 5070 | | | 4230 | | | | | CENT EXCE | | | 3580 | | | 1900 | | | 610 | | | | | | | | 5500 | | | -700 | | | 0.10 | | | e Estimated. a Ice affected. #### 05487980 WHITE BREAST CREEK NEAR DALLAS, IA LOCATION.-Lat 41°14'41", long 93°16'08", in NW1/4 NW1/4 sec. 3, T.74 N., R.21 W., Marion County, Hydrologic Unit 07100008, on left bank 15 ft downstream from bridge on county highway, 0.5 mi downstream from Kirk Branch, and 1.7 mi northwest of Dallas. DRAINAGE AREA.--342 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1962 to current year. GAGE.--Water-stage encoder. Datum of gage is 759.21 ft above sea level. REMARKS.—Estimated daily discharges: Nov. 26-30, Dec. 21 to Mar. 3, and Aug. 16 to Sept. 3. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 11, 1962 reached a stage of 28.87 ft, from floodmark, discharge, about 12,000 ft<sup>3</sup>/s. Flood of June 6, 1947 may have been slightly higher. | | DIS | CHARGE, | CUBIC F | EET PER | SECOND, V<br>DAILY | VATER Y<br>MEAN V | EAR OCTO | BER 1993 | TO SEP | TEMBER 19 | 94 | | |-----------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 141<br>114<br>100<br>90<br>80 | 51<br>53<br>53<br>51<br>48 | 47<br>52<br>50<br>53<br>51 | e22<br>e24<br>e22<br>e24<br>e25 | e14<br>e15<br>e13<br>e15<br>e17 | e52<br>e80<br>e150<br>2570<br>2380 | 55<br>54<br>52<br>50<br>49 | 89<br>84<br>71<br>61<br>58 | 27<br>470<br>455<br>153<br>312 | 24<br>31<br>131<br>51<br>32 | 3.9<br>4.1<br>5.1<br>9.3<br>5.8 | e7.0<br>e5.0<br>e3.5<br>27<br>24 | | 6<br>7<br>8<br>9<br>10 | 75<br>70<br>69<br>188<br>93 | 43<br>41<br>42<br>42<br>43 | 48<br>41<br>40<br>43<br>43 | e22<br>e19<br>e20<br>e21<br>e23 | e16<br>e14<br>e13<br>e12<br>e14 | 1240<br>828<br>475<br>242<br>176 | 46<br>45<br>45<br>47<br>46 | 99<br>1000<br>481<br>210<br>132 | 683<br>249<br>101<br>69<br>65 | 23<br>19<br>20<br>21<br>16 | 5.7<br>4.3<br>4.3<br>3.9<br>4.1 | 19<br>20<br>12<br>6.5<br>4.4 | | 11<br>12<br>13<br>14<br>15 | 98<br>83<br>69<br>63<br>76 | 43<br>50<br>94<br>95<br>85 | 41<br>45<br>49<br>60<br>84 | e22<br>e21<br>e20<br>e18<br>e16 | e15<br>e13<br>e16<br>e20<br>e35 | 143<br>139<br>128<br>118<br>119 | 45<br>62<br>90<br>108<br>86 | 93<br>73<br>62<br>57<br>68 | 61<br>71<br>222<br>137<br>62 | 12<br>9.9<br>8.9<br>8.8<br>8.2 | 4.7<br>5.3<br>6.7<br>9.0<br>8.3 | 3.2<br>2.4<br>2.2<br>2.0<br>1.7 | | 16<br>17<br>18<br>19<br>20 | 84<br>78<br>76<br>80<br>76 | 59<br>53<br>51<br>50<br>46 | 90<br>75<br>65<br>58<br>54 | e17<br>e18<br>e14<br>e16<br>e15 | e90<br>e180<br>e330<br>e470<br>e720 | 113<br>97<br>98<br>98<br>96 | 63<br>53<br>48<br>45<br>42 | 79<br>58<br>47<br>41<br>37 | 44<br>35<br>82<br>105<br>42 | 8.2<br>9.4<br>7.4<br>6.7 | e7.0<br>e5.4<br>e9.0<br>e8.0<br>e5.0 | 1.6<br>1.5<br>1.3<br>1.2 | | 21<br>22<br>23<br>24<br>25 | 75<br>77<br>68<br>· 64<br>63 | 45<br>44<br>43<br>44<br>53 | e35<br>e30<br>e26<br>e23<br>e21 | e17<br>e19<br>e25<br>e24<br>e22 | e200<br>e80<br>e40<br>e45<br>e54 | 96<br>89<br>90<br>81<br>71 | 831<br>977<br>309<br>172<br>126 | 33<br>30<br>33<br>83<br>79 | 312<br>569<br>703<br>379<br>355 | 16<br>21<br>12<br>8.7<br>8.3 | e3.0<br>e2.0<br>e2.6<br>e3.5<br>e5.2 | 1.3<br>2.3<br>2.1<br>1.4<br>4.5 | | 26<br>27<br>28<br>29<br>30<br>31 | 60<br>57<br>57<br>55<br>53<br>51 | e50<br>e45<br>e35<br>e38<br>e40 | e18<br>e16<br>e15<br>e17<br>e18<br>e20 | e20<br>e18<br>e17<br>e15<br>e14<br>e13 | e50<br>e40<br>e45<br> | 69<br>68<br>65<br>59<br>55 | 98<br>75<br>66<br>72<br>72 | 101<br>65<br>42<br>34<br>31<br>28 | 83<br>53<br>41<br>32<br>26 | 8.4<br>8.2<br>8.4<br>6.9<br>4.9<br>3.9 | e8.0<br>e12<br>e8.0<br>e4.0<br>e7.0 | 4.0<br>6.4<br>3.9<br>2.6<br>3.3 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 2483<br>80.1<br>188<br>51<br>4930<br>.23 | 1530<br>51.0<br>95<br>35<br>3030<br>.15<br>.17 | 1328<br>42.8<br>90<br>15<br>2630<br>.13<br>.14 | 603<br>19.5<br>25<br>13<br>1200<br>.06 | 2586<br>92.4<br>720<br>12<br>5130<br>.27<br>.28 | 10139<br>327<br>2570<br>52<br>20110<br>.96<br>1.10 | 3929<br>131<br>977<br>42<br>7790<br>.38<br>.43 | 3459<br>112<br>1000<br>28<br>6860<br>.33<br>.38 | 5998<br>200<br>703<br>26<br>11900<br>.58<br>.65 | 560.9<br>18.1<br>131<br>3.9<br>1110<br>.05 | 185.2<br>5.97<br>12<br>2.0<br>367<br>.02 | 178.4<br>5.95<br>27<br>1.1<br>354<br>.02 | | STATIST | ics of Mo | NTHLY MEAN | | R WATER | YEARS 1963 | - 1994, | BY WATER Y | (EAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 135<br>1153<br>1974<br>1.16<br>1990 | 126<br>756<br>1984<br>1.35<br>1977 | 124<br>718<br>1983<br>.80<br>1964 | 69.7<br>601<br>1974<br>.49<br>1977 | 166<br>718<br>1973<br>1.82<br>1964 | 344<br>1055<br>1993<br>4.05<br>1964 | 462<br>1592<br>1991<br>3.85<br>1989 | 308<br>838<br>1993<br>6.44<br>1980 | 255<br>1146<br>1967<br>5.13<br>1977 | 313<br>3641<br>1993<br>1.47<br>1988 | 136<br>1202<br>1993<br>2.09<br>1971 | 218<br>1902<br>1992<br>1.11<br>1968 | | | STATISTI | cs | | | NDAR YEAR | F | OR 1994 WAT | PER YEAR | | WATER YE | ARS 1963 | - 1994 | | LOWEST<br>HIGHEST<br>LOWEST<br>ANNUAL<br>INSTANT<br>INSTANT<br>ANNUAL<br>ANNUAL<br>ANNUAL<br>10 PERC<br>50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS | | 263807<br>723<br>23300<br>15<br>18<br>523300<br>2.11<br>28.69<br>1710<br>130<br>45 | | | 32979.5<br>90.4<br>2570<br>1.1<br>1.4<br>4910<br>16.40<br>.97<br>65410<br>.26<br>3.59<br>138<br>44<br>5.0 | Mar 4<br>Sep 20<br>Sep 15<br>Mar 4<br>Mar 4<br>Sep 19a | | 221<br>816<br>17.1<br>24700<br>.05<br>37300<br>33.45<br>160300<br>.65<br>8.79<br>438<br>36<br>2.3 | Oct 1<br>Aug<br>Jul 1 | 1993<br>1989<br>16 1992<br>14 1989<br>9 1989<br>16 1982<br>16 1982 | e Estimated. a Also 20,21. #### 05488100 LAKE RED ROCK NEAR PELLA, IA LOCATION.--Lat 41°22'11", long 92°58'48", in NE1/4 NW1/4 sec.19, T.76 N., R.18 W., Marion County, Hydrologic Unit O7100008, at outlet works near right end of Red Rock Dam on Des Moines River, 1.4 mi upstream from Lake Creek, 4.5 mi southwest of Pella and at mile 142.3. DRAINAGE AREA.--12,323 mi<sup>2</sup>. PERIOD OF RECORD .-- March 1969 to current year. GAGE.--Water-stage recorder. Datum of gage is at sea level (levels by U.S. Army Corps of Engineers). REMARKS.--Reservoir is formed by earthfill dam completed in 1969. Storage began in March 1969. Releases controlled through 14 concrete conduits extending through the concrete ogee spillway section into the stilling basin. Inlet invert elevation at 690 ft above sea level. Maximum design discharge through the conduits is 37,500 ft<sup>3</sup>/s but normal flood control operation limits maximum outflow to 30,000 ft<sup>3</sup>/s. Spillway section consists of 5 tainter gates, 41 ft wide and 46 ft high, on concrete ogee crest at elevation 736 ft. The storage capacity of the reservoir at full flood-control pool level, 780 ft; 1,790,000 acre-ft, surface area, 65,500 acres. Conservation pool level, 728 feet, is 89,000 acre-feet, surface area, 9,980 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Normal operation will maintain an elevation of 728 ft with minimum release of 300 ft<sup>3</sup>/s and maximum release of 30,000 ft<sup>3</sup>/s during the non-growing season, providing discharges at Ottumwa and Keosauqua do not exceed 30,000 ft<sup>3</sup>/s and 35,000 ft<sup>3</sup>/s respectively. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage. COOPERATION .-- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 1,933,000 acre-ft July 12, 13, 1993; maximum elevation, 782.67 ft July 13, 1993; minimum daily contents, 43,900 acre-ft May 24, 1985, minimum elevation, 719.68 ft Feb. 17, 1977. EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 313,000 acre-ft Mar. 6-8; maximum elevation, 744.50 ft Mar. 7; minimum daily contents, 113,000 acre-ft Oct. 12; minimum elevation, 732.02 ft Oct. 12. #### Capacity table (elevation, in feet, and contents, in acre-feet) | 705 | 1,200 | 735 | 148,000 | 765 | 948,000 | |-----|--------|-----|---------|-----|-----------| | 710 | 3,940 | 740 | 226,000 | 770 | 1,178,000 | | 715 | 11,900 | 745 | 324,000 | 775 | 1,444,000 | | 720 | 27,700 | 750 | 445,000 | 780 | 1,750,000 | | 725 | 50,700 | 755 | 588,000 | 785 | 2,109,000 | | 730 | 89,200 | 760 | 754,000 | 790 | 2,493,000 | ## RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY OBSERVATION AT 24:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------| | 1 | 197000 | 122000 | 278000 | 274000 | 271000 | 272000 | 271000 | 280000 | 273000 | 304000 | 270000 | 269000 | | 2 | 172000 | 127000 | 277000 | 274000 | 271000 | 273000 | 272000 | 279000 | 276000 | 301000 | 271000 | 269000 | | 3 | 153000 | 137000 | 276000 | 273000 | 271000 | 275000 | 271000 | 278000 | 277000 | 300000 | 272000 | 269000 | | 4 | 142000 | 149000 | 276000 | 273000 | 271000 | 288000 | 273000 | 276000 | 276000 | 299000 | 272000 | 275000 | | 5 | 135000 | 158000 | 280000 | 273000 | 270000 | 307000 | 273000 | 274000 | 277000 | 295000 | 271000 | 276000 | | 6 | 127000 | 165000 | 274000 | 275000 | 271000 | 313000 | 272000 | 275000 | 276000 | 291000 | 270000 | 277000 | | 7 | 121000 | 175000 | 275000 | 274000 | 270000 | 313000 | 270000 | 277000 | 274000 | 290000 | 270000 | 278000 | | 8 | 119000 | 184000 | 273000 | 273000 | 269000 | 313000 | 273000 | 276000 | 273000 | 286000 | 271000 | 279000 | | 9 | 119000 | 193000 | 273000 | 272000 | 269000 | 309000 | 273000 | 274000 | 272000 | 281000 | 270000 | 281000 | | 10 | 118000 | 200000 | 274000 | 273000 | 269000 | 300000 | 272000 | 271000 | 272000 | 277000 | 274000 | 283000 | | 11 | 114000 | 207000 | 272000 | 272000 | 268000 | 289000 | 270000 | 270000 | 270000 | 276000 | 270000 | 286000 | | 12 | 113000 | 215000 | 274000 | 271000 | 269000 | 279000 | 276000 | 270000 | 270000 | 273000 | 271000 | 288000 | | 13 | 114000 | 224000 | 275000 | 269000 | 268000 | 271000 | 275000 | 269000 | 269000 | 274000 | 273000 | 290000 | | 14 | 118000 | 235000 | 275000 | 269000 | 271000 | 268000 | 274000 | 269000 | 268000 | 278000 | 270000 | 292000 | | 15 | 117000 | 241000 | 275000 | 269000 | 272000 | 266000 | 273000 | 267000 | 270000 | 277000 | 268000 | 294000 | | 16 | 115000 | 248000 | 274000 | 271000 | 276000 | 267000 | 270000 | 266000 | 273000 | 273000 | 268000 | 295000 | | 17 | 114000 | 253000 | 276000 | 272000 | 281000 | 273000 | 269000 | 268000 | 275000 | 269000 | 269000 | 296000 | | 18 | 115000 | 259000 | 275000 | 273000 | 282000 | 275000 | 271000 | 268000 | 275000 | 267000 | 270000 | 297000 | | 19 | 116000 | 264000 | 276000 | 275000 | 287000 | 275000 | 271000 | 269000 | 273000 | 271000 | 272000 | 298000 | | 20 | 115000 | 265000 | 274000 | 275000 | 300000 | 278000 | 271000 | 269000 | 276000 | 271000 | 271000 | 299000 | | 21 | 114000 | 273000 | 277000 | 274000 | 300000 | 274000 | 274000 | 268000 | 277000 | 273000 | 271000 | 301000 | | 22 | 115000 | 274000 | 273000 | 273000 | 287000 | 272000 | 274000 | 267000 | 278000 | 274000 | 272000 | 301000 | | 23 | 116000 | 275000 | 273000 | 273000 | 273000 | 276000 | 271000 | 269000 | 295000 | 274000 | 273000 | 303000 | | 24 | 116000 | 273000 | 274000 | 273000 | 272000 | 270000 | 271000 | 272000 | 302000 | 275000 | 272000 | 305000 | | 25 | 116000 | 276000 | 273000 | 274000 | 270000 | 270000 | 269000 | 273000 | 304000 | 275000 | 273000 | 308000 | | 26<br>27<br>28<br>29<br>30<br>31 | 116000<br>115000<br>117000<br>115000<br>115000<br>118000 | 274000<br>275000<br>275000<br>274000<br>275000 | 274000<br>275000<br>274000<br>273000<br>273000<br>274000 | 275000<br>275000<br>274000<br>273000<br>272000<br>271000 | 266000<br>267000<br>270000<br> | 272000<br>273000<br>271000<br>272000<br>271000<br>271000 | 271000<br>270000<br>276000<br>276000<br>279000 | 271000<br>270000<br>270000<br>271000<br>275000<br>271000 | 304000<br>303000<br>305000<br>305000<br>304000 | 273000<br>271000<br>271000<br>271000<br>270000<br>272000 | 273000<br>273000<br>273000<br>272000<br>272000<br>270000 | 308000<br>310000<br>310000<br>310000<br>312000 | | MEAN | 123000 | 225000 | 275000 | 273000 | 274000 | 281000 | 272000 | 272000 | 281000 | 279000 | 271000 | 292000 | | MAX | 197000 | 276000 | 280000 | 275000 | 300000 | 313000 | 279000 | 280000 | 305000 | 304000 | 274000 | 312000 | | MIN | 113000 | 122000 | 272000 | 269000 | 266000 | 266000 | 269000 | 266000 | 268000 | 267000 | 268000 | 269000 | ### 05488110 DES MOINES RIVER NEAR PELLA, IA LOCATION.--Lat 41°21'38", long 92°58'23", in SW1/4 SW1/4 SE1/4 sec.19, T.76 N., R.18 W., Marion County, Hydrologic Unit 07100009, on right bank, 0.4 mile downstream of outlet of Red Rock Reservoir, and 0.75 mile upstream of Lake Creek. DRAINAGE AREA .-- 12,330 mi<sup>2</sup>. PERIOD OF RECORD.--October 1992 to current year. GAGE.--Water-stage encoder. Datum of gage is 600.00 ft above sea level. REMARKS.--Estimated daily discharges: Jan.18. Records good except those for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published as in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. | | D | ISCHARGE | , CUBIC | FEET PER | SECOND,<br>DAILY | WATER MEAN | YEAR OC<br>VALUES | TOBER 1993 | TO SEI | PTEMBER | 1994 | | |---------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4 | 29000<br>26900<br>23800<br>19900 | 5280<br>4740<br>2760<br>1470 | 2660<br>3840<br>4460<br>4640 | 3170<br>3640<br>3630<br>3600 | 2160<br>2170<br>1950<br>1850 | 4100<br>4090<br>4330<br>7470 | 5040<br>5000<br>5010<br>4260 | 6790<br>7270<br>7260 | 3390<br>3080<br>3420<br>4490 | 14900<br>14900<br>14900 | 4880<br>4450<br>4160<br>4150 | 2590<br>2220<br>1940<br>1850 | | 5<br><b>6</b> | 15500<br>14000 | 1720<br>1950 | 4800<br>4700 | 3390<br>2940 | 1840<br>1840 | 12900<br>15300 | 3730<br>3740 | | 5120<br>5850 | | 3820<br>3640 | 2660<br>2670 | | 7<br>8<br>9<br>10 | 12600<br>10500<br>10800<br>11800 | 1880<br>1770<br>1760<br>1750 | 4570<br>3710<br>3250<br>3620 | 3050<br>2920<br>2970<br>2890 | 1850<br>1840<br>1840<br>1860 | 17500<br>19000<br>20000<br>20000 | 3790<br>3800<br>3760<br>3780 | 7540<br>8530<br>9420 | 6380<br>6390<br>7080<br>8670 | 13100 | 3140<br>2280<br>1940<br>1920 | 1840<br>1590<br>1420<br>1420 | | 11<br>12<br>13<br>14 | 12200<br>10100<br>6470<br>5540 | 1750<br>1770<br>1730<br>1720 | 3950<br>3210<br>2920<br>3960 | 3000<br>2970<br>2970<br>2620 | 1850<br>1830<br>1830<br>1610 | 19500<br>18700<br>16900<br>13800 | 3810<br>3760<br>4290<br>5000 | 9210<br>8500<br>7980<br>7760 | 9550<br>83 <b>8</b> 0<br>8380<br>8490 | 5900<br>9310<br>12500<br>12500 | 3060<br>2470<br>2070<br>3500 | 1200<br>929<br>847<br>840 | | 15 | 8290 | 2250 | 4520 | 2250 | 1450 | 11300 | 6050 | 7720 | 8240 | 13200 | 4620 | 834 | | 16<br>17<br>18<br>19<br>20 | 11300<br>12000<br>11000<br>10400<br>10400 | 2510<br>2430<br>2440<br>2370<br>2440 | 4770<br>4760<br>5030<br>5240<br>5200 | 1980<br>1930<br>e1950<br>1990<br>2150 | 1470<br>3290<br>6440<br>7810<br>8410 | 9700<br>8170<br>8330<br>8950<br>8910 | 6770<br>6840<br>6850<br>7190<br>7210 | 6890<br>5980<br>5710<br>5290<br>4970 | 9230<br>12100<br>13500<br>13600<br>13000 | 13500<br>13500<br>13500<br>12500<br>11 <b>9</b> 00 | 4630<br>4640<br>4640<br>4620<br>4570 | 815<br>815<br>828<br>827<br>823 | | 21<br>22<br>23<br>24<br>25 | 8850<br>7770<br>7280<br>7270<br>7250 | 2870<br>4030<br>4610<br>4590<br>4520 | 5220<br>5190<br>3770<br>2490<br>2420 | 2230<br>2230<br>2130<br>2130<br>2120 | 11500<br>15600<br>15300<br>11600<br>9330 | 9230<br>9540<br>8640<br>7980<br>6790 | 7060<br>9320<br>9250<br>7840<br>7620 | 4970<br>4960<br>4570<br>4630<br>5250 | 12600<br>12600<br>9350<br>9900<br>15300 | 11900<br>11900<br>11900<br>11900<br>11900 | 3930<br>3520<br>3530<br>3530<br>3180 | 817<br>794<br>787<br>775<br>1400 | | 26<br>27 | 7170<br>6720 | 4510<br>3990 | 2120<br>1890 | 2380<br>2510 | 8120<br>5520 | 6240<br>6160 | 6810<br>5490 | 5480<br>5320 | 15700<br>16700 | 11900<br>10600 | 2960<br>2960 | 1930<br>1960 | | 28<br>29<br>30<br>31 | 5640<br>5090<br>5070<br>5070 | 3320<br>3300<br>2830 | 2130<br>2580<br>2850<br>2730 | 2490<br>2480<br>2500<br>2380 | 4120 | 6140<br>5670<br>5380<br>5180 | 4610<br>4170<br>4770 | 4270<br>3670<br>3680<br>3660 | 16500<br>15200<br>14900 | 8240<br>5900<br>5410<br>5090 | 2620<br>2440<br>3130<br>3670 | 2370<br>2680<br>2420 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT | 345680<br>11150<br>29000<br>5070<br>685700 | 85060<br>2835<br>5280<br>1470<br>168700 | 117200<br>3781<br>5240<br>1890<br>232500 | 81590<br>2632<br>3640<br>1930<br>161800 | 136280<br>4867<br>15600<br>1450<br>270300 | 325900<br>10510<br>20000<br>4090<br>646400 | 166620<br>5554<br>9320<br>3730<br>330500 | 197200<br>6361<br>9670<br>3660<br>391100 | 297090<br>9903<br>16700<br>3080<br>589300 | 345040<br>11130<br>15000<br>5090<br>684400 | 108670<br>3505<br>4880<br>1920<br>215500 | 44891<br>1496<br>2680<br>775<br>89040 | | STATIS | TICS OF M | ONTHLY ME. | AN DATA | FOR WATER | YEARS 199 | 2 - 1994 | , BY WATE | R YEAR (WY | ) | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 8216<br>11150<br>1994<br>5281<br>1993 | 7414<br>11990<br>1993<br>2835<br>1994 | 8082<br>12380<br>1993<br>3781<br>1994 | 3315<br>3997<br>1993<br>2632<br>1994 | 4527<br>4867<br>1994<br>4186<br>1993 | 14000<br>17480<br>1993<br>10510<br>1994 | 13320<br>21080<br>1993<br>5554<br>1994 | 17440<br>28520<br>1993<br>6361<br>1994 | 18920<br>27950<br>1993<br>9903<br>1994 | 45230<br>79340<br>1993<br>11130<br>1994 | 24050<br>44600<br>1993<br>3505<br>1994 | 17490<br>33490<br>1993<br>1496<br>1994 | | SUMMAR | Y STATIST | ics | FOR | 1993 CALE | ENDAR YEAR | | FOR 1994 | WATER YEAR | | WATER | YEARS 1992 | 2 - 1994 | | LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER | MEAN T ANNUAL ANNUAL M T DAILY ME SEVEN-DA TANEOUS P TANEOUS P RUNOFF ( CENT EXCE | MEAN MEAN MAN MEAN MEAN MEAN MEAN MEAN M | | 8532710<br>23380<br>104000<br>1270<br>1750<br>16920000<br>45800 | Jul 12<br>Feb 18<br>Nov 8 | | 2251221<br>6168<br>29000<br>775<br>807<br>29400<br>97<br>4465000<br>13000 | Oct 1<br>Sep 24<br>Sep 18<br>Oct 1<br>64 Oct 1 | | 15260<br>24360<br>6168<br>104000<br>775<br>807<br>105000<br>109.<br>11060000<br>33800 | Sep<br>Sep<br>Jul | 1993<br>1994<br>12 1993<br>24 1994<br>18 1994<br>12 1993<br>12 1993 | | | CENT EXCE<br>CENT EXCE | | | 21200<br>2800 | | | 4640<br>1840 | | | 7820<br>2250 | | | e Estimated. #### 05488200 ENGLISH CREEK NEAR KNOXVILLE, IA LOCATION.--Lat 41°16'00", long 93°05'00", in NE1/4 SE1/4 sec.16, T.75 N., R.19 W., Marion County, Hydrologic Unit 07100009, on left bank 30 ft from left upstream abutment of bridge on State Highway 92, 3 mi east of Knoxville, and 11.4 mi upstream from mouth at Des Moines River. DRAINAGE AREA.--90.1 mi<sup>2</sup>. PERIOD OF RECORD .-- July 1985 to current year. GAGE.--Water-stage encoder. Datum of gage is 721.79 ft above sea level. REMARKS.--Estimated daily discharges: Oct. 10 to Dec. 9 and Dec. 21 to Mar. 6. Records good except those for July and August, which are fair, and those estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 16, 1982 reached a stage of 30.28 ft, gage datum, discharge 28,000 ft<sup>3</sup>/s, from contracted-opening indirect computations. | | DI | SCHARGE | E, CUBIC I | FEET PER | SECOND, V | | | OBER 199 | 3 TO SEPI | TEMBER 19 | 94 | | |-------------|---------------------------------|-----------------|----------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|--------------------------------|-------------------|--------------------------------|-------------------------------------------|-------------|-----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 56 | e9.5 | | e4.3 | e3.8 | e12<br>e14 | 13 | 14 | 1.6 | 9.1 | 1.0 | .32 | | 2<br>3 | 50<br>45 | e7.8<br>e7.6 | e10<br>e10 | e3.9<br>e3.5 | e4.0<br>e3.5 | e14<br>e23 | 13<br>12 | 15<br>11 | 15<br>59 | 9.3<br>7.8 | 1.5<br>.79 | .12 | | 4 | 43 | e8.0 | e10<br>e10<br>e11 | e3.2 | e3.5<br>e3.2<br>e3.0 | e100 | 12<br>11<br>11 | 9.2<br>8.7 | 15<br>59<br>17<br>11 | 9.3<br>7.8<br>6.9<br>6.2 | 1.7 | 8.2 | | 5 | 40 | | | | | | | | | | | 10 | | 6<br>7 | 38<br>37 | e7.8<br>e7.8 | e10<br>e9.7 | e3.4<br>e2.8 | e2.9<br>e2.5<br>e2.2<br>e2.0<br>e1.9 | e170<br>119 | 10<br>9.2<br>9.5<br>10<br>11 | 10<br>20 | 75<br>23<br>13<br>7.2<br>8.2 | 5.1<br>4.1 | .57<br>.44 | 3.8<br>1.2 | | 8 | 37 | e7.7 | e9.7<br>e8.8 | e2.7 | e2.2 | 68 | 9.5 | 20 | 13 | 3.6 | .38 | .53 | | 9<br>10 | 49<br>e43 | e8.2<br>e9.1 | e8.1<br>9.1 | e2.8 | e2.0 | 43<br>35 | 10<br>11 | 16<br>12 | 7.2<br>8.2 | 4.1<br>3.6<br>3.2<br>2.8 | .21<br>.19 | .32<br>.19 | | 11 | e31 | e10 | | 43.3 | 01.9 | 20 | 0.4 | 6.8 | 11 | | | .18 | | 12 | e26 | e13 | 7.3 | e3.3<br>e3.2 | el.9 | 31 | 11 | 8.1 | 8.4 | 1.8 | .36 | .12 | | 13 | e23 | e17 | 8.2 | e3.0 | e1.8 | 30 | 17 | 6.6 | 9.2 | 1.6 | .42 | .10 | | 14<br>15 | e19<br>e19 | e15<br>e9.2 | 15<br>18 | e2.7<br>e2.4 | e1.8<br>e1.9<br>e1.8<br>e4.0<br>e20 | | | | 11<br>8.4<br>9.2<br>7.4<br>4.1 | 2.4<br>1.8<br>1.6<br>1.5<br>1.4 | .43<br>.24 | .09<br>.08 | | 16 | e23 | e7.9 | 15 | e3.0 | e70 | 26 | 10<br>8.2<br>7.5<br>6.9<br>7.0 | 8.0 | 2.4 | 1 0 | 3.0 | .08 | | 17 | e22 | e6.9 | 12 | e3.7 | e100 | 23 | 8.2 | 9.5 | 1.7 | 1.2 | .13 | .10 | | 18<br>19 | e19<br>e19 | e6.6<br>e7.2 | 12 | e2.8<br>e2.3 | e130 | 25<br>25 | /.5<br>6.9 | 4.8 | 142 | .97<br>.87 | .11 | .03 | | 20 | e19<br>e21 | e7.5 | 11 | e3.0<br>e3.7<br>e2.8<br>e2.3<br>e2.4 | | 24 | 7.0 | 3.6 | 73 | .97<br>.87<br>1.0 | | .03 | | 21 | e20<br>e18<br>e19<br>e19<br>e24 | e7.8 | e8.0 | e2.6<br>e2.8 | e 60 | 25<br>24<br>23<br>22<br>17 | 9.3 | 3.0 | 94 | 1.2<br>.94<br>.74<br>.64 | .06 | .04 | | 22<br>23 | e19 | e7.7<br>e7.9 | e5.0<br>e3.4<br>e2.5<br>e2.7 | e2.8 | e16 | 29 | 25<br>17 | 2.6<br>2.3<br>7.5 | 1410 | .94 | .05 | .07<br>.08 | | 24 | e19 | e9.3 | e2.5 | e3.0<br>e6.0 | ell | 22 | 17<br>13<br>12 | 7.5 | 254 | .64 | .12 | .10 | | 25 | e24 | e11 | e2.7 | | | | | | | | | 1.4 | | 26<br>27 | e17<br>e22 | ell<br>e9 2 | e2.7 | e14<br>e10 | e11 | 16<br>17 | 11<br>8.5<br>7.7 | 7.9<br>5.3 | 41 | .62<br>.66 | .83<br>.63 | .77<br>.37 | | 28 | e18 | e8.4 | e2.6 | e7.0 | ell | 16 | 7.7 | 3.9 | 19 | 1.7 | | .19 | | 29<br>30 | e15<br>e14 | e9.0 | e2.9 | e6.6 | | +4 | 1.3 | 3.1 | 7.2 | | .10 | .13 | | 31 | e12 | | e2.7<br>e3.0<br>e2.6<br>e2.9<br>e3.0<br>e3.3 | e5.0<br>e3.5 | | 12<br>12 | 12 | 2.6<br>2.0 | 10 | .88<br>.65 | .78<br>.72 | .21 | | TOTAL | 858 | 272.8 | 254.3 | 141.8 | 1259.5 | 1552 | 341.1 | 256.5 | 2603.2 | 81.82<br>2.64<br>9.3<br>.55<br>162<br>.03 | 14.15 | 28.96 | | MEAN | | | 8.20 | 141.8<br>4.57 | 1259.5<br>45.0<br>600<br>1.8<br>2500 | 1552<br>50.1<br>500<br>12<br>3080<br>.56 | 11.4 | 8.2/ | 86.8 | 2.64 | .46 | .97 | | MAX<br>MIN | 56<br>12 | 17<br>6.6 | 18<br>2.5 | 20 | 600 | 500 | 25<br>6.9 | 20<br>2.0 | 1410<br>1.6 | 9.3 | 1.7<br>.05 | 10<br>.03 | | AC-FT | 1700 | 541 | 504 | 20<br>2.3<br>281<br>.05 | 2500 | 3080 | 677 | 509 | 5160 | 162 | 28 | 57 | | CFSM | .31 | .10 | .09 | .05 | .50 | .56 | .13 | .09 | .96 | .03 | .01 | .01 | | IN. | .35 | .11 | .10 | .00 | .52 | . 64 | .14 | .11 | 1.07 | .03 | .01 | .01 | | STATIST | CICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1985 | - 1994, | BY WATER | YEAR (WY | 9) | | | | | MEAN | 31.7 | 31.5 | 37.1 | 16.2 | 28.4 | 98.9 | 127 | 91.9 | 57.8<br>245 | 123<br>1039 | 46.2 | 56.3 | | MAX<br>(WY) | 161<br>1987 | 100<br>1993 | 112<br>1993 | 43.3<br>1986 | 57.6<br>1992 | 335<br>1993 | 476<br>1991 | 220<br>1986 | 1990 | 1993 | 285<br>1993 | 159<br>1992 | | MIN | .50 | .76 | 1993<br>.31<br>1989 | .66 | .50 | 2.05 | 1.03 | 2.27 | 2.27 | .18 | .17 | .026 | | (WY) | 1989 | 1989 | 1989 | 1989 | 1989 | 1989 | 1989 | 1989 | 1992 | 1988 | 1988 | 1991 | | SUMMARY | STATIST: | ICS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1985 | - 1994 | | ANNUAL | | | | 72914.1 | | | 7664.13 | 3 | | | | | | ANNUAL | MEAN<br>'ANNUAL! | MP BN | | 200 | | | 21.0 | | | 64.2<br>214 | | 1993 | | | ANNUAL M | | | | | | | | | 6 71 | | 1989 | | HIGHEST | DAILY ME | EAN | | 8610 | Jul 5<br>Dec 24 | | 1410 | Jun 23<br>Sep 18 | | 8610 | | 5 1993 | | | DAILY MEA | AN<br>Y MINIMUM | | 2.5 | Dec 24<br>Dec 24 | | .03 | Sep 18 | | .00 | Sep 3 | 12 1988 | | | ANEOUS PI | | | 2.0 | Dec 24 | | 1780 | Jun 23 | | 28000 | Sep 2 | 16 1982 | | | | EAK STAGE | | | | | 20.13 | Jun 23<br>Sep 20 | | 30.28 | Jul 1 | l <b>6 1982</b> | | | RUNOFF (A | | | 144600 | | | .02<br>15200 | Sep 20 | | .00<br>46500 | many | years | | ANNUAL | RUNOFF ( | CFSM) | | 2.2 | | | .23 | ı | | .71 | | | | | RUNOFF ( | | | 30.1 | 0 | | 3.16 | i | | 9.68 | | | | | ENT EXCEI | | | 416<br>42 | | | 30<br>8.0 | | | 94<br>10 | | | | | ENT EXCE | | | 9.2 | | | .32 | ! | | .27 | | | | | | | | | | | | | | | | | e Estimated. #### 05488500 DES MOINES RIVER NEAR TRACY, IA LOCATION.—Lat 41°16'53", long 92°51'34", in NW1/4 SE1/4 sec.19, T.75 N., R.17 W., Mahaska County, Hydrologic Unit 07100009, on right bank 250 ft upstream from abandoned Bellefountaine Bridge, 0.8 mi east of Tracy, 3.1 mi upstream from Cedar Creek, 3.8 mi downstream from bridge on newly located State Highway 92, 6.4 mi downstream from English Creek, and at mile 130.4. bridge on newly located State Highway 92, 0.4 mt downstream from english Creek, and at time 150.7. DRAINAGE AREA.--12,479 mi<sup>2</sup>. PERIOD OF RECORD.--March 1920 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1920 (M), 1922 (M), 1933. GAGE.--Water-stage encoder. Datum of gage is 670.91 ft above sea level. Prior to June 26, 1940, and June 30, 1952, to Nov. 4, 1960, nonrecording gage, and June 27, 1940, to June 29, 1952, water-stage recorder, at site 250 ft downstream at same datum. REMARKS.--Estimated daily discharges: Jan 7-9, 14-25, 31, Feb. 1, and Feb. 8-17. Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Lake Red Rock (station 05488100) 11.9 mi upstream, since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers gage-height telemeter and data collection platform at station. gage-height telemeter and data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 155,000 ft<sup>2</sup>/s, June 14, 1947, gage height, 26.5 ft; minimum daily discharge, 40 ft<sup>3</sup>/s Jan. 29 to Feb. 2, 1940. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1851, that of June 14, 1947. Flood of May 31, 1903, reached a stage of about 25 ft, discharge, about 130,000 ft<sup>3</sup>/s. Minimum daily discharge since at least 1910, that of Jan. 29 to Feb. 1, 1940. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | 1 29000 5000 5000 2430 3000 62350 6470 5030 5670 3560 14900 4920 2950 2950 32700 3210 4770 3800 4225 3200 4770 3800 4225 3200 4770 3800 4225 3200 4770 3800 4225 3200 4800 3200 4800 3200 4800 3200 4800 4220 3800 4225 3800 4220 4800 4220 4800 4220 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 | | | | | | | | | | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------------------------|-----------|-----------|------------|----------|------------|------------|--------|------------|------------|--------------------| | 2 27200 5040 3520 3510 1990 4610 5010 6670 5220 14900 4220 2070 3 23700 3310 4670 3800 2100 4810 5000 7320 3460 14900 4220 2070 4 19900 1400 4840 3780 11950 7470 4470 7310 4330 14900 4220 2070 5 19400 1840 5070 3380 1990 1990 13900 7300 5230 14900 3730 2990 6 13700 1890 1950 5030 2990 1950 15800 3790 7300 5220 14800 3730 2960 6 13700 1890 1890 3000 4870 48100 1990 17400 3790 7305 6620 14800 3730 2960 6 12800 1830 3800 4870 48100 1990 20400 3790 7305 6620 13400 3410 1930 8 10900 1890 3360 3070 81900 20400 3790 7305 6620 13400 3410 1930 10 11600 1830 3860 3070 81900 20400 3770 9530 8760 5320 2210 11400 11 12100 1890 3660 3070 81900 20400 3770 9530 8760 5320 2210 1450 11 12100 1890 3660 3070 81900 18900 30800 8610 9550 8440 2890 879 13 7030 1880 2550 2560 81900 18800 3800 8610 9550 8440 2890 879 13 7030 1880 2565 2560 81800 17200 4190 8040 8540 12600 2410 6880 879 14 5240 1870 3940 2650 61500 11300 9950 7770 9840 12600 3210 6880 879 15 7930 2020 4550 2020 6550 61500 11300 9950 7790 8840 12600 3270 745 15 7930 2020 6550 2020 6770 8100 6890 779 8840 12600 3270 6880 832 16 11000 2240 4990 22100 61500 1300 9950 7790 8840 13200 4580 882 17 11900 2080 5000 2200 2000 6770 8100 6890 5150 13200 13700 4580 882 18 11000 2240 5000 5220 2000 6770 8100 6890 5150 13200 13700 4580 882 18 11000 2240 5000 5220 2000 6770 8100 6890 5150 13200 13700 4580 893 19 10800 2000 5220 2000 6770 8100 6890 5150 13200 13000 4410 841 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3 23700 3210 4670 3800 2100 4810 5000 7320 3466 14900 4220 2070 4 1990 1400 3070 3360 1950 1950 3000 7300 3230 14900 3390 2200 5 15400 1040 3070 3630 1950 1950 3000 7300 5230 14900 3390 2200 6 13700 1950 4870 63100 1966 17400 3790 7530 6220 13400 3410 1930 8 10500 1860 4050 6300 61900 3800 8310 8420 7010 7340 2570 1750 10 11600 1830 3860 83100 61900 24400 3770 9350 7260 5360 2210 1460 11 12100 1840 4100 2550 61900 19900 3770 9300 9910 5860 3220 2210 1460 11 12100 1840 3450 2550 61900 18900 3770 9300 9910 5860 3050 1280 11 12 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 | | | | | | | | | | | | | | | \$ 19900 1400 4840 3780 1950 1390 4470 7330 4330 14900 4230 2210 5 13700 1990 5030 2990 1990 1990 3800 3700 7300 5220 14900 3700 2960 6 13700 1800 4800 4870 63100 1990 18900 3800 77050 6520 14900 3700 2560 7 12800 1990 4870 63000 1990 18900 3800 8705 7750 6520 13400 3710 1750 8 10500 1860 4990 63000 61900 24900 3770 9530 8960 1300 2670 1750 10 11600 1830 3860 3070 61900 29400 3770 9530 8760 5360 2210 1460 10 11600 1800 4800 4800 63000 41900 3800 8610 9950 8760 5320 2210 1460 11 12100 1840 4100 2550 61900 18900 3800 8610 9950 8760 5320 2210 1460 12 10800 1860 3450 2960 61900 18900 3770 9830 8910 12600 2400 879 13 7030 1880 2650 2960 61800 17200 4190 8040 8540 12600 2410 6880 14 5240 1870 3940 62550 61850 14300 4970 7820 8890 12600 3270 745 15 7390 2020 4590 62300 61500 13300 4970 7820 8890 12600 3270 745 16 11000 2240 4990 62100 6100 1300 4970 7820 8890 12600 3270 745 17 11900 2080 5000 62000 62400 8430 6890 6120 11600 13700 4500 862 19 11200 2090 5220 62000 6770 8100 6890 5750 7130 1300 4440 8811 21 9490 2500 5520 62300 11300 9400 6890 6120 11600 1200 4450 8891 22 1 9490 2500 5520 62300 11500 9950 6880 7120 1300 1300 4450 8891 22 1 9490 2500 5520 62300 11500 8930 7270 5020 12000 1400 8410 22 1 9490 2500 5220 6200 8700 8830 7270 5020 12000 1200 4420 8811 22 1 9490 2500 5520 62300 11500 9400 8930 7270 5020 12000 12000 4420 8811 22 1 9490 2500 520 62300 1500 8980 6890 6100 5000 1200 1300 5000 1200 6450 8000 8000 8000 8000 8000 8000 8000 8 | | | | | | | | | | | | | | | Second | | | | | | | | | | | | | | | 7 12800 1930 4870 63100 1960 17400 3790 7550 6620 13400 3410 1930 8 10500 1860 4090 63000 61900 18900 3810 8420 7710 7340 2760 1750 9 10900 1830 3360 63100 61900 20400 3770 9500 8760 5320 2210 1460 10 1100 1830 3660 3070 61900 20400 3770 9500 8760 5320 2210 14651 11 12100 1840 4100 2950 61900 18900 3770 9500 8760 5320 2210 1450 11 1000 1860 3450 2960 61900 18900 3700 9900 5600 3050 1280 12 10800 1860 3450 2960 61900 18900 3700 9900 5600 3050 1280 13 7030 1880 2550 2960 61800 17200 4190 8040 8540 12600 2410 6881 14 5240 1870 3940 62550 61800 17200 4190 8040 8540 12600 2410 6881 15 7930 2020 4650 6250 61900 1800 7780 8840 13200 4370 7820 8890 12600 3770 7820 16 11000 2040 5000 62000 62000 8430 6890 5700 13200 4360 832 17 11900 2090 5000 62000 62000 8430 6890 6120 11600 13700 4540 871 17 11900 2090 5000 62000 62000 8430 6890 6120 11600 13700 4500 862 18 11200 2090 5220 62000 6770 8100 6890 5750 13200 13600 4450 852 19 10060 2070 5520 62300 11300 8930 7730 5430 13500 12900 4410 861 22 10000 2070 5520 62300 1300 8930 7730 5430 13500 12900 4410 861 22 1810 3820 5510 62200 15700 9440 8800 5010 12100 12000 4140 841 22 1810 3820 5510 62200 15700 9440 8800 5010 12100 12000 3680 860 23 7530 4760 4440 62200 15900 8810 9620 4760 11200 12000 3680 862 23 7530 4760 7470 2470 62200 12000 8810 9620 4760 11200 12000 3680 862 23 7530 4760 7470 2470 62200 12000 8810 9620 4760 11000 3080 2660 23 7530 4760 7470 2470 62200 12000 8810 9620 4760 11000 3080 2660 24 5740 4760 2410 62100 9850 7770 5700 5400 15700 1900 3680 860 25 7740 4760 2470 62200 12000 8600 7850 7850 1600 11000 3080 2660 26 7760 7760 7760 7770 7770 7700 7700 77 | | | | | | | | | | | | | | | 7 12800 1930 4870 63100 1960 17400 3790 7550 6620 13400 3410 1930 8 10500 1860 4090 63000 61900 18900 3810 8420 7710 7340 2760 1750 9 10900 1830 3360 63100 61900 20400 3770 9500 8760 5320 2210 1460 10 1100 1830 3660 3070 61900 20400 3770 9500 8760 5320 2210 14651 11 12100 1840 4100 2950 61900 18900 3770 9500 8760 5320 2210 1450 11 1000 1860 3450 2960 61900 18900 3700 9900 5600 3050 1280 12 10800 1860 3450 2960 61900 18900 3700 9900 5600 3050 1280 13 7030 1880 2550 2960 61800 17200 4190 8040 8540 12600 2410 6881 14 5240 1870 3940 62550 61800 17200 4190 8040 8540 12600 2410 6881 15 7930 2020 4650 6250 61900 1800 7780 8840 13200 4370 7820 8890 12600 3770 7820 16 11000 2040 5000 62000 62000 8430 6890 5700 13200 4360 832 17 11900 2090 5000 62000 62000 8430 6890 6120 11600 13700 4540 871 17 11900 2090 5000 62000 62000 8430 6890 6120 11600 13700 4500 862 18 11200 2090 5220 62000 6770 8100 6890 5750 13200 13600 4450 852 19 10060 2070 5520 62300 11300 8930 7730 5430 13500 12900 4410 861 22 10000 2070 5520 62300 1300 8930 7730 5430 13500 12900 4410 861 22 1810 3820 5510 62200 15700 9440 8800 5010 12100 12000 4140 841 22 1810 3820 5510 62200 15700 9440 8800 5010 12100 12000 3680 860 23 7530 4760 4440 62200 15900 8810 9620 4760 11200 12000 3680 862 23 7530 4760 7470 2470 62200 12000 8810 9620 4760 11200 12000 3680 862 23 7530 4760 7470 2470 62200 12000 8810 9620 4760 11000 3080 2660 23 7530 4760 7470 2470 62200 12000 8810 9620 4760 11000 3080 2660 24 5740 4760 2410 62100 9850 7770 5700 5400 15700 1900 3680 860 25 7740 4760 2470 62200 12000 8600 7850 7850 1600 11000 3080 2660 26 7760 7760 7760 7770 7770 7700 7700 77 | 6 | 13700 | 1950 | 5030 | 2990 | 1 950 | 15800 | 3790 | 7300 | 5820 | 14800 | 3730 | 2960 | | 10 1160 | 7 | 12800 | 1930 | 4870 | e3100 | 1960 | | | | | 13400 | 3410 | | | 10 | | | | | | | | | | | | | | | 11 | | | 1830 | | | | | | | | | | | | 12 10800 1860 3450 2960 e1900 18800 3800 8610 9050 8440 2890 879 879 13 7030 1880 2650 2960 e1650 14300 44970 7820 8890 12600 2270 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 745 7 | 10 | 11600 | 1830 | 3660 | 3070 | e1900 | 20400 | 3770 | 9630 | 8760 | 5320 | 2210 | 1450 | | 13 | | | | | | | | | | | | | | | 14 5240 1870 3940 e2550 e1550 14300 4970 7820 8890 12600 3270 745 | | | | | | | | | | | | | | | 16 1100 2240 4590 e2100 e1500 11300 5950 7790 8540 13200 4580 832 16 11000 2240 4990 e2100 e1500 9950 6880 7140 9250 13700 4540 871 17 11900 2080 5000 e2000 e2000 e770 8100 6880 6120 11600 13700 4500 862 18 11200 2090 5220 e2000 6770 8100 6890 6120 11600 13700 4500 862 18 11200 2090 5220 e2000 6770 8100 6890 6120 11600 13700 4450 858 19 10600 2090 5520 e2200 13800 8950 8730 5750 13200 13600 44450 881 20 10600 2090 5520 e2200 13800 8950 8730 5750 13200 12800 4410 841 21 9490 2500 5520 e2200 13700 9440 8800 5010 12500 12000 4420 841 22 8180 3820 5510 e2200 15700 9440 8800 5010 12300 12000 4420 860 23 7530 4780 4440 e2200 15900 8810 9620 4780 12000 12000 3690 860 23 7530 4780 4440 e2200 15900 8810 9620 4780 1200 12000 3690 860 23 7530 4780 4440 e2200 12800 8830 7950 4620 9420 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7450 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 27 7080 4390 2240 2240 8880 6220 7100 5480 15700 12000 3130 2210 27 7080 4390 2240 2350 4710 6180 4860 4500 1600 11000 3000 2060 28 5990 3490 2240 2350 4710 6180 4860 4500 1600 11000 3000 2060 28 5990 3490 2230 2350 4710 6180 4860 4500 1600 11000 3000 2060 30 5230 2960 3750 2380 5410 4740 3730 14900 5450 2770 2310 31 5210 2980 62400 5800 4330 3740 15300 6190 24500 15300 MIN 1770 0 2465 3990 2665 5113 10710 5594 6408 1001 11210 3600 1539 MAX 2900 5400 5540 3810 15900 28000 6500 39500 89500 89100 2210 688 ACCFT 68300 170500 245300 163900 21200 2000 1500 4600 3770 3720 3220 5190 3820 3190 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY)a MEAN 2782 3124 2279 1992 3339 8032 8617 1944 WATER YEAR (WY)a MEAN 1790 19160 12540 13610 15600 2200 00 0ct 1 13600 Jul 12 1993 1993 1993 1993 1993 1993 1993 1 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 1900 2080 5000 6200 62400 8430 6890 6120 11600 13700 4500 862 | 13 | 7930 | 2020 | 4030 | e2300 | e1300 | | 3930 | 7790 | 6340 | 13200 | 4360 | 632 | | 18 | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | 20 | | 11200 | 2090 | 5220 | | | | | | | | | | | 21 9490 2500 5520 e2300 11300 9140 7110 5020 12500 12000 4140 841 22 8180 3820 5510 e2200 15700 9440 8800 5010 12300 11900 3690 860 23 7530 4780 4440 e2200 15900 8810 9520 4780 11200 12000 3680 860 24 7510 4770 2470 e2200 12800 8030 7950 4620 9420 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5200 15300 11900 3670 844 25 7490 4760 2410 e2150 9850 7170 7620 5400 15700 12000 3130 2210 26 7450 4730 2340 2200 2430 6640 6190 5700 5300 16400 11000 3080 2060 28 5990 3490 2280 2350 47710 6180 4860 4500 16600 8780 2850 2160 29 5260 3460 3140 2320 5830 4330 3740 15300 6170 2550 2460 30 5230 2960 3750 2380 5830 4330 3740 15300 6170 25550 2460 30 5230 2960 3750 2380 5840 4740 3730 14900 5450 2770 2310 31 5210 2980 e2400 5240 3720 5190 3850 TOTAL 349520 85960 123680 82630 143160 331890 167820 198640 300270 347430 111590 46167 MEAN 11270 2865 3990 2665 5113 10710 5594 6408 10010 11210 3600 1539 MAX 29000 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1993 CALENDAR YEAR FOR 1994 WATER YEAR (WY) a MEAN 2782 3124 2279 1993 CALENDAR YEAR FOR 1994 WATER YEAR (WY) a MEAN 3783 1490 1996 1996 1996 1990 1993 1993 1993 1993 1993 1993 1993 | | 10600 | | 5540 | | | | | | | | | | | 22 | 20 | 10000 | 2070 | 3320 | e2200 | 9840 | 8930 | 1210 | 3020 | 12900 | 12000 | 4420 | 041 | | 23 7530 4780 4440 e2200 15900 8810 9620 4780 11200 12000 3680 845 24 7510 4770 2470 e2200 12800 8930 7950 6220 15300 11900 3460 1330 | | | | | | | | | | | | | | | 24 | | | | | e2200 | | | | | | | | | | 25 7490 4760 2410 e2150 9850 7170' 7620 5200 15300 11900 3460 1330 26 7450 4730 2340 2070 8980 6220 7100 5480 15700 12000 3130 2210 27 7080 4390 2120 2430 6640 6190 5700 5300 16400 11000 3080 2260 28 5990 3490 2280 2350 4710 6180 4860 4500 16600 8780 2850 2160 29 5260 3460 3140 2320 5830 4330 3740 15300 6170 2550 2460 30 5230 2960 3750 2380 5410 4740 3730 14900 5450 2770 2310 31 5210 2980 e2400 5240 3720 5190 3850 TOTAL 349520 85960 123680 82630 143160 331890 167820 198640 300270 347430 111590 46167 MEAN 11270 2865 3990 2665 5113 10710 5594 6408 10010 11210 3600 1539 MAX 2000 5400 5540 3810 15900 24000 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 15000 4640 3770 3720 3220 3220 5190 2210 688 AC-FT 693300 170500 245300 16390 284000 658300 332900 394000 59560 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1952 3339 8032 3789 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1992 1973 1983 1985 1944 1947 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 1991 342 XUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR (WY) a SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR (WY) a SUMMARY STATISTICS FOR 1993 CALENDAR YEAR (WA) 1997 1997 1996 1996 NINTANTANDAL MEAN 107000 1012 29000 0ct 1 136000 Jun 14 1997 NINTANTANEOUS PEAK FLOW 1810 1910 NOV 4 814 Sep 13 45 Jan 21 1940 ANNUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 NINTANTANEOUS PEAK FLOW 1810 1910 NOV 4 814 Sep 13 45 Jan 21 1940 NINTANTANEOUS PEAK FLOW 1810 1900 Jul 12 29000 0ct 1 109000 Jul 12 1993 INSTANTANEOUS PEAK FLOW 1810 1900 34500 1900 1900 19200 0ct 1 19900 0ct 1 19900 1991 1993 INSTANTANEOUS PEAK FLOW 1810 1900 1900 19200 0ct 1 19000 Jul 12 1993 INSTANTANEOUS PEAK FLOW 1910 1900 1900 19200 0ct 1 19000 Jul 12 1993 INSTANTANEOUS PEAK FLOW 1910 1900 1900 19200 0ct 1 19000 Jul 12 1993 INSTANTANEOUS PEAK FLOW 1910 1900 1900 19200 0ct 1 19000 Jul 12 1993 INSTANTANEOUS PEAK FLOW 1910 1900 1900 | | | | | | | | | | | | | | | 26 7450 4730 2340 2070 8980 6220 7100 5480 15700 12000 3130 2210 27 7080 4990 2120 2430 6640 6190 5700 5300 16400 11000 3080 2060 28 5990 3490 2280 2350 4710 6180 4660 4500 16600 8780 2850 2160 29 5260 3460 3140 2320 5830 4330 3740 15300 6170 2550 2460 30 5230 2960 3750 2380 5410 4740 3730 14900 5450 2770 2310 31 5210 2980 62400 5240 3720 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5190 3850 5 | | | | | | | | | | | | | | | 27 7080 4390 2120 2430 6640 6190 5700 5300 16400 11000 3080 2060 28 5990 3490 2220 2350 4710 6180 4860 4500 16600 8780 2850 2160 29 5260 3460 3140 2320 5830 4330 3740 15300 6170 2550 2460 30 5230 2960 3750 2380 5410 4740 3730 1490 5450 2770 2310 31 5210 5280 2460 3720 5190 3850 5190 3750 2380 5410 4740 3730 1490 5450 2770 2310 31 5210 5190 2665 3990 2665 5113 10710 5594 6408 10010 11210 3600 1539 MAX 29000 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 57415 | 23 | 7130 | 4,00 | 2410 | 62130 | 9630 | 1110 | 7020 | 3200 | 13300 | 11900 | 3400 | 1330 | | 28 5990 3490 2280 2350 4710 6180 4860 4500 16600 8780 2250 2160 29 5260 3460 3140 2320 5830 4330 3740 15300 6170 2550 2460 30 5230 2960 3750 2380 5410 4740 3730 14900 5450 2770 2310 31 5210 2980 82400 5240 3720 5190 3850 5410 4740 3730 14900 5450 2770 2310 31 5210 2980 82400 5240 3720 5190 3850 5190 3850 5240 3720 5190 3850 5190 3850 5240 3720 5190 3850 5190 3850 5240 3720 5190 3850 5190 3850 5240 3720 5190 3850 5190 3850 5240 3720 3220 5190 2210 680 MAX 29000 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 5240 | | | | | | | | | | | | | | | 29 5260 3460 3140 2320 5830 4330 3740 15300 6170 2550 2460 30 5230 2960 3750 2380 5410 4740 3730 14900 5450 2770 2310 31 5210 2980 e2400 5240 3720 5190 3850 TOTAL 349520 85960 123680 82630 143160 331890 167820 198640 300270 347430 111590 46167 MEAN 11270 2865 3990 2665 5113 10710 5594 6408 10010 11210 3600 1539 MAX 29000 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 59560 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL MEAN 23520 6271 54450 1993 LOWEST ANNUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST LANDUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST DAILLY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST LANDUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST LANDUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 LINGHEST LANDUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 | | | | 2120 | | | | | | | | | | | 30 5230 2960 3750 2380 5240 4740 3730 14900 5450 2770 2310 31 5210 2980 e2400 5240 3720 5190 3850 TOTAL 349520 85960 123680 82630 143160 331890 167820 198640 300270 347430 111590 46167 MEAN 11270 2865 3990 2665 5113 10710 5594 6408 10010 11210 3600 1539 MAX 29000 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 191 342 (WY) 1957 1956 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL TOTAL 8585790 2288757 ANNUAL MEAN 23520 6671 5466 HIGHEST ANNUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK STAGE ANNUAL REAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 17030000 4540000 396000 IN 13200 13200 16100 TO PERCENT EXCEEDS 45900 13200 13200 16100 TO PERCENT EXCEEDS 45900 13200 13200 16100 TO PERCENT EXCEEDS 45900 13200 13200 2500 | | | | 2280 | | | | | | | | | | | 31 5210 2980 e2400 5240 3720 5190 3850 TOTAL 349520 85960 123680 82630 143160 331890 167820 198640 300270 347430 111590 46167 MEAN 11270 2865 3990 2665 5113 10710 5594 6408 10010 11210 3600 1539 MAX 29000 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY)a MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR ANNUAL TOTAL 8585790 2288757 ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST ANNUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 181 | | | | | | | | | | | | | | | MEAN 11270 2865 3990 2665 5113 10710 5594 6408 10010 11210 3600 1539 MAX 29000 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 336 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL MEAN 23520 6271 23600 Jul 12 29000 Oct 1 136000 Jul 14 1947 LOWEST DAILY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 1810 MEAN 29300 Oct 1 109000 Jul 12 1993 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 1730000 454000 3960000 10 PERCENT EXCEEDS 45900 13200 Oct 1 109000 Jul 12 1993 ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 2500 | | | | | | | | | | | | | | | MEAN 11270 2865 3990 2665 5113 10710 5594 6408 10010 11210 3600 1539 MAX 29000 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 336 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL MEAN 23520 6271 23600 Jul 12 29000 Oct 1 136000 Jul 14 1947 LOWEST DAILY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 1810 MEAN 29300 Oct 1 109000 Jul 12 1993 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 1730000 454000 3960000 10 PERCENT EXCEEDS 45900 13200 Oct 1 109000 Jul 12 1993 ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 2500 | moma. | 240520 | 05050 | 100600 | 00600 | 142160 | 221000 | 1 (7000 | 100640 | 200270 | 242420 | 111500 | 46162 | | MAX 2900 5400 5540 3810 15900 20400 9620 9630 16600 14900 4920 2960 MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 1814 NEAN 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 29300 Oct 1 109000 Jul 12 1993 ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 Oct 1 109000 Jul 12 1993 ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 45900 22100 48400 25500 | | | | | | | | | | | | | | | MIN 5210 1400 2120 2000 1500 4640 3770 3720 3220 5190 2210 688 AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1993 1992 1973 1983 1965 1944 1947 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 23520 6271 5466 HIGHEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST ANNUAL MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 1330000 4594000 3960000 10 PERCENT EXCEEDS 45900 12000 4840 2500 | | | 2003<br>5400 | | | | | | | | 14900 | | | | AC-FT 693300 170500 245300 163900 284000 658300 332900 394000 595600 689100 221300 91570 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1994, BY WATER YEAR (WY) a MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL TOTAL 8585790 2288757 ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 107000 Jul 12 29000 Oct 1 109000 Jul 12 1993 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK STAGE 29300 Oct 1 109000 Jul 12 1993 INSTANTANEOUS PEAK STAGE 29300 Oct 1 109000 Jul 12 1993 ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 45900 22100 48400 25500 | | | | | | | | | | | | | | | MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL TOTAL 8585790 2288757 ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 496 1956 HIGHEST ANNUAL MEAN 496 1956 HIGHEST ANNUAL MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1956 HIGHEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK STAGE 29300 Oct 1 109000 Jul 12 1993 ANNUAL RIJNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 221100 4840 25500 | | | | | | | | | | | | | | | MEAN 2782 3124 2279 1952 3339 8032 9511 8403 10200 7730 4778 3587 MAX 17190 19160 12540 13810 15560 21520 37890 30140 51550 80800 45240 33670 (WY) 1974 1987 1983 1932 1973 1983 1965 1944 1947 1993 1993 1993 MIN 176 177 133 72.1 78.4 425 699 356 277 220 191 342 (WY) 1957 1956 1956 1940 1940 1931 1956 1934 1977 1977 1936 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1920 - 1994a ANNUAL TOTAL 8585790 2288757 ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 496 1956 HIGHEST ANNUAL MEAN 496 1956 HIGHEST ANNUAL MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1956 HIGHEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK STAGE 29300 Oct 1 109000 Jul 12 1993 ANNUAL RIJNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 221100 4840 25500 | статтс | ጥፐሮዩ ሰድ ፤ | MONTULEV ME | מים או או | COD WATED | VEADS 102 | n = 1004 | DV WATER | D VEND /WV | ۱ ـ | | | | | MAX | | | | | | | | | • | | | | | | MIN | | | | 2279 | | | | | | | | | | | MIN | | | 19160 | 12540 | | | | | | | | | | | MY | | | | | | | | | | | | | | | SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEAR 1920 - 1994 | | | | 1056 | | | | | | | | | | | ANNUAL TOTAL 8585790 2288757 ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 24450 1993 LOWEST ANNUAL MEAN 496 1956 HIGHEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 29300 Oct 1 109000 Jul 12 1993 INSTANTANEOUS PEAK STAGE 13.49 Oct 1 24.16 Jul 12 1993 ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 133200 16100 50 PERCENT EXCEEDS 21100 4840 25500 | (MI) | 1937 | 1936 | 1936 | 1940 | 1940 | 1931 | 1936 | 1934 | 1911 | 19// | 1936 | 1976 | | ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 24450 1993 LOWEST ANNUAL MEAN 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 29300 Oct 1 109000 Jul 12 1993 INSTANTANEOUS PEAK STAGE 13,49 Oct 1 24.16 Jul 12 1993 ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 25100 4840 25500 | SUMMAR | Y STATIS | TICS | FOR | 1993 CAL | ENDAR YEAR | 1 | FOR 1994 1 | WATER YEAR | | WATER | YEARS 1920 | - 1994a | | ANNUAL MEAN 23520 6271 5466 HIGHEST ANNUAL MEAN 24450 1993 LOWEST ANNUAL MEAN 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 107000 Jul 12 29000 Oct 1 136000 Jun 14 1947 LOWEST DAILY MEAN 1330 Feb 18 688 Sep 13 45 Jan 21 1940 ANNUAL SEVEN-DAY MINIMUM 1810 Nov 4 814 Sep 13 45 Jan 21 1940 INSTANTANEOUS PEAK FLOW 29300 Oct 1 109000 Jul 12 1993 INSTANTANEOUS PEAK STAGE 13,49 Oct 1 24.16 Jul 12 1993 ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 25100 4840 25500 | ANNUAL | TOTAL | | | 8585790 | | | 2288757 | | | | | | | ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 21100 4840 2500 | | | | | | | | | | | 5466 | | | | ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 21100 4840 2500 | | | | | | | | | | | 24450 | | 1993 | | ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 21100 4840 2500 | | | | | | | | | | | 496 | _ | 1956 | | ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 21100 4840 2500 | | | MEAN | | 107000 | | | | | | 136000 | Jun | 14 1947 | | ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 21100 4840 2500 | | | SAN<br>AV MTNTMT" | | 1330 | | | | | | 4 5<br>4 k | Jan | 21 1940<br>21 1040 | | ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 21100 4840 2500 | | | DEVK ELUM<br>Hi winiwaw | | 1910 | NOV 4 | | 20300 | | | 109000 | .Ti 1 | 12 1003 | | ANNUAL RUNOFF (AC-FT) 17030000 4540000 3960000 10 PERCENT EXCEEDS 45900 13200 16100 50 PERCENT EXCEEDS 21100 4840 2500 | | | | | | | | 13 4 | 49 Oct 1 | | 24. | 16 Jul | 12 1993 | | 10 PERCENT EXCEEDS 45900 15100 50 PERCENT EXCEEDS 21100 4840 2500 | | | | | 17030000 | | | 4540000 | | | 3960000 | | | | 50 PERCENT EXCEEDS 21100 4840 2500 | | | | | 45900 | | | | | | 16100 | | | | 90 PERCENT EXCEEDS 2920 1920 405 | 50 PER | CENT EXC | EEDS | | 21100 | | | | | | | | | | | 90 PER | CENT EXC | EEDS | | 2920 | | | 1920 | | | 405 | | | e Estimated. a Post-regulation period. #### 05489000 CEDAR CREEK NEAR BUSSEY, IA LOCATION.--Lat 41°13'09", long 92°54'38", at SW corner sec.11, T.74 N., R.18 W., Marion County, Hydrologic Unit 07100009, on left bank 10 ft downstream from bridge on State Highway 156, 0.8 mi downstream from North Cedar Creek, 1.6 mi northwest of Bussey, 3.0 mi upstream from Honey Creek, and 8.9 mi upstream from mouth. DRAINAGE AREA.--374 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1947 to current year. REVISED RECORDS.--WSP 1438: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 682.15 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Feb. 21, 1949, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 19 to Mar. 3 and June 15-17. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in June 1946 reached a stage of 28,45 ft on upstream side and 28.05 ft on downstream side of bridge, levels to floodmarks by U.S. Army Corps of Engineers, discharge, 31,500 ft<sup>3</sup>/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV AUG SEP DEC JAN FER MAR APR MAY JUN JUI. e13 e13 e14 e15 10 15 10 120 e62 e70 24 267 e15 1 2 3 103 107 30 48 e16 82 72 5.1 30 88 46 49 e17 690 50 358 28 50 48 25 70 58 e16 e16 2790 50 81 13 42 e15 e15 1060 21 11 70 68 38 40 e14 e15 693 360 354 344 7.7 45 e14 e12 38 35 39 64 218 79 86 45 43 32 36 42 43 44 222 6.5 10 e17 e13 171 122 5.4 71 44 e16 42 77 30 e16 101 31 6.2 49 98 25 35 148 138 12 69 e15 e14 e18 64 64 68 13 620 73 68 98 22 8.0 5.0 14 15 73 57 105 70 62 89 5.1 e9.2 e31 136 e60 8.1 86 60 41 16 51 e9.8 e62 76 26 118 e48 82 67 56 44 e9.6 53 e35 43 e37 e9.2 6.1 5.5 18 e200 115 33 44 16 17 4.7 65 72 20 35 5.1 3.8 e32 e11 e500 107 32 30 15 21 60 51 e25 e13 125 35 390 44 5.2 3.9 e300 114 22 53 53 e21 e130 32 3.8 e18 e17 183 31 2220 4.6 e54 101 18 25 54 e14 A22 e36 73 104 138 189 34 4.6 4.5 53 52 26 e25 31 4.7 10 e12 e35 70 86 61 108 74 69 58 48 48 42 43 40 78 55 41 5.1 e21 8.8 5.5 28 e11 e17 e50 58 32 27 13 42 48 46 43 53 51 26 27 30 e12 e13 102 31 11 8.9 4.8 224.3 7.24 15 TOTAL 2116 1542 1038 2135 9277 2522 2682 5926 1228.4 51.4 105 33.5 62 14.9 25 76.2 500 86.5 354 39.6 222 8.37 42 MEAN 68.3 299 198 120 634 MAX 2790 2220 43 9.2 9.4 3.8 MIN 37 11 11 51 32 26 16 4200 3060 2060 916 18400 11750 498 4230 2440 **CFSM** .14 .20 .18 .09 .04 .80 . 02 .21 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1948 1994, BY WATER YEAR (WY) 102 950 MEAN 91.0 231 952 419 1371 283 1258 303 3846 112 1070 169 1384 1331 1962 894 1552 MAX 844 1350 (WY) 1974 1983 1974 1949 1960 1973 1960 7.19 1967 2.74 1982 1993 1992 .33 1956 MIN .20 . 39 . 60 1957 1956 1956 (WY) 1956 1954 1956 1953 1953 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1948 -1994 ANNUAL TOTAL ANNUAL MEAN 695 80.6 227 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN 29.4 1989 1982 1955 1955 3 6 Mar 5 Sep 20 21700 Jul 2790 Jul 28 3.8 4.0 -00 Dec Sep ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW Sep 19 .00 Sep 96000 4940 Mar 5 1982 INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 17.00 34.61 Jul 1.5 Sep 20,21 .00 many ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 503000 58320 164200 1.86 25.22 . 61 .22 2.92 8.23 ANNUAL RUNOFF (INCI 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 1770 120 400 42 37 46 6.4 e Estimated. #### 05489500 DES MOINES RIVER AT OTTUMWA, IA LOCATION.--Lat 41°00'39", long 92°24'40", in SE1/4 NE1/4 sec.25, T.72 N., R.14 W., Wapello County, Hydrologic Unit 07100009, on right bank 15 ft downstream from Colorado and Eastern Railroad Bridge at Ottumwa, 0.4 mi downstream from Ottumwa powerplant, 6.5 mi upstream from Village Creek, 9.5 mi downstream from South Avery Creek, and at mile 94.1. DRAINAGE AREA,--13,374 mi<sup>2</sup>. PERIOD OF RECORD.—March 1917 to current year (published as "at Eldon" October 1930 to March 1935). Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 525: 1917-20. WSP 1308: 1917-23 (M), 1925-27 (M), 1931. WSP 1438: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 622.00 ft above sea level. Prior to Sept. 30, 1930, nonrecording gage at Market Street Bridge 1,700 ft upstream at datum 0.83 ft higher. Oct. 1, 1930 to Mar. 31, 1935, nonrecording gage at Eldon 15 mi downstream at different datum. Apr. 1, 1935 to Oct. 25, 1963, water-stage recorder at site 1,100 ft downstream at Vine Street Bridge at datum 0.77 ft higher. REMARKS.--Estimated daily discharges: Dec. 25-29, Jan. 3 to Feb. 19, and June 25, 26. Records good except those for estimated daily discharges, which are poor. Prior to Dec. 12, 1958 and since Nov. 30, 1960, diurnal fluctuation at low and medium stages are caused by powerplant upstream of station about 1/2 mile. Flow regulated by Lake Red Rock (station 05488100) 48.2 mi upstream since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 135,000 ft<sup>3</sup>/s June 7, 1947, gage height, 20.2 ft, site and datum then in use; minimum daily discharge, 26 ft<sup>3</sup>/s Oct. 25, 1990, when gates at dam in Ottumwa were closed. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1850, that of June 7, 1947. Flood of May 31, 1903, reached a stage of 19.4 ft, former site and datum at Vine Street Bridge or about 22 ft at Market Street Bridge, from information by U.S. Army Corps of Engineers and U.S. National Weather Service, discharge, about 140,000 ft<sup>3</sup>/s. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | DAY | OCT | NO' | V DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----------|---------|---------|-----------|-----------|----------|------------|----------|----------|--------|--------|--------|--------| | 1 | 29600 | | | | e2500 | 5500 | 5410 | 5400 | 4050 | 15800 | 4690 | 3250 | | 2 | 29300 | 508 | 3040 | 4200 | e2400 | 5400 | 5370 | 6380 | 4100 | 15800 | 4550 | 2750 | | 3 | 26700 | 552 | 4690 | e4300 | e2300 | 5510 | 5340 | 7450 | 4110 | 15700 | 3960 | 2370 | | 4 | 23300 | 2720 | 4940 | e4200 | e2200 | 7910 | 5280 | 7560 | 4240 | 15700 | 3930 | 2150 | | 5 | 19000 | | | | e2150 | 17200 | 4310 | 7540 | 5160 | 15600 | 3830 | 2410 | | _ | | | | | | | | | | | | | | 6 | 14600 | | | | e2000 | 19400 | 4200 | 7690 | 5430 | 15600 | 3550 | 2850 | | 7 | 14500 | 2160 | | | e1950 | 20000 | 4130 | 7990 | 6570 | 15400 | 3400 | 2450 | | 8 | 11800 | | | | e2000 | 21500 | 4150 | 8700 | 8060 | 12400 | 2890 | 2110 | | 9 | 11100 | | 3970 | e3200 | e2000 | 22400 | 4180 | 9730 | 7030 | 6880 | 2360 | 1810 | | 10 | 11800 | 1960 | 3790 | e3400 | e1950 | 22500 | 4130 | 10300 | 7970 | 5810 | 2430 | 1710 | | 11 | 12700 | 1920 | 4240 | e3300 | e1900 | 22300 | 4100 | 10200 | 10000 | 5630 | 2430 | 1720 | | 12 | 12600 | | | | e1800 | 21200 | 4180 | 9480 | 10100 | 6710 | 3510 | 1450 | | | | | | | | | | | | | | | | 13 | 8750 | | | | e1750 | 20100 | 4200 | 8680 | 8330 | 11900 | 2780 | 1270 | | 14 | 5380 | | | | e1600 | 17600 | 4920 | 8270 | 9210 | 13600 | 2690 | 1150 | | 15 | 6110 | 2040 | 4680 | e2700 | e1550 | 13900 | 5430 | 8220 | 8610 | 13500 | 4010 | 1070 | | 16 | 10000 | 2810 | 5210 | e2400 | e1900 | 12100 | 6910 | 8090 | 8570 | 14400 | 4530 | 1090 | | 17 | 12400 | 2560 | | | e2500 | 10100 | 7090 | 6760 | 10300 | 14500 | 4520 | 1090 | | 18 | 12400 | 2610 | | | e5000 | 8520 | 7180 | 5980 | 13700 | 14400 | 4510 | 1010 | | 19 | 11100 | 2650 | | | e9000 | 9790 | 7180 | 5800 | 14300 | 14200 | 4500 | 1150 | | 20 | 11000 | 2670 | | | | 9910 | 7640 | 5200 | 14300 | 12800 | 4520 | 965 | | 20 | 11000 | 2070 | 3010 | 62300 | 13400 | 9910 | 7640 | 3200 | 14300 | 12000 | 4320 | 903 | | 21 | 10800 | 2660 | | | 13000 | 9920 | 7590 | 5140 | 13700 | 12600 | 4470 | 1110 | | 22 | 8620 | 3260 | 5830 | e2400 | 16400 | 10400 | 8110 | 5070 | 13500 | 12600 | 3820 | 1040 | | 23 | 7760 | 4480 | 5740 | e2300 | 18600 | 10400 | 11300 | 5130 | 17000 | 12500 | 3700 | 1080 | | 24 | 7460 | 4850 | 3850 | e2300 | 16900 | 8990 | 8970 | 4650 | 12000 | 12500 | 3770 | 1030 | | 25 | 7430 | 4950 | | | 12500 | 8640 | 8150 | 5100 | e15000 | 12600 | 3790 | 1280 | | | | | | | | 00.0 | | | | | | | | 26 | 7430 | 4940 | e2300 | e2400 | 11600 | 6890 | 8040 | 5640 | e16000 | 12500 | 3470 | 1700 | | 27 | 7310 | 4920 | e2100 | e2600 | 9430 | 6670 | 6450 | 5610 | 16600 | 12400 | 3340 | 2260 | | 28 | 6510 | 4230 | e1900 | e2600 | 6040 | 6660 | 5600 | 5290 | 17700 | 10400 | 3270 | 2250 | | 29 | 5110 | 3780 | | e2650 | | 6620 | 4700 | 4160 | 16500 | 7380 | 2960 | 2510 | | 30 | 4940 | 3740 | | | | 5780 | 4610 | 4010 | 15800 | 5460 | 2880 | 2670 | | 31 | 4950 | | | | | 5760 | | 4020 | | 5210 | 3630 | | | <b>01</b> | 4,550 | | 3000 | 62 000 | | 3700 | | 7020 | | 3210 | 3430 | | | TOTAL | 372460 | 93858 | | 91150 | 166320 | 379570 | 178850 | 209240 | 317940 | 372480 | 112690 | 52755 | | MEAN | 12010 | 3129 | 4254 | 2940 | 5940 | 12240 | 5962 | 6750 | 10600 | 12020 | 3635 | 1758 | | MAX | 29600 | 5520 | 5870 | 4300 | 18600 | 22500 | 11300 | 10300 | 17700 | 15800 | 4690 | 3250 | | MIN | 4940 | 908 | | 2100 | 1550 | 5400 | 4100 | 4010 | 4050 | 5210 | 2360 | 965 | | AC-FT | 738800 | 186200 | | 180800 | 329900 | 752900 | 354700 | 415000 | 630600 | 738800 | 223500 | 104600 | | | <b></b> | | | | | | | | | | | | | STATIS | TICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 19 | 70 - 1994, | BY WATER | YEAR (W) | () | | | | | MEAN | 4400 | 5442 | 4593 | 3149 | 4869 | 10440 | 12270 | 12180 | 13030 | 14250 | 8932 | 5463 | | MAX | 18390 | 19250 | 13980 | 12380 | 16470 | 21750 | 25330 | 29770 | 31980 | 85570 | 47380 | 34790 | | (WY) | 1974 | 1987 | | 1973 | 1973 | 1983 | 1983 | 1993 | 1984 | 1993 | 1993 | 1993 | | MIN | 353 | 327 | | 290 | 328 | 891 | 962 | 519 | 282 | 238 | 610 | 366 | | (WY) | 1977 | 1977 | | 1977 | 1977 | 1977 | 1977 | 1977 | 1977 | 1977 | 1988 | 1976 | | (**** | 19// | 1911 | 1911 | 1311 | 1911 | 1311 | 1311 | 1311 | 2011 | 1911 | 1900 | 15/0 | ### 05489500 DES MOINES RIVER AT OTTUMWA, IA--Continued | SUMMARY STATISTICS | FOR 1993 CALEN | DAR YEAR | FOR 1994 WAT | er year | WATER YEARS | 3 1970 - 1994a | |--------------------------|----------------|----------|--------------|---------|-------------|----------------| | ANNUAL TOTAL | 9194348 | | 2479193 | | | | | ANNUAL MEAN | 25190 | | 6792 | | 8268 | | | HIGHEST ANNUAL MEAN | | | | | 26350 | 1993 | | LOWEST ANNUAL MEAN | | | | | 1120 | 1977 | | HIGHEST DAILY MEAN | 110000 | Jul 12 | 29600 | Oct 1 | 110000 | Jul 12 1993 | | LOWEST DAILY MEAN | 908 | Nov 5 | 908 | Nov 5 | 26 | Oct 25 1990 | | ANNUAL SEVEN-DAY MINIMUM | 1770 | Nov 5 | 1050 | Sep 18 | 182 | Jul 7 1977 | | INSTANTANEOUS PEAK FLOW | | | 29900 | Oct 1 | 112000 | Jul 12 1993 | | INSTANTANEOUS PEAK STAGE | | | 11.95 | Oct 1 | 22.15 | Jul 12 1993 | | INSTANTANEOUS LOW FLOW | | | 908 | Nov 5 | | | | ANNUAL RUNOFF (AC-FT) | 18240000 | | 4917000 | | 5990000 | | | 10 PERCENT EXCEEDS | 48800 | | 14400 | | 19600 | | | 50 PERCENT EXCEEDS | 22800 | | 5100 | | 4600 | | | 90 PERCENT EXCEEDS | 3470 | | 2020 | | 640 | | e Estimated. a Post-regulation period. #### 05490500 DES MOINES RIVER AT KEOSAUQUA, IA LOCATION.—Lat 40°43'40", long 91°57'34", in SE1/4 SW1/4 sec.36, T.69 N., R.10 W., Van Buren County, Hydrologic Unit 07100009, on right bank 10 ft upstream from bridge on State Highway 1 at Keosauqua, 4.0 mi downstream from Chequest Creek, and at mile 51.3. DRAINAGE AREA.--14,038 mi OCT NOV DAY PERIOD OF RECORD .-- May 1903 to July 1906, April to December 1910, August 1911 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.-WSP 525: 1913-20. WSP 1438: Drainage area. WSP 1508: 1903, 1905-6, 1915-18 (M), 1922 (M), 1924-26 (M), 1932-34 (M), 1937, 1942 (M). GAGE.-Water-stage encoder. Datum of gage is 547.36 ft above sea level. Prior to Dec. 24, 1933, nonrecording gage, and Dec. 25, 1933, to Sept. 30, 1972, water-stage recorder, at same site at datum 10.00 ft higher. DEC JAN REMARKS.—Estimated daily discharges: Dec. 29 to Feb. 20. Records good except those for estimated daily discharges, which are poor. Prior to Dec. 21, 1958, and since Nov. 30, 1960, some diurnal fluctuation at medium and low stages caused by power plant at Ottumwa. Flow regulated by Lake Red Rock (station 05488100) 91.0 mi upstream, since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 146,000 ft<sup>3</sup>/s June 1, 1903, gage height, 27.85 ft, from floodmark, datum then in use; minimum daily discharge, 40 ft<sup>3</sup>/s Jan. 30, 1940. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1, 1851, reached a stage of 24 ft, discharge not determined. FEB ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES MAR APR MAY JUN JUL AUG SEP | 1 | 29700 | 5130 | 3660 | e4000 | e2600 | ESES | 5350 | E C C O | 2000 | 1.0000 | E200 | 3940 | |---------|--------------|-------------------------------------------------------------|------------------------------|-----------|------------|----------------------------------------|--------------|----------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|-----------|---------| | _ | | 2130 | 3660<br>2730<br>3320<br>4880 | E4000 | | 5250 | | 2000 | 3600 | 16000<br>17100<br>16500<br>16200<br>16100 | 3290 | | | 2 | 29200 | 5300 | 2730 | e4250 | e2500 | 5050 | 5050 | 5930 | 4880 | 17100 | 4950 | 3140 | | 3 | 27200 | 5120 | 3320 | e4500 | e2400 | 5030 | 5080 | 6640 | 5330 | 16500 | 4760 | 2610 | | 4 | 23800 | 5450 | 4880 | e4300 | e2300 | 6840 | 4920 | 7260 | 4280 | 16200 | 4410 | 2300 | | 5 | 19600 | 2020 | 4990 | e4200 | e2200 | 15800 | 4820 | 7220 | 4440 | 16100 | 4320 | 2160 | | • | 13000 | | 1330 | C4200 | CLLUU | 13000 | 1020 | | | 10100 | | | | _ | | | | | | | | | | | 44.4 | 0040 | | 6 | 15400 | 705 | 5290 | e4000 | e2100 | 19900 | 3730 | 8300 | 5290<br>5690<br>8270<br>7610<br>7100 | 16000 | 4140 | 2240 | | 7 | 13400 | 930 | 5220 | e3750 | e2000 | 20200 | 3880 | 11400 | 5690 | 16000 | 3790 | 3110 | | 8 | 12700 | 1840 | 5120 | e3400 | e2100 | 20700 | 3720 | 9480 | 8270 | 14800 | 3690 | 2030 | | ğ | 10700 | 1830 | 4650 | e3300 | e2050 | 21400 | 3880 | 9370 | 7610 | 10600 | 2860 | 1860 | | 10 | 10900 | 1650 | 3790 | | e2000 | 22000 | 3880 | 9960 | 7100 | | 2180 | 1500 | | 10 | 10900 | 7020 | 3/90 | e3400 | e2000 | 22000 | 3660 | 9960 | 1100 | 6540 | 2100 | 1300 | | | | | | | | | | | | | | | | 11 | 11700 | 1650 | 3820 | e3300 | e1950 | 21900 | 3900 | 10100 | 8600 | 5790 | 2390 | 1340 | | 12 | 12100 | 1670 | 4320 | e3250 | e1900 | 21300 | 4100 | 9690 | 10100 | 5820 | 2280 | 1330 | | 13 | 10800 | 1900 | 4240 | e3200 | e1800 | 20300 | 4250 | 8830 | 9160 | 8520 | 3480 | 1220 | | 14 | 7160 | 1930 | 3060 | e3100 | e1700 | 18700 | 4300 | 0100 | 0330 | 13900 | 2260 | 780 | | | | | | | | | | 8190<br>8130 | 9160<br>8330<br>8680 | 13900 | | | | 15 | 5130 | 1870 | 3950 | e2900 | e1600 | 15900 | 5130 | 8130 | 8680 | 14000 | 2570 | 765 | | | | | | | | | | | | | | | | 16 | 7540 | 1820 | 4940 | e2500 | e1600 | 12700 | 5820 | 7920 | 8150 | 14400 | 4410 | 788 | | 17 | 11000 | 2830 | 5260 | e2300 | e2000 | 10900 | 6690 | 7280 | 8840 | 15000 | 4560 | 755 | | | | | | | | | | | | | 4580 | 717 | | 18 | 12000 | 2380 | 5300 | e2200 | e3000 | 9090 | 6700 | 6210 | 11800 | 14800 | | | | 19 | 11300 | 2460 | 5410 | e2150 | e6000 | 8350 | 6700 | 5730 | 14000 | 14800 | 4570 | 693 | | 20 | 10700 | 2510 | 5800 | e2200 | e12000 | 9370 | 6850 | 5500 | 14500 | 13800 | 4570 | 705 | | | | | | | | | _ | | | | | | | 21 | 10600 | 2500 | 5780 | e2300 | 14900 | 9440 | 8570 | 5000 | 14000 | 12900 | 4550 | 725 | | | | | | | | | | | | | | | | 22 | 9540 | 2490 | 5760 | e2400 | 14000 | 9590 | 9100 | 4970 | 13700 | 12900 | 4490 | 761 | | 23 | 8100 | 3480 | 5700 | e2400 | 17300 | 9950 | 9730 | 4990 | 15700 | 12800 | 3530 | 753 | | 24 | 7430 | 4820 | 5210 | e2350 | 17300 | 9310 | 10400 | 4970 | 16900 | 12800 | 3610 | 718 | | 25 | 7370 | 4990 | 3000 | e2350 | 14400 | 8200 | 8060 | 4670 | 11900 | 12800 | 3620 | 700 | | 23 | 1310 | 4220 | 3000 | 62330 | 14400 | 8200 | | | 11900 | 12000 | 3020 | , , , , | | | | | | | | | | 5250<br>5500<br>5350<br>4790<br>3850<br>3740 | | | | | | 26 | 7370 | 5000 | 2320 | e2400 | 11300 | 7490 | 7620 | 5250 | 16600 | 12800 | 3540 | 855 | | 27 | 7330 | 4900 | 2180 | e2500 | 10100 | 6330 | 7190 | 5500 | 16800 | 12700 | 3110 | 1470 | | 28 | 7030 | 4770 | 1960 | e2700 | 7450 | 6250 | 5930 | 5350 | 17500 | 11600 | 3100 | 1970 | | 29 | | 4050 | e2700 | e2700 | | 6150 | 5320 | 4700 | 17500<br>17400 | 9190<br>6420 | 3050 | 1980 | | | 6130<br>5200 | | 62700 | | | | 5320 | 4750 | 17400 | 9190 | | | | 30 | 5200 | 3590 | e3300 | e2700 | | 5910 | 5020 | 3830 | 16300 | 6420 | 2740 | 2430 | | 31 | 5160 | | e3750 | e2600 | | 5430 | | 3740 | | 5510 | 2770 | | | | | | | | | | | | | | | | | ጥር ጥል፣. | 373290 | 91585 | 131410 | 93600 | 162550 | 374730 | 175690 | 211880 | 315650 | 389090 | 114170 | 46345 | | | | 2053 | 4030 | 2010 | | | | | | | 3683 | 1545 | | MEAN | 12040 | 3053 | 4239<br>5800 | | | 12090 | 5856 | | 10520 | 12550 | | | | MAX | 29700 | 5450 | 5800 | 4500 | 17300 | 22000 | 10400 | | 17500 | 17100 | 5290 | 3940 | | MIN | 5130 | 705 | 1960 | 2150 | 1600 | 5030 | 3720<br>5220 | 3740 | 3800<br>9000 | 5510 | 2180 | 693 | | MED | 10700 | 2490 | 4320 | 2700 | 2350 | 9440 | 5220 | 6210 | 9000 | 12900 | 3620 | 1330 | | | 740400 | 181700 | 260700 | 185700 | 322400 | 743300 | 348500 | 420300 | 626100 | 771800 | 226500 | 91930 | | | 740400 | 191,00 | | 102,000 | 322400 | | | | | | 220300 | 11 | | CFSM | .86 | .22 | .30 | .22 | .41 | .86 | .42 | .49 | .75 | .89 | .26 | .11 | | IN. | .99 | .24 | .35 | .25 | .43 | .99 | .47 | .56 | .84 | 1.03 | .30 | .12 | | | | | | | | | | | | | | | | STATES | TICS OF | MONTHLY ME | AN DATA | FOR WATER | YEARS 1976 | 0 - 1994 | BY WATER | YEAR (WY) | a | | | | | MEAN | 4630 | | 4822 | 3285 | 5143 | 10040 | 12010 | 12830 | 13300 | 14810 | 9140 | 5914 | | | | | | | 2143 | 10940<br>22200<br>1983<br>1170<br>1981 | 1731A | 12030 | | | | | | MAX | 19850 | 19320 | 14510 | 13120 | 17370 | 22200 | 30030 | 31260<br>1993<br>696 | 30900 | 86150<br>1993 | 47320 | 35210 | | (WY) | 1974 | 1987 | 1983 | 1973 | 1973 | 1983 | 1973 | 1993 | 1984 | 1993 | 1993 | 1993 | | MIN | 383 | 1987<br>332<br>1977 | 385 | 291 | 331 | 1170 | 1224 | 696 | 1984<br>300<br>1977 | 258 | 528 | 362 | | (WY) | 1977 | 1977 | 1977 | 1977 | 1977 | 1981 | 1977 | 1977 | 1977 | 1977 | 1989 | 1976 | | (02) | 1711 | 1711 | 1911 | 1311 | 1311 | 1701 | 1711 | 1311 | 4311 | 1911 | 1,00 | 23.0 | | | | | | | | _ | | | | ******* | 1074 | 1004- | | SUMMAR | Y STATIS | TICS | FOR | 1993 CALE | INDAK YEAR | Ŀ | OR 1994 W | MATER YEAR | | WATER Y | EARS 1970 | - 1994a | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 9379975 | | | 2479990 | | | | | | | ANNUAL | | | | 25700 | | | 6794 | | | R624 | | | | | T ANNUAL | MEAN | | 25,00 | | | 0.51 | | | 26020 | | 1 003 | | | | | | | | | | | | 20920 | | 1993 | | LOWEST | ANNUAL | MEAN | | | | | | | | 8624<br>26920<br>1303<br>108000<br>115<br>204<br>111000<br>32.6<br>6248000 | | 1911 | | HIGHES | T DAILY | MEAN<br>EAN<br>AY MINIMUM | | 108000 | Jul 13 | | 29700 | Oct 1 | | 108000 | Jul | 13 1993 | | LOWEST | DATLY M | EAN | | 705 | Nov 6 | | 693 | Sep 19 | | 115 | Oct | 27 1990 | | ANNIIAT | SEVEN-D | AV MTNTMIM | | 1470 | Nov 6 | | 722 | Sen 10 | | 204 | Jul | 3 1977 | | THOME | DEVENTO | DESK ELVE. | | 1410 | 1104 0 | | 20000 | 26p 19 | | 111000 | 71 | 12 1003 | | INSTAN | TANEOUS | PEAK FLOW | | | | | 29900 | OCE I | | 111000 | Jul | 17 1333 | | INSTAN | TANEOUS | PEAK STAGE | | | | | 18.9 | 7 Oct 1 | | 32.6 | o Jul | 13 1993 | | ANNUAL | RUNOFF | (AC-FT) | | 18610000 | | | 499000 | | | 6248000 | | | | ANNUAT. | RUNOFF | (CESM) | | 1 8 | 13 | | .4<br>6.5 | 8 | | - 6 | l. | | | ANNITAT | DUNORE | (TNCHES) | | 21.0 | 16 | | 6.5 | 7 | | .6:<br>8.3: | i | | | 10 000 | CONTRACT | (THOMES) | | 50200 | | | 14800 | • • | | 20700 | - | | | TO PER | CENT EXC | EEU5 | | 30200 | | | | | | | | | | 50 PER | CENT EXC | EED2 | | 23600 | | | 5080 | | | 4830 | | | | 90 PER | CENT EXC | PEAK FLOW PEAK STAGE (AC-FT) (CFSM) (INCHES) EEDS EEDS EEDS | | 3590 | | | 1960 | | | 684 | | | | | | | | | | | | | | | | | | e Esti | | | | | | | | | | | | | | | | ion norical | | | | | | | | | | | a Post-regulation period. #### MISSOURI RIVER BASIN #### **BIG SIOUX RIVER BASIN** #### 06483500 ROCK RIVER NEAR ROCK VALLEY, IA LOCATION.--Lat 43°12'52", long 96°17'39", in SW1/4 SW1/4 sec.16, T.97 N., R.46 W., Sioux County, Hydrologic Unit 10170204, on left bank 3 ft upstream from bridge on county highway K30, 0.3 mi north of Rock Valley and at mile 19.1. DRAINAGE AREA.--1,592 mi<sup>2</sup>. PERIOD OF RECORD.--June 1948 to current year. REVISED RECORDS.--WSP 1439: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,222.54 ft above sea level. Prior to Aug. 13, 1952, nonrecording gage with supplementary water-stage recorder operating above 6.2 ft gage height. June 4, 1949 to Aug. 12, 1952 and Aug. 13, 1952 to May 4, 1976, water-stage recorder, at site 3.2 mi downstream at datum 10.73 ft lower. REMARKS.--Estimated daily discharges: Nov. 24 to Dec. 17, Dec. 21 to Mar. 6, Mar. 8, Apr. 18-22, June 1-6, 25-27, and Sept. 18-26. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1897 reached a stage of 17.0 ft, former site and datum, discharge not determined, from information by State Highway Commission. | | DI | SCHARGI | E, CUBIC | FEET PER | SECOND,<br>DAILY | WATER Y | YEAR OCTO | BER 199 | 3 TO SEP | TEMBER 19 | 94 | | |-------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1020<br>967<br>925<br>898<br>866 | 587<br>599<br>607<br>608<br>592 | e760<br>e660<br>e580<br>e500<br>e460 | e440<br>e390<br>e360<br>e400<br>e420 | e270<br>e290<br>e280<br>e300<br>e380 | e540<br>e600<br>e800<br>e3000<br>e8000 | 828<br>812<br>772<br>766<br>745 | 2410<br>2900<br>2280<br>1870<br>1670 | e776<br>e820<br>e800<br>e780<br>e1000 | 1360<br>1280<br>1200<br>1160<br>1140 | 330<br>311<br>295<br>294<br>276 | 318<br>335<br>352<br>457<br>589 | | 6<br>7<br>8<br>9<br>10 | 850<br>836<br>834<br>891<br>957 | 516<br>481<br>567<br>553<br>527 | e460<br>e450<br>e420<br>e450<br>e420 | e370<br>e260<br>e270<br>e300<br>e330 | e330<br>e300<br>e300<br>e270<br>e280 | e11000<br>8370<br>e4900<br>2930<br>2010 | 734<br>780<br>826<br>839<br>810 | 1750<br>1780<br>1700<br>1570<br>1460 | e1300<br>1850<br>4350<br>4320<br>2130 | 1110<br>1130<br>1140<br>1100<br>1050 | 262<br>249<br>238<br>247<br>312 | 667<br>601<br>512<br>451<br>407 | | 11<br>12<br>13<br>14<br>15 | 950<br>923<br>881<br>853<br>843 | 536<br>545<br>921<br>1440<br>1460 | e390<br>e430<br>e470<br>e470<br>e450 | e300<br>e320<br>e280<br>e260<br>e250 | e300<br>e290<br>e300<br>e320<br>e350 | 1650<br>1620<br>1630<br>1690<br>1830 | 763<br>808<br>1050<br>1350<br>1570 | 1380<br>1310<br>1250<br>1220<br>1210 | 1670<br>1520<br>8940<br>20800<br>10300 | 1010<br>964<br>971<br>1030<br>984 | 780<br>1740<br>2510<br>2290<br>1490 | 376<br>357<br>350<br>328<br>313 | | 16<br>17<br>18<br>19<br>20 | 836<br>818<br>803<br>793<br>774 | 1160<br>1050<br>984<br>947<br>903 | e540<br>e700<br>723<br>714<br>631 | e270<br>e260<br>e250<br>e290<br>e280 | e400<br>e390<br>e480<br>e1400<br>e2200 | 1760<br>1540<br>1420<br>1340<br>1290 | 1930<br>1930<br>e1610<br>e1500<br>e1400 | 1180<br>1130<br>1080<br>1040<br>1010 | 3960<br>2760<br>2290<br>2020<br>1800 | 962<br>914<br>846<br>777<br>731 | 1220<br>1080<br>973<br>854<br>765 | 295<br>284<br>e270<br>e250<br>e240 | | 21<br>22<br>23<br>24<br>25 | 769<br>754<br>744<br>732<br>721 | 869<br>832<br>800<br>e600<br>e170 | e520<br>e390<br>e400<br>e420<br>e360 | e300<br>e350<br>e450<br>e370<br>e320 | e1800<br>e1300<br>e1100<br>e480<br>e500 | 1250<br>1200<br>1150<br>1100<br>1040 | e1350<br>e1300<br>1230<br>1200<br>1180 | 977<br>962<br>946<br>1060<br>1060 | 2400<br>2450<br>7790<br>13800<br>e8030 | 704<br>664<br>618<br>569<br>524 | 692<br>618<br>554<br>501<br>473 | e240<br>e270<br>e270<br>e260<br>e250 | | 26<br>27<br>28<br>29<br>30<br>31 | 695<br>668<br>664<br>641<br>607<br>563 | e180<br>e400<br>e600<br>e700<br>e800 | e340<br>e220<br>e230<br>e330<br>e430<br>e500 | e300<br>e280<br>e290<br>e270<br>e250<br>e260 | e480<br>e500<br>e520 | 1020<br>996<br>965<br>918<br>858<br>841 | 1980<br>2000<br>2030<br>1730<br>1800 | 1090<br>1060<br>989<br>943<br>877<br>807 | e4720<br>e2540<br>1910<br>1630<br>1470 | 491<br>454<br>421<br>393<br>367<br>345 | 444<br>478<br>415<br>382<br>357<br>336 | 245<br>239<br>233<br>228<br>222 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 25076<br>809<br>1020<br>563<br>49740<br>.51 | 21534<br>718<br>1460<br>170<br>42710<br>-45<br>-50 | 14818<br>478<br>760<br>220<br>29390<br>.30<br>.35 | 9740<br>314<br>450<br>250<br>19320<br>.20 | 16110<br>575<br>2200<br>270<br>31950<br>.36<br>.38 | 69258<br>2234<br>11000<br>540<br>137400<br>1.40<br>1.62 | 37623<br>1254<br>2030<br>734<br>74630<br>.79<br>.88 | 41971<br>1354<br>2900<br>807<br>83250<br>.85<br>.98 | 120926<br>4031<br>20800<br>776<br>239900<br>2.53<br>2.83 | 26409<br>852<br>1360<br>345<br>52380<br>.54<br>.62 | 21766<br>702<br>2510<br>238<br>43170<br>.44<br>.51 | 10209<br>340<br>667<br>222<br>20250<br>.21<br>.24 | | STATIS | rics of M | ONTHLY ME | AN DATA | FOR WATER | YEARS 194 | 8 - 1994 | BY WATER | YEAR (WY | ) | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 192<br>1232<br>1993<br>2.39<br>1959 | 217<br>2039<br>1980<br>9.70<br>1959 | 119<br>676<br>1983<br>3.22<br>1959 | 63.9<br>432<br>1983<br>.037<br>1977 | 203<br>1059<br>1966<br>.30<br>1959 | 940<br>3421<br>1983<br>35.1<br>1959 | 1167<br>6507<br>1969<br>35.9<br>1959 | 557<br>3728<br>1993<br>44.4<br>1968 | 879<br>6495<br>1993<br>46.3<br>1964 | 585<br>9088<br>1993<br>21.9<br>1976 | 255<br>2251<br>1993<br>6.79<br>1976 | 175<br>1319<br>1993<br>3.26<br>1955 | | SUMMAR | STATIST | ics | FOR | 1993 CALE | NDAR YEAR | E | FOR 1994 WA | TER YEAR | | WATER YE | ARS 1948 | - 1994 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC | MEAN ANNUAL ME DAILY ME DAILY ME SEVEN-DAY TANEOUS PE FANEOUS PE RUNOFF (A RUNOFF (C | EAN EAN AN (MINIMUM EAK FLOW EAK STAGE AC-FT) EFSM) LINCHES) EDS | | 945665<br>2591<br>22300<br>120<br>139<br>1876000<br>1.6<br>22.1<br>7690<br>1050<br>223 | | | 415440<br>1138<br>20800<br>170<br>240<br>23100<br>18.27<br>824000<br>-71<br>1890<br>766<br>280 | Jun 14<br>Nov 25<br>Sep 24<br>Jun 14<br>Jun 14 | | 446<br>2656<br>31.0<br>35400<br>.00<br>40400<br>a17.32<br>323300<br>.28<br>3.81<br>1050<br>107 | Feb<br>Feb | 1993<br>1968<br>7 1969<br>20 1959<br>27 1959<br>7 1969<br>7 1969 | e Estimated. a Site and datum in use prior to May 5, 1976. #### 06485500 BIG SIOUX RIVER AT AKRON, IA LOCATION.--Lat 42°50'14", long 96°33'41", in SW1/4 SE1/4 SW1/4 sec.30, T.93 N., R.48 W., Plymouth County, Hydrologic Unit 10170203, on left bank 15 ft downstream from Iowa Highway 403 bridge, 0.5 mi northwest of Akron, and 2.9 mi upstream from Union Creek. DRAINAGE AREA.--8,424 mi<sup>2</sup>, of which 1,487 mi<sup>2</sup> is probably noncontributing. PERIOD OF RECORD .-- October 1928 to current year. REVISED RECORDS.--WSP 1309: 1929(M), 1931-33(M), 1936(M), 1938(M), 1940(M). WSP 1389: Drainage area. WDR SD-84-1: Drainage GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,118.90 ft above sea level. Prior to Dec. 3, 1934, nonrecording gage at bridge 0.5 mi downstream at same datum. From Dec. 3, 1934, to Oct. 31, 1985, water-stage recorder at site 0.6 mi downstream at same datum. REMARKS.--Estimated daily discharges: Nov. 26 to Mar. 8. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite data-collection platform at station. | Colps | or meno | ors surcinc ( | mia-conc | cuon piano | im at station | | | | | | | | | | |----------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-----------------|------------------------------|--------------|------------------------------|--------------|---------------|---------------|--------------|--------------|--|--| | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 2820 | 1690 | e1700 | e1300 | e500 | e1200 | 4170 | 5540 | 2120 | 6600 | 1450 | 1210 | | | | 2 | 2690 | 1690 | e1800 | e1260 | e500 | e1000 | 3980 | 6600 | 2030 | 6270 | 1410 | 1170 | | | | 3 | 2570 | 1690 | e1800 | e1200 | e500 | e1400 | 3800 | 7400 | 1970 | 5680 | 1360 | 1170 | | | | 4<br>5 | 2470<br>2380 | 1700 | e1800 | e1190 | e450 | e3000 | 3660 | 6680 | 1910 | 4760 | 1310 | 1320<br>1420 | | | | 3 | 2380 | 1710 | e1800 | e1170 | e450 | e4000 | 3540 | 5980 | 1920 | 4140 | 1270 | 1420 | | | | 6 | 2310 | 1690 | e1800 | e1080 | e450 | e8500 | 3460 | 5670 | 3280 | 4220 | 1280 | 1610 | | | | 7 | 2260 | 1640 | e1700 | e1000 | | e14000 | 3370 | 5680 | 4220 | 3560 | 1250 | 1640 | | | | 8 | 2230 | 1580 | e1600 | e960 | e450 | e16000 | 3370 | 5700 | 4360 | 3360 | 1210 | 1660 | | | | . 9 | 2250 | 1630 | e1600 | e940 | e400 | 12500 | 3410 | 5410 | 5990 | 3390 | 1170 | 1670 | | | | 10 | 2260 | 1620 | e1600 | e930 | e390 | 8700 | 3420 | 5030 | 5970 | 3230 | 1160 | 1640 | | | | 11 | 2260 | 1620 | e1600 | e900 | <b>6400</b> | 6980 | 3340 | 4650 | 4460 | 3130 | 1220 | 1600 | | | | 12 | 2220 | 1630 | e1600 | e830 | e400 | 5760 | 3330 | 4280 | 3940 | 3140 | 1700 | 1530 | | | | 13 | 2180 | 1790 | e1600 | e760 | e400 | 5650 | 3430 | 3980 | 4020 | 3210 | 3170 | 1460 | | | | 14 | 2130 | 2160 | e1700 | e650 | e400 | 5760 | 3940 | 3760 | 7150 | 3260 | 3980 | 1370 | | | | 15 | 2100 | 2880 | e1700 | e650 | e400<br>e400<br>e400<br>e400 | 5960 | 4690 | 3630 | 15400 | 3250 | 4020 | 1290 | | | | 1.0 | 2070 | | 1200 | 610 | | 61.00 | 4000 | 0.550 | 17000 | 2222 | 2420 | 1000 | | | | 16<br>17 | 2070<br>2060 | 2980<br>2620 | e1700 | e640<br>e630 | e400 | 6190 | 4890 | 3550<br>3390 | 17200<br>7160 | 3120<br>3060 | 3420<br>3130 | 1220<br>1180 | | | | 18 | 2040 | 2470 | e1800<br>e1800 | e620 | e500<br>e600 | 6470<br>6530 | 5650<br>5700 | 3230 | 4900 | 2870 | 3030 | 1150 | | | | 19 | 2010 | 2410 | e1800 | e620 | e2400 | 6410 | 5060 | 3030 | 4300 | 2610 | 3000 | 1120 | | | | 20 | 2010 | 2340 | e1750 | e600 | e4300 | 6410 | 4730 | 2850 | 4000 | 2440 | 2900 | 1090 | | | | | | | | | | | | | | | | | | | | 21 | 1990 | 2270 | e1600 | e560 | e4200 | 6140 | 4440 | 2710 | 4060 | 2320 | 2670 | 1060 | | | | 22 | 1980 | 2210 | e1100 | e550 | e4000 | 6140 | 4210 | 2600 | 5090 | 2220 | 2350 | 1070 | | | | 23<br>24 | 1970<br>1950 | 2150<br>2100 | e900 | e550<br>e540 | e3000 | 6080<br>5950 | 4000 | 2510 | 5910<br>8300 | 2150<br>2060 | 2070<br>1860 | 1070<br>1040 | | | | 25 | 1930 | 1860 | e1000<br>e1200 | e530 | e2200<br>e1800 | 5790 | 3830<br>3670 | 2440<br>2510 | 13500 | 1970 | 1720 | 1030 | | | | 23 | 1930 | 1000 | e1200 | 6330 | 61000 | 3790 | 3010 | 2310 | 15300 | 1910 | 1120 | 1030 | | | | 26 | 1900 | e1150 | e1300 | e530 | e1600 | 5600 | 3630 | 2590 | 13800 | 1870 | 1610 | 1010 | | | | 27 | 1860 | e950 | e1300 | e530<br>e540 | e1400 | 5450 | 4720 | 2590 | 9720 | 1790 | 1520 | 1010 | | | | 28 | 1840 | e1300 | e1300 | e500 | e1300 | 5280 | 5170 | 2620 | 7890 | 1710 | 1480 | 1000 | | | | 29 | 1800 | e1800 | e1300 | e480 | | 5040 | 5550 | 2520 | 7400 | 1630 | 1380 | 989 | | | | 30 | 1770 | e1700 | e1300 | e480 | | 4750 | 5240 | 2380 | 6920 | 1570 | 1320 | 973 | | | | 31 | 1730 | | e1300 | e480 | | 4340 | | 2250 | | 1500 | 1260 | | | | | TOTAL | 66040 | 57030 | 47850 | 23670 | 34240 | 192980 | 125400 | 123760 | 188890 | 96090 | 61680 | 37772 | | | | MEAN | 2130 | 1901 | 1544 | 764 | 1223 | 6225 | 4180 | 3992 | 6296 | 3100 | 1990 | 1259 | | | | MAX | 2820 | 2980 | 1800 | 1300 | 4300 | 16000 | 5700 | 7400 | 17200 | 6600 | 4020 | 1670 | | | | MIN | 1730 | 950 | 900 | 480 | 390 | 1000 | 3330 | 2250 | 1910 | 1500 | 1160 | 973 | | | | AC-FT | 131000 | 113100 | 94910 | 46950 | 67920 | 382800 | 248700 | 245500 | 374700 | 190600 | 122300 | 74920 | | | | STATIS | TICS OF | MONTHLY ME | AN DATA | FOR WATER | YEARS 192 | 9 - 1994 | , BY WATER | YEAR (WY | ) | | | | | | | MEAN | 467 | 435 | 291 | 180 | 477 | 2346 | 2973 | 1556 | 2016 | 1409 | 702 | 660 | | | | MAX | 4039 | 3022 | 1967 | 841 | 2399 | 8866 | 20690 | 9499 | 15820 | 21740 | 6200 | 7313 | | | | (WY) | 1987 | 1980 | 1983 | 1983 | 1966 | 1983 | 1969 | 1993 | 1984 | 1993 | 1993 | 1986 | | | | MIN | 32.9 | 47.9 | 32.1 | 6.68 | 12.1 | 124 | 139 | 73.3 | 100 | 50.7 | 45.2 | 36.4 | | | | (WY) | 1959 | 1959 | 1977 | 1977 | 1936 | 1931 | 1931 | 1934 | 1933 | 1931 | 1976 | 1976 | | | | | | rics | | | ENDAR YEAR | | FOR 1994 W | ATER YEAR | | WATER Y | EARS 1929 | - 1994 | | | | ANNUAL | | | | 2296680<br>6292 | | | 1055402 | | | 1126- | | | | | | ANNUAL | MEAN<br>T ANNUAL | MPAN | | 6292 | | | 2892 | | | 1126a<br>6271 | | 1993 | | | | | ANNUAL N | err B by | | | | | | | | 120 | | 1931 | | | | | T DAILY N | ÆAN | | 50600 | Jul 13 | | 17200 | Jun 16 | | 77500 | Apr | 1969 | | | | | DAILY ME | EAN | | 520<br>524 | Jan 26 | | 390 | Feb 10 | | 4.0 | Jan 1 | 7 1977 | | | | ANNUAL | SEVEN-DA | MUMINIM YA | | 524 | Jan 26 | | 17200<br>390<br>399<br>20400 | Feb 9 | | 4.4 | Jan 1 | 1977 | | | | | | PEAK FLOW | | | | | 20400 | Jun 16 | | 80800 | Apr 9 | 1969b | | | | | | PEAK STAGE | | 4555000 | | | 21.08 | 3 Jun 16 | | 23.0 | 5 May 10 | 1993c | | | | | RUNOFF (<br>CENT EXCE | | | 15800 | | | 2093000<br>5840 | | | 2560 | | | | | | | CENT EXCE | | | 2810 | | | 2060 | | | 332 | | | | | | | CENT EXCE | | | 600 | | | 716 | | | 68 | | | | | | | | | | | | | | | | | | | | | Estimated Estimated Median of annual mean discharges, 770 ft<sup>3</sup>/s. Gage height, 22.99 ft. From high-water mark. #### 06486000 MISSOURI RIVER AT SIOUX CITY, IA LOCATION.--Lat. 42°29'09", long 96°24'49", in NW1/4 SE1/4 sec.16, T.29 N., R.9 E., sixth prinicipal meridian, Dakota County, Nebraska, Hydrologic Unit 10230001, on right bank on upstream side of bridge on U.S. Highway 20 and 77 at South Sioux City, Nebraska, 1.9 mi downstream from Big Sioux River, and at mile 732.2. DRAINAGE.-314,600 mi<sup>2</sup>, approximately. The 3,959 mi<sup>2</sup> in Great Divide basin are not included. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.—October 1897 to current year in reports of the U.S. Geological Survey. Prior to October 1928 and October 1931 to September 1938, monthly discharges only, published in WSP 1310. January 1879 to December 1890, monthly discharges only, in House Document 238, 73rd Congress, 2d session, Missouri River. Gage height records collected in this vicinity September 1878 to December 1899 are contained in reports of Missouri River Commission and since July 1889 are contained in reports of U.S. Weather Bureau. REVISED RECORDS.--WSP 716: 1929-30. WSP 876: Drainage area. GAGE.—Water-stage encoder. Datum of gage is 1,056.98 ft above sea level. Sept. 2, 1878 to Dec. 31, 1905, nonrecording gages at various locations within 1.7 mi of present site and at various datums. Jan. 1, 1906 to Feb. 14, 1935, nonrecording gage, and Feb. 15, 1935 to Sept. 30, 1969, water-stage recorder at site 227 ft downstream at datum 19.98 ft higher, and Oct. 1, 1969 to Sept. 30, 1970 at datum 20.00 ft higher. Oct. 1, 1970 to Jan. 30, 1981, water-stage recorder at site 227 ft downstream at present datum. REMARKS.--Estimated daily discharges: Jan. 10-13, 16-31, and Feb. 12-14, 21-23, 25, 26. Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 441,000 ft<sup>3</sup>/s Apr. 14, 1952, gage height, 24.28 ft, datum then in use; minimum, 2,500 ft<sup>3</sup>/s Dec. 29, 1941; minimum gage height, 7.83 ft Jan. 9, 1989. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES #### AUG SEP DAY OCT NOV DEC JUN JUL JAN FEB MAR APR MAY 32200 7 19100 18300 25800 26500 18600 13200 39300 34300 38700 37600 34500 31100 31500 e19600 e20400 31700 e20900 e20400 e21100 20400 e19500 e18400 e18900 26000 35700 e19400 e20100 22 e20800 e30700 25600 e21400 e30200 e21900 e28600 25700 30300 31200 e22000 e20500 e21800 e20000 e19800 e19700 e19800 e19700 TOTAL 27200 27400 21700 35200 35300 33200 MEAN MAX MIN AC-FT 1583000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1958 - 1994, BY WATER YEAR (WY) a MEAN 1987 7316 1976 1976 1983 1969 1975 MAX (WY) (WY) SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1958 - 1994a ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN 40750 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN 9600 Jul 15 Jan 22.24 Jun 17 Nov 25 Jan Jun Jun 30.65 Jun 25 1984 Dec 11 1961 Feb 22 Apr 3 Feb 19 ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS e Estimated a Post-regulation period. #### 06486000 MISSOURI RIVER AT SIOUX CITY, IA -- Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD,--October 1971 to current year. Daily sediment loads October 1954 to September 1971 in reports of U.S. Army Corps of Engineers. #### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: October 1972 to September 1976, November 1977 to September 1981, October 1991 to current year. WATER TEMPERATURES: October 1971 to September 1976, November 1977 to September 1981, October 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976, October 1991 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens June 17, 19, 1981; minimum daily, 410 microsiemens Mar. 22, 1978. WATER TEMPERATURES: Maximum daily, 28.0°C July 30, 1976 and Aug. 7, 1979; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,620 mg/L Nov. 20, 1972; minimum daily mean, 42 mg/L Dec. 29, 1975. SEDIMENT LOADS: Maximum daily, 222,000 tons Nov. 20, 1972; minimum daily, 2,150 tons Nov. 20, 1991. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 854 microsiemens Nov. 12; minimum daily, 613 microsiemens Mar. 10. WATER TEMPERATURES: Maximum daily, 26.0°C July 18, Aug. 2, Sept. 13; minimum daily, 0.0°C Dec. 7 and Mar. 1. SEDIMENT CONCENTRATIONS: Maximum daily mean, 662 mg/L June 23; minimum daily mean, 106 mg/L Nov. 26. SEDIMENT LOADS: Maximum daily, 69,900 tons June 23; minimum daily, 4,040 tons Jan. 8. ## SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 1 | 796 | 824 | 813 | | | 724 | 760 | | | 757 | | | | 2 | | | | | | | | 812 | | | 808 | 777 | | 3 | | | | | | | | | | | | | | 4 | 805 | 781 | | | | | | | | | | | | 5 | | | | | | | 730 | | | 769 | 814 | | | _ | | | | | | | | | | | | | | 6 | | | | | | | | | 750 | | | 785 | | 7 | | | 826 | | | | | | | | | | | 8 | 724 | 805 | | | | | | | | 766 | | | | 9 | | | | | | | | 838 | | | 792 | 728 | | 10 | | | | | | 613 | | | 764 | | | | | | | | | | | | | | | | | | | 11 | | | | | | | | | | 771 | | | | 12 | 812 | 854 | | | | | 779 | | | | 776 | | | 13 | | | | | | | | | 746 | | | 782 | | 14 | | | | | | | | | | | | | | 15 | 784 | 846 | | | 778 | 662 | 821 | | | 785 | | | | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | 802 | 619 | | | | | 18 | 807 | 850 | | | | | | | | 820 | | | | 19 | | | | | | | 827 | 780 | | | 749 | | | 20 | | | | | | | | | 727 | | | 822 | | | | | | | | | | | | | | | | 21 | | | | | | | 795 | | | | | | | 22 | | 840 | | | | 685 | | | | | | | | 23 | 777 | | | | | | | 776 | | | 770 | 822 | | 24 | | | | | | | | | 713 | | | | | 25 | 779 | | | | | 734 | | | | 792 | | | | 26 | | | | | | | 773 | | | | 764 | 780 | | 27 | | | | | | | 773 | 779 | 691 | | 704 | 760 | | 28 | 804 | | | | | | | 779 | 091 | | | | | 29 | PU8 | | | | | 763 | 776 | | | 809 | | | | | | | | | | 763 | 776 | | | 809 | 789 | | | 30 | | | | | | | | 240 | | | | 816 | | 31 | | | | | | | | 749 | | | | | ## 06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued ## SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------| | | OCTO | BER | NOVE | MBER | DECEM | BER | JANUA | RY | PEBRU | ARY | MARC | Э | | 1 | 145 | 10000 | 218 | 15700 | 205 | 10300 | 240 | 15200 | 144 | 7840 | 281 | 17800 | | 2 | 133 | 9140 | 229 | 16700 | 206 | 10300 | 174 | 9910 | 154 | 8520 | 281 | 18100 | | 3 | 133 | 9090 | 230 | 16800 | 196 | 9720 | 149 | 8000 | 156 | 8510 | 315 | 21400 | | 4 | 122 | 8310 | 221 | 16200 | 185 | 9160 | 145 | 7740 | 164 | 8950 | 420 | 33300 | | 5 | 124 | 8500 | 234 | 17200 | 205 | 10200 | 162 | 9170 | 170 | 9320 | 534 | 50700 | | 6 | 141 | 9660 | 230 | 16600 | 232 | 11700 | 135 | 7350 | 167 | 9050 | 578 | 58900 | | 7 | 153 | 10500 | 233 | 16600 | 221 | 11500 | 116 | 4440 | 153 | 8170 | 515 | 52000 | | 8 | 164 | 11400 | 235 | 16800 | 197 | 9930 | 113 | 4040 | 135 | 6950 | 515 | 54700 | | 9 | 189 | 13600 | 240 | 17100 | 223 | 12000 | 140 | 6650 | 130 | 6460 | 573 | 63100 | | 10 | 177 | 12600 | 253 | 17800 | 211 | 11600 | 172 | 9100 | 162 | 8350 | 526 | 55700 | | 11 | 155 | 11000 | 276 | 19300 | 176 | 9250 | 180 | 9910 | 190 | 10300 | 486 | 48500 | | 12 | 142 | 9940 | 328 | 23400 | 192 | 10500 | 173 | 9760 | 210 | 11600 | 483 | 46900 | | 13 | 142 | 9830 | 348 | 25600 | 175 | 9610 | 200 | 11400 | 212 | 11600 | 486 | 47300 | | 14 | 145 | 9940 | 295 | 21500 | 149 | 7960 | 161 | 8930 | 206 | 10800 | 513 | 46200 | | 15 | 165 | 11300 | 227 | 16600 | 149 | 8300 | 127 | 6100 | 319 | 16300 | 470 | 40000 | | 16 | 133 | 9060 | 249 | 18400 | 168 | 9560 | 149 | 7240 | 266 | 13800 | 448 | 37600 | | 17 | 124 | 8530 | 225 | 16000 | 174 | 10000 | 162 | 8050 | 179 | 9410 | 427 | 35800 | | 18 | 156 | 11500 | 205 | 14500 | 181 | 10500 | 159 | 8110 | 176 | 10800 | 421 | 35500 | | 19 | 145 | 10200 | 216 | 15400 | 171 | 9820 | 192 | 10100 | 296 | 27300 | 379 | 31600 | | 20 | 134 | 8940 | 216 | 15200 | 169 | 9610 | 192 | 10400 | 335 | 31800 | 340 | 28500 | | 21 | 139 | 9320 | 220 | 15400 | 151 | 8270 | 185 | 10400 | 260 | 21600 | 344 | 29700 | | 22 | 169 | 11600 | 222 | 15400 | 164 | 9010 | 171 | 9880 | 256 | 20900 | 320 | 27800 | | 23 | 168 | 11600 | 189 | 12600 | 140 | 6920 | 175 | 10300 | 222 | 17100 | 312 | 26800 | | 24 | 156 | 10800 | 128 | 7430 | 147 | 7490 | 170 | 10100 | 209 | 14500 | 341 | 29400 | | 25 | 164 | 11400 | 107 | 5210 | 148 | 7610 | 146 | 8480 | 188 | 12300 | 309 | 26000 | | 26<br>27<br>28<br>29<br>30<br>31 | 239<br>238<br>228<br>223<br>219<br>223 | 16800<br>16800<br>16100<br>15700<br>15500<br>16000 | 106<br>107<br>123<br>162<br>171 | 5130<br>4910<br>5850<br>7730<br>8180 | 142<br>148<br>139<br>147<br>151<br>213 | 7340<br>7430<br>6970<br>7300<br>7880<br>12600 | 144<br>136<br>116<br>134<br>139<br>127 | 7970<br>7340<br>6200<br>7130<br>7430<br>6760 | 177<br>288<br>328<br> | 10400<br>18400<br>21700 | 312<br>313<br>299<br>284<br>275<br>260 | 26400<br>26600<br>25800<br>24800<br>23500<br>22300 | | TOTAL | | 354660 | | 441240 | | 290340 | | 263590 | | 372730 | | 1112700 | | | APR | IL | MAY | • | JUN | E | JUL | Y | AUGU | ST | SEPTEM | BER | | 1 | 240 | 20600 | 123 | 10800 | 159 | 15700 | 210 | 21000 | 151 | 13000 | 169 | 14600 | | 2 | 262 | 22300 | 136 | 12700 | 161 | 15900 | 242 | 25300 | 123 | 10600 | 167 | 14400 | | 3 | 307 | 26000 | 246 | 26400 | 160 | 15400 | 224 | 22900 | 129 | 11000 | 166 | 14400 | | 4 | 308 | 25800 | 318 | 37800 | 160 | 15200 | 191 | 19100 | 151 | 12900 | 184 | 16500 | | 5 | 281 | 23300 | 273 | 31900 | 191 | 18300 | 159 | 15400 | 139 | 11700 | 184 | 16300 | | 6 | 270 | 23100 | 242 | 27400 | 187 | 17600 | 148 | 14100 | 147 | 12300 | 148 | 12600 | | 7 | 363 | 33900 | 219 | 23000 | 211 | 20700 | 162 | 15600 | 167 | 14000 | 148 | 12600 | | 8 | 331 | 30600 | 194 | 20300 | 230 | 23400 | 161 | 15000 | 175 | 14600 | 150 | 12700 | | 9 | 282 | 26000 | 174 | 17900 | 254 | 26200 | 136 | 11800 | 168 | 13900 | 147 | 12400 | | 10 | 244 | 22500 | 202 | 21600 | 307 | 32500 | 147 | 13500 | 166 | 13800 | 150 | 12700 | | 11 | 216 | 19800 | 246 | 26900 | 305 | 32100 | 140 | 12900 | 149 | 12300 | 136 | 11600 | | 12 | 223 | 20900 | 243 | 26600 | 244 | 24700 | 166 | 15600 | 142 | 11800 | 129 | 11100 | | 13 | 236 | 22400 | 228 | 24700 | 208 | 21100 | 197 | 18800 | 184 | 15700 | 134 | 11800 | | 14 | 204 | 18800 | 211 | 22800 | 223 | 22900 | 189 | 18300 | 190 | 16100 | 124 | 10700 | | 15 | 237 | 22600 | 209 | 22500 | 225 | 22800 | 178 | 17000 | 194 | 16600 | 118 | 10100 | | 16 | 238 | 22700 | 180 | 19000 | 302 | 34300 | 221 | 21500 | 194 | 16400 | 121 | 10200 | | 17 | 225 | 20300 | 150 | 15900 | 493 | 65600 | 239 | 23100 | 162 | 13500 | 120 | 10000 | | 18 | 230 | 20900 | 168 | 17600 | 441 | 51200 | 217 | 20300 | 125 | 10300 | 159 | 13400 | | 19 | 217 | 19500 | 185 | 19000 | 353 | 34000 | 232 | 21500 | 135 | 11300 | 147 | 12300 | | 20 | 205 | 17600 | 181 | 18300 | 448 | 45100 | 224 | 20200 | 159 | 13600 | 135 | 11300 | | 21 | 202 | 16900 | 177 | 17600 | 468 | 46400 | 217 | 18800 | 166 | 14100 | 163 | 14000 | | 22 | 202 | 16600 | 172 | 17000 | 471 | 46500 | 203 | 17300 | 155 | 13000 | 260 | 23100 | | 23 | 202 | 16600 | 158 | 15300 | 662 | 69900 | 180 | 15300 | 140 | 11800 | 277 | 24600 | | 24 | 196 | 16100 | 150 | 14600 | 588 | 60600 | 156 | 13100 | 143 | 12100 | 232 | 20200 | | 25 | 181 | 14700 | 143 | 13700 | 401 | 42300 | 140 | 11900 | 134 | 11500 | 237 | 20400 | | 26<br>27<br>28<br>29<br>30<br>31 | 180<br>176<br>175<br>211<br>170 | 14700<br>14300<br>14700<br>18500<br>14800 | 151<br>151<br>151<br>207<br>195<br>169 | 14600<br>14600<br>14600<br>20700<br>19500<br>16800 | 520<br>356<br>318<br>366<br>265 | 62500<br>39800<br>34100<br>39500<br>26400 | 147<br>144<br>127<br>117<br>118<br>151 | 12500<br>12100<br>10600<br>9790<br>9900<br>12900 | 143<br>153<br>153<br>148<br>171<br>173 | 12500<br>13200<br>13000<br>12500<br>14700<br>14900 | 228<br>214<br>216<br>215<br>203 | 19200<br>17900<br>18100<br>18000<br>17100 | | TOTAL | | 617500 | | 622100 | | 1022700 | | 507090 | | 408700 | | 444300 | | VPAR | 6457650 | | | | | | | | | | | | YEAR 6457650 ## 06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | 1 | 15.0 | 5.0 | 2.0 | | | .0 | 9.0 | | | 24.0 | | | | 2 | | | | | | | | 11.0 | | | 26.0 | 20.0 | | 3 | | | | | | | | | | | | | | 4 | 13.0 | 6.0 | | | | | | | | | | | | 5 | | | | | | | 6.0 | | | 24.0 | 23.5 | | | 6 | | | | | | | | | 23.0 | | | 22.0 | | 7 | | | .0 | | | | | | | | | | | 8 | 16.0 | 4.0 | | | | | | | | 21.0 | | | | 9 | | | | | | | | 13.0 | | | 22.0 | 23.0 | | 10 | | | | | | 1.0 | | | 23.0 | | | | | 11 | | | | | | | | | | 25.0 | | | | 12 | 12.0 | 3.0 | | | | | 7.0 | | | | 23.0 | | | 13 | | | | | | | | | 23.0 | | | 26.0 | | 14 | | | | | | | | | | | | | | 15 | 14.0 | 1.5 | | | 1.5 | 5.0 | 9.0 | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | 18.0 | 23.0 | | | | | 18 | 12.0 | 3.0 | | | | | | | | 26.0 | | | | 19 | | | | | | | 13.0 | 20.0 | | | 22.0 | | | 20 | | | | | | | | | 23.0 | | | 21.0 | | 21 | | | | | | | 11.0 | | | | | | | 22 | | 4.0 | | | | 5.0 | | | | | | | | 23 | 11.0 | | | | | | | 21.0 | | | 23.0 | 15.5 | | 24 | | | | | | | | | 23.5 | | | | | 25 | 13.0 | | | | | 4.0 | | | | 25.0 | | | | 26 | | | | | | | 12.0 | | | | 23.0 | 17.0 | | 27 | | | | | | | | 22.0 | 24.0 | | | | | 28 | 8.0 | | | | | | | | | | | | | 29 | | | | | | 6.0 | 9.0 | | | 21.0 | | | | 30 | | | | | | | | | | | 24.0 | 18.0 | | 31 | | | | | | | | 21.5 | | | | | #### PERRY CREEK BASIN #### 06600000 PERRY CREEK AT 38th STREET, SIOUX CITY, IA LOCATION.--Lat 42°32'08", long 96°24'39", in SE1/4 SE1/4 sec.8, T.89 N., R. 47 W., Woodbury County, Hydrologic Unit 10230001, on left bank at downstream side of bridge on 38th Street in Sioux City, 1.9 mi downstream from West Branch, and 3.6 mi upstream from mouth. DRAINAGE AREA.--65.1 mi<sup>2</sup>. PERIOD OF RECORD.--October 1945 to September 1969, June 1981 to current year. REVISED RECORDS.--WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,112.04 ft above sea level (City of Sioux City benchmark). Prior to May 20, 1954, nonrecording gage with supplementary water-stage recorder in operation above 5.0 ft gage height and May 20, 1954 to Sept. 30, 1969, water-stage recorder at present site at datum 5.0 ft higher. REMARKS.--Estimated daily discharges: Oct. 20 to Feb. 16, Feb. 23 to Mar. 1, June 7, 8, July 2-10, and July 30 to Sept. 30. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. U.S. Army Corps of Engineers data collection platform and rain-gage at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 7, 1944, reached a stage of about 30.5 ft, from floodmarks, present datum, discharge, 9,600 ft<sup>3</sup>/s, on basis of contracted-opening measurement of peak flow by U.S. Army Corps of Engineers. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | Dis | CHARGE, | COBIC | BELLER | DAILY | MEAN V | ALUES | D13K 1993 | IO SEI I | THAIDIN 13 | 77 | | |-------------|---------------------------------|---------------------------------------|----------------------------------------|-------------------|-------------------------------------------|--------------|------------------------------------|--------------|---------------------|--------------------------------------|----------------------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 18 | e18 | e17 | e15 | e11 | e25 | 20 | 31 | 21 | 18 | e10 | e10 | | 2 | 15 | e18 | e16 | e12 | e12 | 56 | 20 | 29 | 22 | e19 | e10 | e11 | | 3<br>4 | 15<br>17 | e18<br>e17 | e16<br>e16 | e10<br>e12 | e10 | 207 | 19 | 28 | 10 | e22<br>e23 | e10<br>e10 | e13<br>e20 | | 5 | 13 | e17 | e16 | e14 | e15 | 69 | 20<br>20<br>19<br>19 | 30 | 29 | e21 | e10 | e14 | | 6 | 14 | e16 | e15 | | | | | | | | e9.8 | e11 | | 7 | 14 | e16 | e16 | e10 | e12 | 38 | 19 | 32 | e18 | e21 | e9.8 | el1 | | 8 | 26 | e17 | e16 | e12 | e13 | 33 | 20 | 30 | e16 | e12 | e9.8 | e11 | | 9<br>10 | 45<br>26 | e16<br>e16 | e15<br>e16<br>e16<br>e15<br>e15 | e14<br>e16 | e10<br>e12 | 30 | 19<br>19<br>20<br>19<br>18 | 28 | 13 | e24<br>e21<br>e12<br>e13<br>e15 | e9.8<br>e9.6 | e11<br>e11 | | 11 | 28<br>27 | | | | | | | | | | e13 | e10 | | 12 | 27 | e17 | e17 | e15 | e11 | 29 | 33 | 28 | 23 | 23 | e19 | e10 | | 13 | 25 | e21 | e15 | e12 | e13 | 29 | 31 | 26 | 23 | 32 | e15 | e10 | | 14<br>15 | 25<br>26<br>30 | e16<br>e17<br>e21<br>e19<br>e18 | e14<br>e17<br>e15<br>e13<br>e19 | e10<br>e9.0 | e18 | 29<br>29 | 18<br>33<br>31<br>25<br>24 | 24<br>25 | 14 | 23<br>19 | e13<br>e13 | e10<br>e10 | | | | | | | | | 22<br>22<br>22<br>20<br>21 | | | | e12 | e10 | | 17 | 23 | e19 | e18 | e10 | 25 | 28 | 22 | 19 | 19 | 18 | e12<br>e11<br>e11 | e9.8 | | 18 | 22 | e19 | e17 | e9.0 | 849 | 26 | 22 | 19 | 467 | 16 | ell | e9.8 | | 19<br>20 | 25<br>23<br>22<br>21<br>e20 | e18<br>e19<br>e19<br>e18<br>e18 | e18<br>e18<br>e17<br>e17<br>e16 | e13<br>e11 | 900<br>57 | 26 | 20 | 19 | 31 | 16<br>15 | e11<br>e10 | e9.8<br>e9.6 | | | | | | | | | | | | | | | | 21<br>22 | e20<br>e20<br>e20<br>e20<br>e19 | e17<br>e17<br>e16<br>e10 | e15<br>e13<br>e14<br>e15<br>e13 | e13<br>e15 | 35<br>22<br>e15<br>e12<br>e13 | 24 | 21 | 18 | 21 | 15<br>14 | e10<br>e9.8 | e9.6<br>e14 | | 23 | e20 | e17 | e14 | e17 | e15 | 24 | 21 | 18 | 45 | . 14 | e9.8 | e19 | | 24 | e20 | e16 | e15 | e16 | e12 | 23 | 21 | 17 | 26 | 13 | e9.7 | e15 | | | | | | <b>e1</b> 5 | e13 | 22 | 21<br>21<br>21<br>21<br>21 | 17 | | | e16 | e13 | | 26 | e19<br>e19<br>e18<br>e18 | e12 | e12<br>e10<br>e11<br>e12<br>e15<br>e17 | e13<br>e11 | e14 | 22 | 28 | 19 | 22 | 13<br>13<br>12<br>12<br>ell | e13 | e12 | | 27<br>28 | e19 | e14<br>e15 | e10 | ell<br>el3 | e16 | 22 | 25 | 17 | 21 | 13 | e12<br>e12 | e12<br>e12 | | 29 | e18 | e16 | e12 | e12 | | 20 | 37 | 20 | 19 | 12 | e11 | e11 | | 30 | | e16 | e15 | e9.0 | | 19 | 35 | 18 | 19 | e11 | e11 | e11 | | 31 | <b>e</b> 17 | | | <b>e10</b> | | 20 | 28<br>25<br>31<br>37<br>35 | 19 | | 611 | e10 | | | TOTAL | 658 | 502<br>16.7<br>21<br>10<br>996<br>.26 | 469 | 384.0 | 2189<br>78.2<br>900<br>10<br>4340<br>1.20 | 1207 | 691<br>23.0<br>37<br>18<br>1370 | 724 | 1071 | 526<br>17.0<br>32<br>11<br>1040 | 352.1<br>11.4<br>19<br>9.6 | 350.6 | | MEAN<br>MAX | 21.2 | 21 | 10.1 | 12.4 | 900 | 207 | 23.0 | 23.4 | 35.7<br>4 <b>67</b> | 32 | 11.4 | 11.7<br>20 | | MIN | 45<br>13 | 10 | 10 | 9.0 | 10 | 19 | 18 | 17 | 13 | 11 | 9.6 | 9.6 | | AC-FT | 1310 | 996 | 930 | 762 | 4340 | 2390 | 1370 | 1440 | 2120 | 1040 | 698 | 695 | | CFSM<br>IN. | .33<br>.38 | .26 | .23 | .19 | 1.20 | .60 | .35<br>.39 | .36<br>.41 | .55<br>.61 | .26 | .17 | .18<br>.20 | | | | | | | | | .53 | . 71 | .01 | 32<br>11<br>1040<br>.26<br>.30 | .20 | .20 | | STATIST | ICS OF MO | NTHLY MEA | N DATA F | OR WATER Y | EARS 1946 | - 1994, | BY WATER | (EAR (WY) | | | | | | MEAN | 7.26 | 6.68 | 5.69 | 6.20 | 18.5 | 45.8 | 24.7 | 22.2 | 30.7 | 20.4 | 12.5<br>85.5 | 12.6 | | MAX | 29.5 | 26.3 | 19.4 | 47.5 | 78.4 | 188 | 123 | 140 | 125 | 99.6 | 85.5 | 147 | | (WY)<br>MIÑ | 1993<br>.38 | 1993 | 1993 | 1952<br>.33 | 1948<br>1.31 | 1962<br>2.62 | 1985<br>2.30 | 1990<br>2.91 | 1984<br>.94 | 1952<br>.35 | 1951<br>.30 | 1949<br>.083 | | (MX) | 1959 | 26.3<br>1993<br>.81<br>1982 | 1959 | 1982 | 1959 | 1964 | 1959 | 1968 | 1956 | 1946 | 1965 | 1958 | | | STATISTI | cs | FOR | 1993 CALEN | DAR YEAR | F | OR 1994 WAT | ER YEAR | | WATER YE | ARS 1946 | - 1994 | | ANNUAL | | | | 11958.4 | | | 9123.7 | | | | | | | ANNUAL | MEAN<br>ANNUAL M | DAN | | 32.8 | | | 25.0 | | | 17.8 | | 1984 | | LOWEST | ANNUAL ME | AN | | | | | | | | 2.38 | | 1968 | | HIGHEST | DAILY ME | AN | | 527<br>7.8<br>9.1 | Mar 8 | | 900<br>9.0<br>9.8<br>2810<br>16.92 | Feb 19 | | 2260 | May | 19 1990<br>14 1946 | | | DAILY MEA | N | | 7.8 | Jan 29 | | 9.0<br>9.8 | Jan 15 | | -00<br>-00 | Jul 1 | 1946 | | | | | | | Jan 25 | | 9.8 | Sep 15 | | .00 | Sep 2 | 24 1958<br>L9 1990 | | INSTANT | ANEOUS PE | AK STAGE | | | | | 16.02 | Feb 18 | | 28.54 | May 1 | 19 1990 | | ANNUAL | RUNOFF (A | AK FLOW<br>AK STAGE<br>C-FT) | | 23720 | | | 18100 | | | .00<br>.00<br>8670<br>28.54<br>12910 | | | | MUNUML | NUMUEE (C | r orij | | . 30 | | | .36 | | | -21 | | | | | RUNOFF (I | | | 6.83 | | | 5.21 | | | 3.72 | | | | | ENT EXCEE<br>ENT EXCEE | | | 55<br>21 | | | 2 <b>8</b><br>17 | | | 29<br>5.1 | | | | | ENT EXCEE | | | 11 | | | 10 | | | | | | | | | | | | | | | | | | | | e Estimated. #### 06600100 FLOYD RIVER AT ALTON, IA LOCATION.--Lat 42°58'55", long 96°00'03", in NE1/4 NE1/4 sec.11, T.94 N., R.44 W., Sioux County, Hydrologic Unit 10230002, on left bank 270 ft downstream from South County Road at east edge of Alton, 34.3 mi upstream from West Branch Floyd River, and at mile 58.1. DRAINAGE AREA.--268 mi<sup>2</sup>. PERIOD OF RECORD.—October 1955 to current year. Prior to December 1955, monthly discharge only, published in WSP 1730. REVISED RECORDS.--WDR IA-82-1: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,269.55 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 25-29, Dec. 7, 8, 11, Dec. 20 to Feb. 17, and Feb. 21 to Mar. 6. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1953 reached a discharge of about 45,500 ft<sup>3</sup>/s, from information by U. S. Army Corps of Engineers. | • | DIS | SCHARGE, | CUBIC I | EET PER | | WATER Y<br>MEAN V | | BER 1993 | TO SEPI | EMBER 199 | 94 | | |------------------|-----------------------|----------------------|-------------|-------------|--------------|-------------------|---------------|--------------|--------------------|---------------|-------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 152 | 123 | 113 | e80 | e50 | e120 | 112 | 304 | 107 | 402 | 94 | 38 | | 2 | 146 | 123 | 115 | e70 | e56 | e135 | 112 | 273 | 108 | 434 | 82 | 40 | | 3 | 144 | 121 | 112 | e62 | e54 | e450 | 110 | 243 | 105 | 346 | 78 | 42 | | 4 | 143 | 122 | 112 | e74 | e62 | e1200 | 113 | 222 | 102 | 342 | 76 | 59 | | 5 | 137 | 118 | 112 | e80 | e90 | e1400 | 109 | 210 | 200 | 343 | 71 | 104 | | 6 | 137 | 112 | 103 | e70 | e80 | e1100 | 113 | 241 | 518 | 398 | 67 | 93 | | 7<br>8 | 134<br>149 | 114 | e100<br>e90 | e50 | e72 | 682<br>344 | 111 | 266<br>252 | 339<br>291 | 462<br>444 | 64<br>70 | 74<br>65 | | | 190 | 113<br>113 | 113 | e54<br>e60 | e70<br>e56 | 267 | 111<br>110 | 232 | 238 | 341 | 78 | 59 | | 10 | 200 | 111 | 99 | e88 | e64 | 225 | 107 | 205 | 208 | 302 | ,<br>לל | 52 | | 11 | 189 | 113 | e76 | e70 | e78 | 194 | 105 | 194 | 207 | 275 | 77 | 47 | | 12 | 180 | 116 | 100 | e80 | e64 | 197 | 131 | 184 | 206 | 256 | 152 | 43 | | 13 | 171 | 140 | 116 | e60 | e68 | 208 | 195 | 179 | 2590 | 353 | 143 | 42 | | 14 | 165 | 145 | 70 | e47 | e78 | 216 | 232 | 179 | 3820 | 584 | 120 | 40 | | 15 | 166 | 137 | 121 | e43 | e88 | 224 | 222 | 174 | 1090 | 436 | 101 | 37 | | 16 | 162 | 133 | 142 | e47 | e96 | 192 | 203 | 166 | 500 | 358 | 88 | 36 | | 17<br>18 | 158<br>154 | 134<br>135 | 121<br>118 | e43<br>e41 | e90<br>111 | 174 | 188<br>181 | 162<br>158 | 423<br>611 | 319<br>284 | 80<br>74 | 36<br>36 | | 19 | 151 | 138 | 115 | e54 | 590 | 165<br>157 | 172 | 155 | 517 | 257 | 68 | 36 | | 20 | 148 | 136 | e110 | e46 | 841 | 157 | 165 | 151 | 523 | 217 | 64 | 37 | | 21 | 148 | 135 | e 92 | e52 | e560 | 149 | 163 | 146 | 1270 | 205 | 59 | 37 | | 22 | 144 | 131 | e76 | e86 | e310 | 143 | 158 | 141 | 1870 | 186 | 55 | 48 | | 23 | 141 | 129 | e70 | e120 | e170 | 138 | 153 | 136 | 1620 | 170<br>155 | 52<br>48 | 57<br>56 | | 24<br>25 | 139<br>13 <b>8</b> | 125<br>e26 | e96<br>e76 | e80<br>e50 | e100<br>e105 | 133<br>129 | 152<br>151 | 136<br>132 | 3050<br>2080 | 143 | 46 | 53 | | 26 | 134 | e28 | e70 | e44 | e100 | 129 | 168 | 139 | 914 | 133 | 47 | 50 | | 27 | 131 | e60 | e40 | e42 | e105 | 126 | 164 | 135 | 584 | 124 | 57 | 48 | | 28 | 132 | e100 | e43 | e52 | e110 | 121 | 166 | 127 | 481 | 115 | 50 | 46 | | 29<br>30 | 127<br>123 | e110 | e66<br>e90 | e47<br>e42 | | 117<br>113 | 205<br>283 | 124 | 4 <b>18</b><br>374 | 109<br>102 | 44<br>42 | 44<br>43 | | 31 | 123 | 113 | e100 | e45 | | 113 | 283 | 118<br>111 | 3/4 | 95 | 40 | 43 | | TOTAL | 4656 | 3454 | 2977 | 1879 | 4318 | 9218 | 4665 | 5593 | 25364 | 8690 | 2264 | 1498 | | MEAN | 150 | 115 | 96.0 | 60.6 | 154 | 297 | 155 | 180 | 845 | 280 | 73.0 | 49.9 | | MAX | 200 | 145 | 142 | 120 | 841 | 1400 | 283 | 304 | 3820 | 58.4 | 152 | 104 | | MIN | 123 | 26 | 40 | 41 | 50 | 113 | 105 | 111 | 102 | 95 | 40 | 36 | | AC-FT<br>CFSM | 9240<br>.56 | 6 <b>8</b> 50<br>.43 | 5900<br>.36 | 3730<br>.23 | 8560<br>.58 | 18280<br>1.11 | 9250<br>.58 | 11090<br>.67 | 50310<br>3.15 | 17240<br>1.05 | 4490<br>.27 | 2970<br>.19 | | IN. | .65 | .48 | .41 | .26 | .60 | 1.28 | .65 | .78 | 3.52 | 1.21 | .31 | .21 | | STATIST | PICS OF MC | NTHLY MEA | N DATA F | OR WATER | YEARS 1956 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 37.1 | 37.3 | 24.7 | 16.1 | 114 | 168 | 162 | 96.7 | 180 | 89.3 | 38.5 | 26.6 | | MAX | 234 | 287 | 128 | 109 | 2698 | 605 | 906 | 392 | 973 | 878 | 249 | 175 | | (WY) | 1993 | 1980 | 1983 | 1973 | 1985 | 1979 | 1969 | 1984 | 1984 | 1993 | 1993 | 1993 | | MIN | .058 | .30 | .074 | .048 | .15 | 1.77 | 3.67 | 2.92 | 2.36 | 3.29 | .37 | .080 | | (WY) | 1957 | 1959 | 1959 | 1959 | 1977 | 1959 | 1959 | 1968 | 1968 | 1958 | 1968 | 1958 | | SUMMARY | STATISTI | cs | FOR | 1993 CALEI | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1956 | - 1994 | | ANNUAL | TOTAL | | | 114638 | | | 74576 | | | | | | | ANNUAL | | | | 314 | | | 204 | | | 72.0 | | | | | ' ANNUAL M | | | | | | | | | 323 | | 1993<br>1968 | | | ANNUAL ME<br>DAILY ME | | | 5850 | Mar 28 | | 3820 | Jun 14 | | 2.66<br>7160 | Anr | 4 1969 | | | DAILY MEA | | | 22 | Feb 24 | | 26 | Nov 25 | | .00 | Oct : | 14 1956 | | | SEVEN-DAY | | | 26 | Feb 23 | | 36 | Sep 15 | | .00 | | 27 1956 | | INSTANT | ANEOUS PE | AK FLOW | | | | | 6220 | Jun 13 | | 16300 | | 20 1983 | | | ANEOUS PE | | | | | | 17.34 | Jun 13 | | 18.54 | Jul : | LO 1983 | | ANNUAL<br>ANNUAL | | (C-FT)<br>(FSM) | | 227400 | , | | 147900<br>.76 | | | 52150<br>.27 | | | | ANNUAL | | r sm)<br>NCHES) | | 15.91 | | | 10.35 | | | 3.65 | | | | | ENT EXCEE | | | 706 | - | | 349 | | | 175 | | | | 50 PERC | ENT EXCEE | DS | | 156 | | | 121 | | | 18 | | | | 90 PERC | ENT EXCEE | DS | | 43 | | | 47 | | | 1.2 | | | e Estimated. ### FLOYD RIVER BASIN #### 06600300 WEST BRANCH FLOYD RIVER NEAR STRUBLE, IA LOCATION.--Lat 42°55'26", long 96°10'36", in SE1/4 SE1/4 sec. 29, T.94 N., R.45 W., Sioux County, Hydrologic Unit 10230002, on left bank near wingwall at upstream side of bridge on county highway B62, 0.1 mi west of U.S. Highway 75, 0.8 mi downstream from Orange City slough, 2.2 mi northeast of Struble, 21.4 mi upstream from Floyd River, and at mile 45.2 upstream from mouth of Floyd River. DRAINAGE AREA.--180 mi<sup>2</sup>. PERIOD OF RECORD.--October 1955 to current year. Prior to December 1955, monthly discharge only, published in WSP 1730. REVISED RECORDS.--WDR IA-82-1: Drainage area, 1978-81 (P). GAGE.--Water-stage encoder. Datum of gage is 1,239.40 ft above sea level (State Highway Commission bench mark). Prior to Jan. 5, 1978, at site 721 ft right at old channel at same datum. REMARKS.--Estimated daily discharges: Nov. 25-30, Dec. 22 to Feb. 18, and Feb. 23 to Mar. 3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. | | DIS | CHARGE, | CUBIC F | EET PER | SECOND, V | VATER Y<br>MEAN V | | DBER 1993 | TO SEPT | EMBER 19 | 94 | | |------------|------------------------|------------------|--------------|-------------|--------------|-------------------|--------------------|------------|------------|--------------|-----------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 100 | 84 | 84 | e80 | e39 | e270 | 88 | 205 | 89 | 132 | 49 | 29 | | 2 | 93 | 83 | 81 | e58 | e44 | e350 | 86 | 191 | 90 | 123 | 48 | 30 | | 3 | 92 | 82 | 77 | e45 | e42 | e900 | 86 | 178 | 88 | 117 | 47 | 30 | | 4 | 90 | 82 | 76 | e58 | e54 | 3920 | 87 | 169 | 88 | 116 | 46 | 42 | | 5 | 87 | 77 | 76 | e64 | e90 | 2670 | 83 | 164 | 149 | 109 | 44 | 36 | | 6<br>7 | 87<br>86 | 75<br>77 | 74<br>78 | e54<br>e37 | e72<br>e58 | 507<br>264 | 97<br>96 | 188<br>181 | 241<br>157 | 136<br>126 | 42<br>40 | 32<br>29 | | ,<br>8 | 96 | 76 | ว้า | e40 | e60 | 196 | 98 | 175 | 144 | 110 | 40 | 29 | | ğ | 137 | 74 | 76 | e45 | e45 | 173 | 95 | 162 | 136 | 101 | 39 | 28 | | 10 | 125 | 74 | 73 | e66 | e54 | 155 | 94 | 154 | 130 | 95 | 40 | 27 | | 11 | 120 | 75 | 69 | e50 | e62 | 146 | 94 | 148 | 127 | 90 | 39 | 27 | | 12 | 116 | 77<br><b>9</b> 0 | 81<br>82 | e60 | e54 | 146<br>145 | 115<br>1 <b>48</b> | 140 | 129<br>298 | 89<br>101 | 219<br>90 | 26<br>26 | | 13<br>14 | 111<br>107 | 86 | 60 | e45<br>e34 | e58<br>e72 | 145 | 168 | 139<br>134 | 392 | 120 | 61 | 26 | | 15 | 108 | 83 | 90 | e32 | e90 | 143 | 171 | 126 | 176 | 105 | 55 | 26 | | 16 | 107 | 83 | 88 | e39 | e120 | 131 | 163 | 124 | 151 | 102 | 53 | 26 | | 17 | 103 | 84 | 84 | e35 | e110 | 125 | 153 | 124 | 139 | 93 | 49 | 26 | | 18 | 101 | 85 | 83 | e32 | e170 | 118 | 144 | 113 | 150 | 87 | 47 | 25 | | 19 | 99 | 85 | 81 | e49 | 2070 | 114 | 133 | 108 | 129<br>122 | 84<br>80 | 46 | 25<br>25 | | 20 | 99 | 83 | 78 | e40 | 1800 | 112 | 127 | 106 | | | 42 | | | 21 | 97 | 83 | 72 | e50 | 1130 | 108 | 120 | 104 | 221 | 75 | 38 | 25 | | 22 | 95 | 80 | e58 | e78 | 839 | 105 | 115 | 102 | 154 | 72 | 36 | 32 | | 23<br>24 | 95<br>93 | 78<br>78 | e 62<br>e 68 | e110<br>e90 | e400<br>e170 | 103<br>98 | 117<br>117 | 99<br>100 | 271<br>417 | 69<br>65 | 35<br>34 | 33<br>30 | | 25 | 92 | e18 | e54 | e60 | e180 | 97 | 117 | 97 | 251 | 62 | 36 | 28 | | 26 | 90 | e19 | e50 | e50 | e170 | 97 | 149 | 96 | 232 | 59 | 36 | 28 | | 27 | 87 | e40 | e24 | e45 | e190 | 94 | 132 | 93 | 222 | 57 | 34 | 28 | | 28 | 89 | e68 | e27 | e49 | e220 | 92 | 139 | 92 | 174 | 56 | 32 | 28 | | 29<br>30 | 84<br>82 | e74<br>e80 | e45<br>e76 | e40<br>e32 | | 92<br>89 | 177<br>214 | 94<br>92 | 155<br>143 | 53<br>52 | 31<br>30 | 2 <b>8</b><br>27 | | 31 | 82 | | e98 | e35 | | 90 | | 89 | | 50 | 30 | | | TOTAL | 3050 | 2233 | 2202 | 1602 | 8463 | 11795 | 3723 | 4087 | 5365 | 2786 | 1508 | 857 | | MEAN | 98.4 | 74.4 | 71.0 | 51.7 | 302 | 380 | 124 | 132 | 179 | 89.9 | 48.6 | 28.6 | | MAX<br>MIN | 137<br>82 | 90<br>18 | 98<br>24 | 110<br>32 | 2070<br>39 | 3920<br>89 | 214<br>83 | 205<br>89 | 417<br>88 | 136<br>50 | 219<br>30 | 42<br>25 | | AC-FT | 6050 | 4430 | 4370 | 3180 | 16790 | 23400 | 73 <b>8</b> 0 | 8110 | 10640 | 5530 | 2990 | 1700 | | CFSM | .55 | .41 | .39 | .29 | 1.68 | 2.11 | .69 | .73 | .99 | .50 | .27 | .16 | | IN. | .63 | .46 | .46 | .33 | 1.75 | 2.44 | .77 | .84 | 1.11 | .58 | .31 | .18 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | R WATER | YEARS 1956 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 22.9 | 21.6 | 15.5 | 11.7 | 44.3 | 131 | 103 | 64.4 | 104 | 53.3 | 23.4 | 19.7 | | MAX | 151 | 133 | 76.4 | 53.1 | 302 | 734 | 637 | 314 | 669 | 379 | 124 | 106 | | (WY) | 1993 | 1980 | 1984 | 1983 | 1994 | 1962 | 1969 | 1984 | 1983 | 1993 | 1993 | 1993 | | MIN | .22 | .35 | .048 | .000 | .000 | 1.26 | 1.21 | 1.00 | .82 | .89 | .24 | .17 | | (WY) | 1959 | 1959 | 1965 | 1959 | 1959 | 1968 | 1959 | 1968 | 1977 | 1958 | 1958 | 1958 | | SUMMARY | STATISTI | cs | FOR 1 | .993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1956 | - 1994 | | ANNUAL | TOTAL | | | 66407 | | | 47671 | | | | | | | ANNUAL | | | | 182 | | | 131 | | | 51.2 | | | | | ANNUAL M | | | | | | | | | 227 | | 1983 | | | ANNUAL ME<br>DAILY ME | | | 2940 | Mar 27 | | 3920 | Mar 4 | | 2.49<br>5820 | Mar 2 | 1977 | | | DAILY MEA | | | 18 | Nov 25 | | 18 | Nov 25 | | .00 | Jan 2 | | | | SEVEN-DAY | | | 28 | Feb 23 | | 25 | Sep 15 | | .00 | Jan 2 | | | INSTANT | ANEOUS PE | AK FLOW | | _ | | | 8920 | Mar 4 | | 8920 | Mar | 1 1994 | | | ANEOUS PE | | | | | | 15.86 | Mar 4 | | 15.86 | Jun 20 | 19 <b>8</b> 3a | | | RUNOFF (A | | | 131700 | • | | 94560 | | | 37080 | | | | ANNUAL | RUNOFF (C<br>RUNOFF (I | F 5M) | | 1.0<br>13.7 | | | .73<br>9.85 | | | .28<br>3.86 | | | | 10 PERCI | ENT EXCEE | DS | | 369 | _ | | 173 | | | 102 | | | | 50 PERC | ENT EXCEE | DS | | 100 | | | 87 | | | 10 | | | | 90 PERC | ENT EXCEE | DS | | 48 | | | 32 | | | .60 | | | e Estimated. a Also Mar. 4, 1994. #### 06600500 FLOYD RIVER AT JAMES, IA LOCATION.--Lat 42°34'36", long 96°18'43", in SE1/4 SE1/4 sec.30, T.90 N., R.46 W., Plymouth County, Hydrologic Unit 10230002, on left bank at upstream side of bridge on county highway C70, 0.2 mi east of James, 14.3 mi downstream from West Branch Floyd River, and at mile 7.5. DRAINAGE AREA.--886 mi<sup>2</sup>. PERIOD OF RECORD .-- December 1934 to current year. REVISED RECORDS.--WSP 1240: 1935 (M), 1936, 1937-38 (M), 1942, 1945. WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,092.59 ft above sea level. Prior to Sept. 11, 1938, June 9 to Nov. 5, 1953, and Oct. 1, 1955, to May 22, 1957, nonrecording gage and May 23, 1957, to Sept. 30, 1970, water-stage recorder at same site at datum 10.0 ft higher. REMARKS.--Estimated daily discharges: Nov. 25 to Dec. 12, Dec. 22 to Feb. 18, and Mar. 2-6. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage and discharge since 1892, that of June 8, 1953, from information by U. S. Army Corps of Engineers. | • | DI | SCHARGE | CUBIC | FEET PER | | VATER Y<br>MEAN V | | OBER 1993 | TO SEP | TEMBER 19 | 94 | | |-------------------|-------------------------------|---------------------|----------------------|--------------|--------------|-------------------|-------------------|--------------|--------------|--------------------|--------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 432 | 378 | e400 | e300 | e150 | 503 | 373 | 736 | 361 | 889 | 299 | 195 | | 2 | 422 | 379 | e370 | e230 | e170 | e470 | 367 | 737 | 358 | 888 | 292 | 191 | | 3 | 412 | 372 | e370 | e170 | e160 | e600 | 361 | 704 | 353 | 871 | 280 | 188 | | 4<br>5 | 403<br>398 | 368 | e360 | e230 | e210 | e1500 | 362 | 671 | 338 | 802 | 269<br>256 | 216<br>231 | | | | 368 | e370 | e250 | e340 | e3900 | 365 | 660 | 366 | 771 | | | | 6<br>7 | 393<br>393 | 354<br>357 | e350 | e210 | e280 | e4300<br>2900 | 361 | 670<br>705 | 511<br>787 | 840<br>890 | 250<br>240 | 222<br>2 <b>24</b> | | 8 | 407 | 357 | e370<br>e360 | e140<br>e160 | e230<br>e240 | 1310 | 370<br>365 | 710 | 624 | 888 | 258 | 209 | | ğ | 542 | 348 | e360 | e180 | e180 | 1010 | 360 | 681 | 577 | 821 | 241 | 200 | | 10 | 5 6 2 | 341 | e350 | e250 | e210 | 863 | 356 | 648 | 535 | 719 | 240 | 190 | | 11 | 552 | 343 | e330 | e190 | e250 | 770 | 348 | 612 | 504 | 660 | 239 | 185 | | 12 | 529 | 349 | e390 | e230 | e210 | 716 | 378 | 586 | 503 | 632 | 288 | 182 | | 13<br>14 | 505<br>487 | 380<br>3 <b>92</b> | 352<br>315 | e180<br>e130 | e230<br>e290 | 699<br>690 | 438<br>515 | 565<br>556 | 858<br>2110 | 631<br>714 | 940<br>485 | 177<br>172 | | 15 | 498 | 388 | 285 | e120 | e350 | 678 | 569 | 548 | 3590 | 890 | 398 | 165 | | 16 | 499 | 374 | 354 | e150 | e470 | 646 | 547 | 529 | 1540 | 845 | 352 | 161 | | 17 | 485 | 371 | 396 | e140 | e430 | 603 | 526 | 505 | 982 | 710 | 325 | 158 | | 18 | 468 | 375 | 384 | e120 | e660 | 568 | 506 | 487 | 1370 | 638 | 302<br>279 | 157 | | 19<br>20 | 459<br>450 | 375<br>370 | 3 <b>64</b><br>3 5 7 | e180<br>e160 | 4490<br>3100 | 539<br>521 | 489<br>473 | 471<br>457 | 1150<br>953 | 596<br>556 | 263 | 155<br>153 | | 21 | 441 | 367 | 323 | e200 | 1990 | 501 | 456 | 443 | 1310 | 521 | 248 | 154 | | 22 | 429 | 365 | e220 | e300 | 1480 | 484 | 450 | 436 | 1660 | 491 | 236 | 192 | | 23 | 424 | 364 | e240 | e430 | 1200 | 472 | 438 | 429 | 2680 | 466 | 225 | 266 | | 24<br>25 | 419<br>417 | 365<br>e86 | e270<br>e220 | e350<br>e240 | 990<br>823 | 449<br>429 | 430<br>428 | 423<br>421 | 3820<br>3770 | 441<br>417 | 214<br>211 | <b>234</b><br>221 | | 26 | 410 | e90 | e190 | e200 | 622 | 426 | 513 | 417 | 2880 | 390 | 214 | 204 | | 27 | 400 | e190 | e 94 | e180 | 601 | 415 | 499 | 410 | 1610 | 370 | 207 | 190 | | 28 | 402 | e320 | e110 | e190 | 565 | 406 | 490 | 401 | 1270 | 351 | 201 | 185 | | 29<br>30 | 399<br>388 | e350<br>e380 | e180<br>e300 | e160<br>e120 | | 392<br>378 | 5 62<br>637 | 396<br>387 | 1110<br>982 | 338<br>324 | 197<br>191 | 180<br>176 | | 31 | 377 | | e380 | e140 | | 373 | | 370 | | 312 | 188 | | | TOTAL | 13802 | 10213 | 9714 | 6230 | 20921 | 28511 | 13332 | 16771 | 39462 | 19672 | 8828 | 5733 | | MEAN | 445 | 340 | 313 | 201 | 747 | 920 | 444 | 541 | 1315 | 635 | 285 | 191 | | MAX | 562<br>377 | 392 | 400<br>94 | 430 | 4490 | 4300<br>373 | 637<br>348 | 737 | 3820<br>338 | 890<br>312 | 940<br>188 | 266<br>153 | | MIN<br>AC-FT | 27380 | 86<br>20260 | 19270 | 120<br>12360 | 150<br>41500 | 56550 | 26440 | 370<br>33270 | 78270 | 39020 | 17510 | 11370 | | CESM | .50 | .38 | .35 | .23 | .84 | 1.04 | .50 | .61 | 1.48 | .72 | .32 | .22 | | IN. | .58 | .43 | .41 | .26 | .88 | 1.20 | .56 | .70 | 1.66 | .83 | .37 | .24 | | STATIST | rics of M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1936 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 94.7 | 94.9 | 67.5 | 50.3 | 334 | 527 | 395 | 279 | 497 | 287 | 146 | 127 | | MAX | 617 | 804 | 366 | 359 | 9935 | 2080 | 2715 | 1393 | 2897 | 2196 | 1151 | 1353 | | (WY) | 1993 | 1980 | 1980 | 1973 | 1985 | 1979 | 1969 | 1984 | 1984 | 1993 | 1951 | 1951 | | MIN<br>(WY) | 4.55<br>1959 | 4.54<br>1959 | 3.05<br>1959 | 1.63<br>1959 | 1.62<br>1959 | 21.5<br>1964 | 18.7<br>1959 | 15.1<br>1968 | 14.4<br>1968 | 7.32<br>1936 | 6.12<br>1958 | 3.40<br>1958 | | SUMMARY | STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 W | ATER YEAR | | WATER YE | ARS 1936 | - 1994 | | ANNUAL | TOTAL | | | 317189 | | | 193189 | | | | | | | | MEAN<br>'ANNUAL M<br>ANNUAL M | | | 869 | | | 529 | | | 227<br>958<br>19.9 | | 1983<br>1956 | | | DAILY M | | | 8610 | Mar 29 | | 4490 | Feb 19 | | 32400 | Jun | 8 1953 | | LOWEST | DAILY ME | AN | | 86 | Nov 25 | | 86 | Nov 25 | | .90 | Jan | 10 1977 | | | | MUMINIM Y | | 112 | Feb 23 | | 143 | Jan 14 | | .90 | | 10 1977 | | | ANEOUS PI | | | | | | e5900 | Feb 19 | | 71500 | Jun | 8 1953 | | INSTANT<br>ANNUAL | | EAK STAGE<br>AC-FT) | | 629100 | | | unknown<br>383200 | Feb 19 | | 25.30<br>164600 | Jun | 8 1953 | | | RUNOFF ( | | | .9 | 8 | | .6 | 0 | | .26 | | | | ANNUAL | RUNOFF ( | INCHES) | | 13.3 | | | 8.13 | | | 3.48 | | | | | ENT EXCE | | | 1760 | | | 866 | | | 502 | | | | | ENT EXCE | | | 494 | | | 380 | | | 68 | | | | 90 PERC | ENT EXCE | รบร | | 195 | | | 181 | | | 11 | | | e Estimated. #### 06601200 MISSOURI RIVER AT DECATUR, NE LOCATION.--Lat 42°00'26", long 96°14'29", in NE1/4 SW1/4 sec.36, T.24 N., R.10 E., Burt County, Hydrologic Unit 10230001, on right bank 0.1 mi upstream from Iowa Highway 175 bridge at Decatur, and at mile 691.0. DRAINAGE AREA.--316,200 mi<sup>2</sup>, approximately. The 3,959 mi<sup>2</sup> in Great Divide basin are not included. PERIOD OF RECORD .-- October 1987 to current year. GAGE.--Water-stage encoder. Datum of gage is 1,010.00 ft above sea level, supplementary adjustment of 1954. FOR 1993 CALENDAR YEAR Jul 16 Jan REMARKS.--Estimated daily discharges: Feb. 19-28 and Mar. 4-10. Records good, except those for estimated discharge which are poor. Flow regulated by upstream main-stem reservoirs. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES OCT DAY NOV DEC JUN JUL AUG SEP JAN FEB MAR APR MAY 25700 27500 21100 21100 24900 32400 37400 36800 33600 32800 25400 21100 7 21000 20100 35900 33500 31500 32 60 0 32 70 0 26500 A42000 e41800 15 17 29100 26400 21700 34700 39700 32100 e32900 e39400 22 25700 25300 20900 22200 22700 32900 31700 38700 32900 A35500 e30900 31900 e30200 25 e26500 e25500 e24000 27 21500 32500 37300 29 e26900 37700 31900 32300 TOTAL 28400 21700 23300 39400 43600 48300 MEAN MAX MIN AC-FT 1627000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 1994, BY WATER YEAR (WY) MEAN 1994 12360 1994 12210 1994 25700 MAX (WY) 1989 1988 1994 1994 1994 1994 1993 12070 MIN (WY) FOR 1994 WATER YEAR Jun 18 Jan Jun 27.70 WATER YEARS 1988 - 1994 Jul 16 1993 Dec 22 1990 Dec 12 1990 Jul 16 1993 Jul 16 32.10 SUMMARY STATISTICS HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL TOTAL ANNUAL MEAN e Estimated. #### 06602020 WEST FORK DITCH AT HORNICK, IA LOCATION.—Lat 42°13'37", long 96°04'40", in SW1/4 sec.27, T.86 N., R.45 W., Woodbury County, Hydrologic Unit 10230004, on left bank at upstream side of State Highway 141 bridge, 1.0 mi east of Hornick, 9.2 mi upstream from Wolf Creek, and 13.5 mi north of Onawa. DRAINAGE AREA.--403 mi<sup>2</sup>. PERIOD OF RECORD. -- April 1939 to September 1969 (published as "at Holly Springs"), July 1974 to current year. REVISED RECORDS.--WSP 1240: 1943, 1945 (M). WSP 1310: 1941 (M) 1944-46 (M). WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,045.82 ft above sea level. Prior to June 16, 1959, nonrecording gage at site 3.0 mi upstream and June 16, 1959 to Sept. 30, 1969, recording gage at site 2.2 mi upstream at datum 7.0 ft higher. REMARKS.--Estimated daily discharges: Nov. 25 to Feb. 18, Feb. 24 to Mar. 3, and Aug. 30, 31. Records good except those for estimated daily discharges, which are poor. West Fork ditch is a dredged channel which diverts flow of West Fork Little Sioux River at Holly Springs 5.5 mi south, then southeast 6.5 mi to a point 1.2 mi west of Kennebec, where Wolf Creek enters from left. From this point, ditch roughly parallels the Little Sioux River and is known as Monona-Harrison ditch. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. | | DI | SCHARGE | , CUBIC F | EET PER | | VATER Y<br>MEAN V | | BER 1993 | TO SEP | TEMBER 199 | 4 | | |-------------------|-------------------------|-----------------|--------------|--------------|---------------|-------------------|-----------------|--------------|---------------|-----------------|--------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 207 | 196 | e230 | e180 | e88 | e270 | 172 | 224 | 141 | 342 | 160 | 106 | | 2 | 198 | 195 | e220 | e130 | e100 | e350 | 171 | 220 | 147 | 320 | 152 | 107 | | 3<br>4 | 189<br>187 | 194 | e200<br>e180 | e100 | e94<br>e120 | e500<br>1430 | 171 | 214 | 143 | 300<br>339 | 174 | 103<br>165 | | 5 | 181 | 192<br>190 | e170 | e131<br>e140 | e200 | 1110 | 170<br>171 | 211<br>216 | 142<br>159 | 352 | 192<br>166 | 161 | | 6 | 177 | 184 | e170 | e120 | e160 | 645 | 170 | 227 | 160 | 1100 | 160 | 129 | | ž | 177 | 186 | e160 | e84 | e130 | 415 | 171 | 238 | 151 | 594 | 150 | 109 | | 8 | 191 | 185 | e140 | e90 | e130 | 299 | 168 | 236 | 144 | 417 | 293 | 110 | | . 9 | 293 | 181 | e160 | e100 | e100 | 260 | 164 | 226 | 139 | 325 | 203 | 108 | | 10 | 295 | 180 | e140 | e150 | e120 | 243 | 163 | 217 | 149 | 288 | 173 | 104 | | 11<br>12 | 259 | 179<br>176 | e120 | e110 | e140 | 229 | 160 | 207<br>201 | 150<br>155 | 270<br>267 | 165<br>222 | 100<br>95 | | 13 | 245<br>234 | 194 | e140<br>e160 | e135<br>e90 | e120<br>e130 | 222<br>221 | 174<br>207 | 197 | 661 | 401 | 290 | 95 | | 14 | 227 | 198 | e170 | e76 | e160 | 219 | 206 | 202 | 786 | 347 | 212 | 94 | | 15 | 248 | 183 | e160 | e72 | e200 | 218 | 197 | 202 | 317 | 296 | 176 | 92 | | 16 | 279 | 179 | e190 | e86 | e270 | 214 | 188 | 192 | 252 | 340 | 161 | 90 | | 17 | 263 | 179 | e230 | e78 | e250 | 204 | 180 | 183 | 229 | 322 | 154 | 88 | | 18 | 253 | 178 | e250 | e72 | e660 | 200 | 176 | 177 | 1290 | 266 | 150 | 87 | | 19<br>20 | 244 | 178 | e270 | e110 | 6000 | 196 | 174 | 172 | 539 | 251<br>240 | 144<br>137 | 86<br>86 | | | 242 | 173 | e250 | e89 | 2540 | 193 | 171 | 167 | 347 | | | | | 21 | 235 | 171 | e220 | e110 | 955 | 193 | 170 | 163 | 502 | 229 | 131 | 86 | | 22<br>23 | 226<br>223 | 170<br>169 | e130 | e170 | 558<br>483 | 188<br>185 | 169<br>167 | 162<br>161 | 363<br>1250 | 216<br>210 | 127<br>123 | 126<br>525 | | 23<br>24 | 222 | 115 | e140<br>e150 | e250<br>e200 | e170 | 185 | 165 | 160 | 2480 | 199 | 118 | 423 | | 25 | 218 | e35 | e120 | e133 | e180 | 183 | 165 | 158 | 927 | 191 | 136 | 235 | | 26 | 211 | e37 | e110 | e120 | e170 | 181 | 181 | 158 | 663 | 183 | 141 | 194 | | 27 | 206 | e70 | e54 | e100 | e180 | 182 | 187 | 154 | 546 | 177 | 130 | 172 | | 28 | 205 | e150 | e60 | e110 | e210 | 182 | 180 | 148 | 470 | 174 | 129 | 160 | | 29 | 204 | e190 | e100 | e90 | | 179 | 234 | 150 | 411 | 164<br>159 | 116 | 150<br>148 | | 30<br>31 | 196<br>195 | e240 | e170<br>e220 | e72<br>e80 | | 176<br>172 | 230 | 151<br>144 | 371 | 157 | el10<br>el05 | | | TOTAL | 6930 | 5047 | 5184 | 3578 | 14618 | 9644 | 5372 | 5838 | 14184 | 9436 | 5000 | 4334 | | MEAN | 224 | 168 | 167 | 115 | 522 | 311 | 179 | 188 | 473 | 304 | 161 | 144 | | MAX | 295 | 240 | 270 | 250 | 6000 | 1430 | 234 | 238 | 2480 | 1100 | 293 | 525 | | MIN | 177 | 35 | 54 | 72 | 88 | 172 | 160 | 144 | 139 | 157 | 105 | 86 | | AC-FT<br>CFSM | 13750<br>.55 | 10010<br>.42 | 10280<br>.41 | 7100<br>.29 | 28990<br>1.30 | 19130<br>.77 | 10660 | 11580<br>.47 | 28130<br>1.17 | 18720<br>.76 | 9920<br>.40 | 8600<br>.36 | | IN. | .64 | .47 | .48 | .33 | 1.35 | .89 | .44<br>.50 | .54 | 1.31 | .87 | .46 | .40 | | STATIS | TICS OF MC | ONTHLY ME | AN DATA F | OR WATER | YEARS 1974 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 83.0 | 83.2 | 69.9 | | 109 | 250 | 231 | 203 | 324 | 166 | 104 | 77.4 | | MAX | 369 | 281 | 199 | 49.4<br>115 | 522 | 633 | 772 | 203<br>585 | 2131 | 561 | 327 | 260 | | (WY) | 1993 | 1980 | 1985 | 1994 | 1994 | 1979 | 1983 | 1983 | 1984 | 1993 | 1993 | 1993 | | MIN | 14.8 | 16.2 | 6.61 | 2.86 | 11.0 | 29.7 | 21.7 | 23.1 | 34.7 | 22.7 | 16.7 | 13.4 | | (WY) | 1977 | 1977 | 1979 | 1977 | 1979 | 1981 | 1977 | 1977 | 1989 | 1976 | 1976 | 1976 | | SUMMARY | Y STATIST | ICS | FOR : | 1993 CALE | NDAR YEAR | E | OR 1994 WAT | TER YEAR | | WATER YEA | RS 1974 | - 1994 | | ANNUAL | | | | 121294 | | | 89165 | | | | | | | ANNUAL | | | | 332 | | | 244 | | | 147 | | 3.004 | | | I ANNUAL N<br>ANNUAL ME | | | | | | | | | 367<br>29.9 | | 1984<br>1977 | | | ANNUAL ME<br>DAILY ME | | | 4490 | Mar 28 | | 6000 | Feb 19 | | 7690 | Jun | 17 1984 | | | DAILY MEA | | | 35 | Nov 25 | | 35 | Nov 25 | | 2.0 | | 18 1977 | | ANNUAL | SEVEN-DAY | MUMINIM Y | | 59 | Feb 22 | | 83 | Jan 14 | | 2.0 | Jan 1 | 18 1977 | | | PANEOUS PE | | | | | | 6740 | Feb 19 | | 12400 | Mar | 28 1962 | | INSTANT<br>ANNUAL | PANEOUS PE | | | 240600 | | | 21.28<br>176900 | Feb 19 | | 25.20<br>106300 | Mar | 30 1960 | | ANNUAL | | AC-FT)<br>CFSM) | | 240600 | 2 | | .61 | | | .36 | | | | | RUNOFF (I | | | 11.2 | ō | | 8.23 | | | 4.95 | | | | 10 PERC | CENT EXCEE | EDS | | 626 | | | 341 | | | 290 | | | | | CENT EXCES | | | 240 | | | 179 | | | 72 | | | | 90 PERC | CENT EXCEE | លន | | 100 | | | 102 | | | 18 | | | e Estimated. ### 06602400 MONONA-HARRISON DITCH NEAR TURIN, IA LOCATION.--Lat 41°57'52", long 95°59'30", in NW1/4 NE1/4 sec.32, T.83 N., R.44 W., Monona County, Hydrologic Unit 10230004, on left pier at downstream side of bridge on county highway E54, 1.0 mi west of gaging station on Little Sioux River near Turin, 4 mi southwest of Turin, 5.2 mi northeast of Blencoe, and 12.5 mi upstream from mouth. DRAINAGE AREA.--900 mi<sup>2</sup>. DRAINAGE AREA.--900 mi². PERIOD OF RECORD.--April 1939 to current year. Records for April 1939 to January 1958 not equivalent owing to diversion from Little Sioux River through equalizer ditch 1.5 mi upstream. Records prior to 1950 not equivalent owing to diversion between Little Sioux River through diversion ditch 10.2 mi upstream. Prior to May 1942, published as "near Blencoe". GAGE.--Water-stage encoder. Datum of gage is 1,015.00 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to May 7, 1942, nonrecording gage at site 4.8 mi downstream at datum 5.40 ft lower. May 7, 1942 to Oct. 13, 1953, nonrecording gage and Oct. 14, 1953 to Sept. 30, 1975, recording gage at same site at datum 5.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 25 to Dec. 9, Dec. 21 to Jan. 27, Jan. 29 to Feb. 4, Feb. 7-14, Feb. 23 to Mar. 1, Apr. 10-15, June 24-27, and July 6-8. Records fair except those for estimated daily discharges, which are poor. Monona-Harrison ditch is a dug channel and is a continuation of West Fork Ditch, paralleling the Little Sioux River, and discharging into the Missouri River 1.5 mi upstream from the mouth of the Little Sioux River. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. DISCHARGE CURIC EEET DED SECOND WATER VEAR OCTORER 1002 TO SERVEMBER 1004 | | DI | SCHARGE | , CUBIC | FEET PER | SECOND, V<br>DAILY | WATER Y<br>MEAN V | ÆAR OCTO<br>ALUES | DBER 1993 | TO SEP | TEMBER 19 | 94 | | |------------|-------------------|-------------|--------------------|-----------------------|--------------------------------|-------------------|--------------------|------------|--------------------|---------------------|--------------------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 328 | 334 | e300 | e210 | e170 | e400 | 275 | 356 | 184 | 476 | 309 | 183 | | 2 | 320 | 332 | e300 | e190 | e190 | 469 | 271 | 346 | 195 | 448 | 301 | 185 | | 3 | 303 | 333 | e290 | e180 | e180 | 686 | 268 | 330 | 194 | 430 | 274 | 180 | | 4 | 299 | 332 | e270 | e200 | e200 | 1910 | 264 | 315 | 187 | 466 | 403 | 433 | | 5 | 298 | 323 | e260 | e220 | 224 | 1880 | 266 | 316 | 427 | 543 | 297 | 550 | | 6<br>7 | 297<br>293 | 310<br>306 | e270<br>e270 | e200<br>e170 | 202<br>e180 | 1120<br>734 | 25 <b>4</b><br>257 | 326<br>356 | 428<br>275 | e1800<br>e2400 | 259<br>239 | 333<br>248 | | 8 | 296 | 323 | e2 60 | e180 | e180 | 554 | 261 | 354 | 236 | e1700 | 353 | 216 | | ğ | 945 | 323 | e270 | e190 | e170 | 480 | 250 | 333 | 222 | 1120 | 528 | 200 | | 10 | 709 | 327 | 2 <b>95</b> | e240 | e190 | 447 | e245 | 318 | 211 | 839 | 324 | 187 | | 11 | 489 | 324 | 271 | e220 | e230 | 426 | e240 | 302 | 276 | 683 | 307 | 177 | | 12 | 425 | 334 | 264 | e230 | e210 | 409 | e270 | 289 | 516 | 602 | 294 | 168 | | 13 | 395 | 361 | 329 | e190 | e210 | 403 | e330 | 287 | 835 | 815 | 577 | 166 | | 14<br>15 | 372<br>412 | 374<br>342 | 314<br>289 | e160<br>e150 | e220<br>210 | 396<br>395 | e300<br>e310 | 291<br>296 | 1210<br><b>494</b> | 881<br>5 <b>6</b> 4 | 467<br>338 | 162<br>160 | | | | | | | | | | | | | | | | 16<br>17 | 499<br>455 | 333<br>322 | 348<br>346 | e170<br>e1 <b>6</b> 0 | 209<br>294 | 390<br>373 | 288<br>2 <b>69</b> | 280<br>271 | 348<br>310 | 488<br>633 | 297<br>272 | 152<br>151 | | 18 | 421 | 322 | 365 | e150 | 911 | 357 | 259 | 258 | 1110 | 451 | 259 | 151 | | 19 | 404 | 318 | 369 | e200 | 6760 | 350 | 249 | 250 | 1530 | 418 | 242 | 153 | | 20 | 390 | 312 | 348 | e180 | 4940 | 354 | 245 | 245 | 523 | 3 <b>9</b> 5 | 231 | 148 | | 21 | 380 | 306 | e260 | e210 | 2160 | 337 | 250 | 237 | 612 | 389 | 218 | 148 | | 22 | 368 | 304 | e160 | e240 | 1010 | 324 | 248 | 230 | 594 | 367 | 214 | 232 | | 23 | 364 | 292 | e170 | e260 | e500 | 317 | 231 | 220 | 629 | 346 | 209 | 1400 | | 24<br>25 | 360<br>353 | 277<br>e100 | e240<br>e200 | e240<br>e220 | e2 <b>8</b> 0<br>e2 <b>9</b> 0 | 314<br>298 | 234<br>243 | 216<br>209 | e2650<br>e1700 | 329<br>314 | 1 <b>96</b><br>203 | 1360<br>627 | | 26 | 350 | e110 | e190 | e220 | e280 | 295 | 245 | 214 | e1100 | 309 | 251 | 420 | | 27 | 352 | e160 | e100 | e210 | e290 | 293<br>298 | 290 | 214 | e700 | 293 | 219 | 350 | | 28 | 346 | e220 | e110 | 278 | e330 | 292 | 263 | 199 | 599 | 283 | 209 | 320 | | 29 | 342 | e260 | e170 | e200 | | 290 | 369 | 208 | 543 | 277 | 193 | 289 | | 30 | 327 | e290 | e200 | e150 | | 282 | 389 | 205 | 503 | 272 | 185 | 274 | | 31 | 327 | | e220 | e160 | | 274 | | 188 | | 267 | 195 | | | TOTAL | 12219 | 8904 | 8048 | 6178 | 21220 | 15854 | 8154 | 8461 | 19341 | 19598 | 8863 | 9723 | | MEAN | 394 | 297<br>374 | 260<br>3 <b>69</b> | 199 | 758 | 511 | 272 | 273 | 645<br>2650 | 632<br>2400 | 286<br>577 | 324 | | MAX<br>MIN | 945<br>293 | 100 | 100 | 278<br>150 | 6760<br>170 | 1910<br>274 | 3 <b>89</b><br>231 | 356<br>188 | 184 | 2400<br>267 | 185 | 1400<br>148 | | AC-FT | 24240 | 17660 | 15960 | 12250 | 42090 | 31450 | 16170 | 16780 | 38360 | 38870 | 17580 | 19290 | | CFSM | .44 | .33 | .29 | .22 | .84 | .57 | .30 | .30 | .72 | .70 | .32 | .36 | | IN. | .51 | .37 | .33 | .26 | .88 | .66 | .34 | .35 | .80 | .81 | .37 | .40 | | STATIST | rics of M | ONTHLY MEA | N DATA F | OR WATER | YEARS 1940 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 2 <b>2</b> 5 | 184 | 141 | 120 | 425 | 938 | 769 | 622 | 1129 | 687 | 425 | 302 | | MAX | 2254 | 1197 | 1072 | 1101 | 3851 | 4836 | 7406 | 4788 | 7210 | 4420 | 4978 | 4321 | | (WY) | 1952 | 1952 | 1952 | 1952 | 1952 | 1952 | 1951 | 1951 | 1954 | 1951 | 1951 | 1951 | | MIN | 16.0 | 18.0 | 11.4 | 10.5 | 13.9 | 46.9 | 41.1 | 43.7 | 71.8 | 46.1 | 8.87 | 20.5 | | (WY) | 1959 | 1959 | 1959 | 1959 | 1959 | 1968 | 1968 | 1968 | 1989 | 1976 | 1941 | 1958 | | SUMMARY | STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1940 | - 1994 | | ANNUAL | | | | 274553 | | | 146563 | | | | | | | ANNUAL | MEAN<br>'ANNUAL I | MERN | | 752 | | | 402 | | | 497<br>2940 | | 1951 | | | ANNUAL M | | | | | | | | | 55.5 | | 1968 | | | DAILY M | | | 6510 | Mar 27 | | 6760 | Feb 19 | | 18900 | Jun 2 | 20 1954 | | | DAILY ME | | | 100 | Feb 24 | | 100 | Nov 25 | | 3.0 | | 8 1941 | | ANNUAL | SEVEN-DA | MUMINIM Y | | 120 | Feb 23 | | 152 | Sep 15 | | 5.0 | Sep | 2 1941 | | | ANEOUS P | | | | | | 7370 | Feb 19 | | 19900 | | 19-1971 | | | RUNOFF ( | EAK STAGE | | 544600 | | | 20.80<br>290700 | Feb 19 | | 28.03<br>360100 | Feb 1 | 19 1971 | | ANNUAL | RUNOFF ( | CFSM) | | .84 | 4 | | .45 | | | .55 | | | | ANNUAL | RUNOFF ( | INCHES) | | 11.3 | 5 | | 6.06 | | | 7.50 | | | | | ENT EXCE | | | 1540 | | | 596 | | | 1160 | | | | | ENT EXCEI | | | 418 | | | 294 | | | 141<br>39 | | | | JU PERC | ENI BACEI | ens. | | 190 | | | 182 | | | 33 | | | e Estimated. #### LITTLE SIOUX RIVER BASIN ### 06604000 SPIRIT LAKE NEAR ORLEANS, IA LOCATION.--Lat 43°28'11", long 95°07'25", in NE1/4 NW1/4 sec.20, T.100N., R.36W., Dickinson County, Hydrologic Unit 10230003, 2.3 mi upstream from lake outlet and 2.3 mi northwest of Orleans. DRAINAGE AREA.--75.6 mi<sup>2</sup>. PERIOD OF RECORD.--May 1933 to September 1975 (fragmentary prior to 1951), April 1990 to current year. Prior to October 1949, published as "at Orleans". GAGE.--Water-stage recorder. Datum of gage is 1,387.25 ft above sea level, 90.0 ft above Iowa Lake Survey datum, and 14.2 ft below crest of spillway. Prior to July 6, 1950, non-recording gage or water-stage recorder at various sites near outlet, all at present datum. REMARKS.--No gage height record Oct. 3 to Nov. 8, Nov. 26 to Dec. 31, Jan. 20-25, and Sept. 9-27. Lake formed by concrete dam with ungated spillway at elevation 1,401.4 ft above sea level. Dam constructed in 1969. A previous outlet works had been constructed in 1944. Lake is used for conservation and recreation. EXTREMES FOR PERIOD OF RECORD.-Maximum gage height, 18.79 ft July 17-20, 1993; minimum observed, 6.75 ft Oct. 20, 1935. EXTREMES FOR CURRENT YEAR.-Maximum gage height, 15.54 ft June 23; minimum, 13.78 ft Sept. 30. ## GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | 1 14.73 14.29 14.21 14.23 14.72 15.27 14.58 15.33 14.50 14.41 2 14.71 14.29 14.21 14.20 14.70 15.15 14.59 15.28 14.49 14.44 3 14.29 14.21 14.17 14.69 15.07 14.59 15.24 14.48 14.43 4 14.28 14.21 14.13 14.70 14.92 14.57 15.22 14.48 14.43 5 14.28 14.21 14.19 14.73 14.90 14.76 15.21 14.43 14.50 6 14.28 14.21 14.31 14.73 14.95 14.80 15.20 14.39 14.49 7 14.28 14.21 14.33 14.73 14.95 14.80 15.20 14.39 14.49 7 14.28 14.21 14.33 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-----|-------|--------|--------|--------|--------|--------|--------|--------|-------| | 2 14.71 14.29 14.21 14.20 14.70 15.15 14.59 15.28 14.49 14.44 3 14.29 14.21 14.17 14.69 15.07 14.59 15.24 14.48 14.43 4 14.28 14.21 14.13 14.70 14.92 14.57 15.22 14.46 14.49 5 14.28 14.21 14.19 14.73 14.90 14.76 15.21 14.43 14.50 6 14.28 14.21 14.19 14.73 14.90 14.76 15.21 14.43 14.50 7 14.28 14.21 14.31 14.73 14.95 14.80 15.20 14.39 14.49 7 14.28 14.21 14.43 14.73 14.92 14.82 15.14 14.37 14.48 8 14.28 14.21 14.43 14.73 14.95 15.06 14.37 14.48 9 14.36 14.28 14.21 14.40 14.72 14.73 14.88 15.06 14.37 14.36 14.28 14.21 14.37 14.72 14.73 14.79 14.78 15.02 14.52 11 14.36 14.24 14.20 14.37 14.72 14.73 14.74 15.02 14.52 11 14.36 14.24 14.20 14.33 14.72 14.68 14.73 14.99 14.58 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.58 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14.36 14.24 14.20 14.37 15.33 14.71 15.05 14.88 14.61 14.36 14.24 14.20 14.37 15.33 14.71 15.05 14.88 14.61 14.36 14.24 14.20 14.77 15.33 14.71 15.05 14.88 14.60 14.36 14.24 14.20 14.77 15.33 14.71 15.05 14.88 14.60 14.36 14.24 14.20 14.73 15.22 14.71 15.13 14.81 14.60 14.36 14.24 14.20 14.73 15.22 14.71 15.13 14.81 14.60 14.36 14.24 14.20 14.73 15.22 14.71 15.13 14.81 14.60 14.36 14.24 14.20 14.77 15.21 14.71 15.13 14.81 14.60 14.36 14.24 14.20 14.77 15.21 14.71 15.31 14.79 14.60 14.36 14.24 14.20 14.77 15.21 14.71 15.31 14.79 14.60 14.36 14.24 14.20 14.77 15.21 14.71 15.13 14.79 14.60 14.36 14.24 14.20 14.73 15.22 14.71 15.13 14.81 14.60 14.36 14.24 14.20 14.77 15.21 14.71 15.05 14.88 14.60 14.36 14.24 14.20 14.77 15.21 14.71 15.01 14.79 14.60 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | 14 72 | | | 14 20 | 44 44 | 44 00 | 14 50 | 45 00 | 44.50 | 45 22 | 14 50 | 14 41 | | 3 14.29 14.21 14.17 14.69 15.07 14.59 15.24 14.48 14.43 4 14.28 14.21 14.13 14.70 14.92 14.57 15.22 14.46 14.49 14.49 14.73 14.90 14.76 15.21 14.43 14.59 14.78 14.99 14.76 15.21 14.43 14.59 14.78 14.99 14.76 15.21 14.43 14.59 14.80 15.20 14.39 14.49 14.79 14.79 14.80 15.20 14.39 14.49 14.21 14.43 14.73 14.92 14.82 15.14 14.37 14.48 14.21 14.43 14.73 14.92 14.82 15.14 14.37 14.48 14.21 14.40 14.73 14.92 14.82 15.19 14.36 14.37 14.48 14.21 14.40 14.72 14.79 14.78 15.06 14.37 14.28 14.21 14.37 14.40 14.72 14.79 14.78 15.06 14.37 14.36 14.28 14.21 14.37 14.72 14.73 14.74 15.02 14.52 14.36 14.24 14.20 14.37 14.72 14.73 14.74 15.02 14.52 14.36 14.24 14.20 14.37 15.31 14.68 14.73 14.99 14.58 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 14.36 14.24 14.20 14.73 15.34 14.70 15.05 14.88 14.60 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 14.23 14.20 14.73 15.22 14.71 15.31 14.81 14.60 14.23 14.23 14.20 14.73 15.22 14.71 15.31 14.81 14.60 14.23 14.23 14.27 14.74 15.21 14.77 15.31 14.81 14.60 14.23 14.27 14.23 14.77 15.21 14.77 15.31 14.77 14.60 14.23 14.77 15.21 14.77 15.31 14.77 14.70 15.05 14.28 14.70 15.05 14.88 14.60 14.23 14.20 14.73 15.22 14.71 15.31 14.81 14.60 14.23 14.17 14.74 15.21 14.77 15.31 14.77 14.60 14.23 14.77 15.21 14.77 15.31 14.77 14.70 15.00 14.26 14.23 14.27 14.77 15.21 14.77 15.31 14.77 14.60 14.26 14.23 14.17 14.74 15.21 14.77 15.31 14.79 14.60 14.23 14.17 14.74 15.21 14.77 15.31 14.77 14.60 14.23 14.17 14.77 15.21 14.77 15.31 14.77 14.60 | | | | | | | | | | | | | | | 4 14.28 14.21 14.13 14.70 14.92 14.57 15.22 14.46 14.49 5 14.28 14.21 14.19 14.73 14.90 14.76 15.21 14.43 14.50 6 14.28 14.21 14.31 14.73 14.95 14.80 15.20 14.39 14.49 7 14.28 14.21 14.43 14.73 14.82 15.14 14.37 14.48 8 14.28 14.21 14.43 14.73 14.82 15.14 14.37 14.48 9 14.36 14.28 14.21 14.40 14.72 14.79 14.78 15.06 14.37 10 14.36 14.27 14.21 14.40 14.72 14.79 14.78 15.06 14.37 11 14.36 14.24 14.20 14.33 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | | | | | | 5 14.28 14.21 14.19 14.73 14.90 14.76 15.21 14.43 14.50 6 14.28 14.21 14.31 14.73 14.95 14.80 15.20 14.39 14.49 7 14.28 14.21 14.43 14.73 14.92 14.82 15.14 14.37 14.48 8 14.28 14.21 14.43 14.73 14.88 14.82 15.09 14.36 14.47 9 14.36 14.28 14.21 14.40 14.72 14.79 14.78 15.06 14.37 10 14.36 14.27 14.21 14.37 14.72 14.73 14.74 15.02 14.52 11 14.36 14.24 14.20 14.33 14.72 14.69 14.70 15.00 14.54 12 14.36 14.24 14.20 14.30 14.97 14.68 15.07 14.96 14.58 14 14.36 14.24 14.20 14.37 15.34 14.69 14.73 14.99 14.58 14 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 16 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 17 14.36 14.24 14.20 14.73 15.22 14.71 15.05 14.88 14.60 16 14.36 14.24 14.20 14.73 15.22 14.71 15.05 14.81 14.60 17 14.36 14.24 14.20 14.73 15.22 14.71 15.05 14.83 14.60 17 14.36 14.24 14.20 14.73 15.22 14.71 15.05 14.83 14.60 18 14.36 14.24 14.20 14.73 15.22 14.71 15.05 14.83 14.60 18 14.36 14.24 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.20 14.73 15.21 14.71 15.31 14.81 14.60 18 14.36 14.23 14.20 14.73 15.21 14.71 15.31 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | | | | | | | | | | | | | | 6 14.28 14.21 14.31 14.73 14.95 14.80 15.20 14.39 14.49 7 14.28 14.21 14.43 14.73 14.92 14.82 15.14 14.37 14.48 8 14.28 14.21 14.43 14.73 14.88 14.82 15.09 14.36 14.47 9 14.36 14.28 14.21 14.40 14.72 14.79 14.78 15.06 14.37 10 14.36 14.27 14.21 14.37 14.72 14.73 14.74 15.02 14.52 11 14.36 14.24 14.20 14.33 14.72 14.69 14.70 15.00 14.54 12 14.36 14.24 14.20 14.33 14.97 14.68 15.07 14.99 14.58 13 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 16 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 17 14.36 14.24 14.20 14.73 15.22 14.71 15.13 14.81 14.60 17 14.36 14.23 14.20 14.73 15.21 14.71 15.13 14.81 14.60 18 14.36 14.23 14.20 14.73 15.21 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.13 14.81 14.60 | | | | | | | | | | | | | | | 7 14.28 14.21 14.43 14.73 14.82 15.14 14.37 14.48 8 14.28 14.21 14.40 14.73 14.88 14.82 15.09 14.36 14.37 14.48 14.21 14.40 14.72 14.79 14.78 15.00 14.36 14.37 14.21 14.37 14.79 14.78 15.02 14.52 14.36 14.24 14.20 14.37 14.72 14.73 14.74 15.02 14.52 12 14.36 14.24 14.20 14.33 14.72 14.68 14.73 14.99 14.58 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.61 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 14.36 14.23 14.20 14.73 15.21 14.71 15.31 14.79 14.60 14.36 14.23 14.20 14.73 15.21 14.71 15.31 14.79 14.60 14.26 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 14.28 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | 2 | | | | 14.28 | 14.21 | 14.19 | 14.73 | 14.90 | 14.76 | 15.21 | 14.43 | 14.50 | | 8 14.28 14.21 14.43 14.73 14.88 14.82 15.09 14.36 14.47 9 14.36 14.28 14.21 14.40 14.72 14.79 14.78 15.06 14.37 10 14.36 14.27 14.31 14.72 14.73 14.74 15.02 14.52 11 14.36 14.24 14.20 14.33 14.72 14.69 14.70 15.00 14.54 12 14.36 14.24 14.20 14.30 14.97 14.68 14.73 14.99 14.58 13 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.98 14.61 14 14.36 <td< td=""><td></td><td></td><td></td><td></td><td>14.28</td><td>14.21</td><td>14.31</td><td></td><td>14.95</td><td>14.80</td><td>15.20</td><td></td><td></td></td<> | | | | | 14.28 | 14.21 | 14.31 | | 14.95 | 14.80 | 15.20 | | | | 9 14.36 14.28 14.21 14.40 14.72 14.79 14.78 15.06 14.37 10 14.36 14.27 14.21 14.37 14.72 14.73 14.74 15.02 14.52 11 14.36 14.24 14.20 14.33 14.72 14.69 14.70 15.00 14.54 12 14.36 14.24 14.20 14.30 14.97 14.68 14.73 14.99 14.58 14 14.36 14.24 14.20 14.37 15.34 14.68 15.07 14.96 14.61 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 15 14.36 14.24 14.20 14.73 15.33 14.71 15.05 14.88 14.61 16 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 17 14.36 14.24 14.22 14.72 15.29 14.71 15.03 14.81 14.60 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | ~~~ | | | | | 14.43 | 14.73 | 14.92 | 14.82 | | | | | 10 14.36 14.27 14.21 14.37 14.72 14.73 14.74 15.02 14.52 11 14.36 14.24 14.20 14.33 14.72 14.69 14.70 15.00 14.54 12 14.36 14.24 14.20 14.30 14.97 14.68 14.73 14.99 14.58 13 14.36 14.24 14.20 14.27 15.34 14.68 15.07 14.96 14.61 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 16 14.36 14.24 14.22 14.72 15.29 14.71 15.02 14.83 14.60 16 14.36 14.24 14.20 14.73 15.22 14.71 15.13 14.81 14.60 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | | | | 14.28 | 14.21 | 14.43 | 14.73 | 14.88 | 14.82 | 15.09 | 14.36 | 14.47 | | 11 14.36 14.24 14.20 14.33 14.72 14.69 14.70 15.00 14.54 13 14.36 14.24 14.20 14.30 14.97 14.68 14.73 14.99 14.58 13 14.36 14.24 14.20 14.27 15.34 14.68 15.07 14.96 14.61 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.61 16 14.36 14.24 14.22 14.72 15.33 14.71 15.02 14.83 14.60 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | | | | 14.28 | 14.21 | 14.40 | 14.72 | 14.79 | 14.78 | 15.06 | | | | 12 14.36 14.24 14.20 14.30 14.97 14.68 14.73 14.99 14.58 13 14.36 14.24 14.20 14.27 15.34 14.68 15.07 14.96 14.61 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 16 14.36 14.24 14.22 14.72 15.29 14.71 15.02 14.83 14.60 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | 10 | | 14.36 | | 14.27 | 14.21 | 14.37 | 14.72 | 14.73 | 14.74 | 15.02 | 14.52 | | | 12 14.36 14.24 14.20 14.30 14.97 14.68 14.73 14.99 14.58 13 14.36 14.24 14.20 14.27 15.34 14.68 15.07 14.96 14.61 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 16 14.36 14.24 14.22 14.72 15.29 14.71 15.02 14.83 14.60 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | 11 | | 14.36 | | 14.24 | 14.20 | 14.33 | 14.72 | 14.69 | 14.70 | 15.00 | 14.54 | | | 13 14.36 14.24 14.20 14.27 15.34 14.68 15.07 14.96 14.61 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.85 14.60 16 14.36 14.24 14.22 14.72 15.29 14.71 15.02 14.83 14.60 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | | | | | | | | | | | | | | 14 14.36 14.24 14.20 14.37 15.34 14.70 15.05 14.88 14.61 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.88 14.60 16 14.36 14.24 14.22 14.72 15.29 14.71 15.02 14.83 14.60 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | | | | | | | | | | | | | | 15 14.36 14.24 14.20 14.72 15.33 14.71 15.05 14.85 14.60 16 14.36 14.24 14.22 14.72 15.29 14.71 15.02 14.83 14.60 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | | | | | | | | | | | | | | 16 14.36 14.24 14.22 14.72 15.29 14.71 15.02 14.83 14.60 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | | | | | | | | | | | | | | 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | | | | | | | | | | | | | | | 17 14.36 14.23 14.20 14.73 15.22 14.71 15.13 14.81 14.60 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | 16 | | 14.36 | | 14.24 | 14.22 | 14.72 | 15.29 | 14.71 | 15.02 | 14.83 | 14.60 | | | 18 14.36 14.23 14.17 14.74 15.21 14.71 15.31 14.79 14.60 | 17 | | 14.36 | | 14.23 | 14.20 | 14.73 | 15.22 | | 15.13 | 14.81 | 14.60 | | | 19 14 36 14 23 14 20 14 74 15 18 14 60 15 33 14 77 14 60 | 18 | | 14.36 | | 14.23 | 14.17 | 14.74 | 15.21 | 14.71 | | 14.79 | 14.60 | | | | 19 | | 14.36 | | 14.23 | 14.20 | 14.74 | 15.18 | 14.69 | 15.33 | 14.77 | 14.60 | | | 20 14,36 14,22 14,74 15,11 14,68 15,38 14,75 14,58 | 20 | | 14.36 | | | 14.22 | | | | | 14.75 | 14.58 | | | | | | | | | | | | | | | | | | 21 14.36 14.41 14.75 15.06 14.66 15.39 14.73 14.57 | 21 | | 14.36 | | | 14.41 | 14.75 | 15.06 | 14.66 | 15.39 | 14.73 | 14.57 | | | 22 14,36 14,41 14,75 14,97 14,65 15,44 14,71 14,56 | 22 | | 14.36 | | | 14.41 | 14.75 | 14.97 | 14.65 | 15.44 | 14.71 | 14.56 | | | 23 14.37 14.37 14.75 14.86 14.66 15.53 14.69 14.54 | 23 | | 14.37 | | | 14.37 | 14.75 | 14.86 | | 15.53 | 14.69 | 14.54 | | | 24 14.37 14.33 14.75 14.81 14.72 15.53 14.67 14.54 | 24 | | 14.37 | | | | 14.75 | | | | 14.67 | 14.54 | | | 25 14.37 14.30 14.75 14.94 14.72 15.52 14.65 14.53 | 25 | | 14.37 | | | | 14.75 | | | | 14.65 | 14.53 | | | | | | | | | | | | | | | | | | 26 14.20 14.29 14.75 15.19 14.72 15.51 14.61 14.52 | 26 | | | | 14.20 | 14.29 | 14.75 | 15.19 | 14.72 | 15.51 | 14.61 | 14.52 | | | 27 14.20 14.27 14.74 15.19 14.69 15.47 14.58 14.51 | 27 | | | | 14.20 | | | | | | 14.58 | 14.51 | | | 28 14,21 14.26 14.74 15.19 14.68 15.43 14.56 14.50 13.84 | 28 | | | | 14.21 | | | | | | 14.56 | 14.50 | 13.84 | | 29 14.22 14.74 15.39 14.67 15.39 14.55 14.47 13.82 | | | | | | | | | | | | | | | 30 14.22 14.74 15.34 14.67 15.36 14.53 14.46 13.79 | | | | | | | | | | | | | | | 31 14.51 14.43 | | | | | | | | | | | | | | | 11.02 17.02 17.01 | | | | | + | | | | 17.02 | | 41.51 | 11.73 | | | TOTAL 398.75 450.71 449.82 458.00 452.39 461.21 449.92 | TOTAL | | | | | 398.75 | 450.71 | 449.82 | 458.00 | 452.39 | 461.21 | 449.92 | | | MRAN 14.24 14.54 14.99 14.77 15.08 14.88 14.51 | MEAN | | | | | 14.24 | 14.54 | | | | 14.88 | 14.51 | | | MAX 14.41 14.75 15.39 15.27 15.53 15.33 14.61 | MAX | | | | | 14.41 | | | | | 15.33 | 14.61 | | | MIN 14.17 14.13 14.69 14.62 14.57 14.51 14.36 | | | | | | | | | | | | | | #### 06604200 WEST OKOBOJI LAKE AT LAKESIDE LABORATORY NEAR MILFORD, IA LOCATION.--Lat 43°22'43", long 95°10'52", in NE1/4 SW1/4 sec.23, T.99N., R.37W., Dickinson County, Hydrologic Unit 10230003, at pumping station of Lakeside Laboratory on west shore, 2.3 mi upstream from lake outlet, and 3.8 mi northwest of Milford. DRAINAGE AREA.--125 mi<sup>2</sup>. PERIOD OF RECORD.--May 1933 to current year. Published as "Okoboji Lake at Arnold's Park" 1933-37 and as "Okoboji Lake at Lakeside Laboratory near Milford" 1937-66. GAGE.--Water-stage recorder. Datum of gage is 1,391.76 ft above sea level, 94.51 ft above Iowa Lake Survey datum, and about 4.0 ft below crest of spillway. Prior to June 17, 1938, nonrecording gage at State Pier at Arnolds Park at same datum. REMARKS.--Lake formed by concrete dam with ungated spillway at elevation 1,395.8 ft above sea level. Lake is used for conservation and recreation. Area of lake is approximately 3,900 acres. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 8.70 ft July 17, 1993; minimum observed, 0.20 ft Sept. 20, 1959. EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 5.42 ft June 27; minimum, 4.13 ft Sept. .20, 30. #### GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|------|------|------|------|------|------|------|------|---------------|------|------|------| | 1 | 4.73 | 4.22 | 4.25 | 4.31 | 4.31 | 4.38 | 4.60 | 4.62 | 4.33 | 5.31 | 4.47 | 4.20 | | 2 | 4.69 | 4.22 | 4.24 | 4.32 | 4.31 | 4.38 | 4.60 | 4.61 | 4.32 | 5.27 | 4.45 | 4.22 | | 3 | 4.65 | 4.21 | 4.24 | 4.33 | 4.30 | 4.38 | 4.58 | 4.60 | 4.30 | 5.23 | 4.43 | 4.22 | | 4 | 4.64 | 4.21 | 4.24 | 4.33 | 4.30 | 4.43 | 4.58 | 4.61 | 4.28 | 5.20 | 4.41 | 4.28 | | 5 | 4.61 | 4.20 | 4.24 | 4.32 | 4.30 | 4.50 | 4.57 | 4.63 | 4.38 | 5.18 | 4.37 | 4.29 | | 6 | 4.59 | 4.18 | 4.24 | 4.32 | 4.29 | 4.57 | 4.54 | 4.65 | 4.40 | 5.17 | 4.33 | 4.29 | | 7 | 4.58 | 4.17 | 4.24 | 4.32 | 4.29 | 4.60 | 4.52 | 4.65 | 4.41 | 5,16 | 4.31 | 4.27 | | 8 | 4.60 | 4.17 | 4.23 | 4.31 | 4.28 | 4.62 | 4.51 | 4.63 | 4.38 | 5.10 | 4.30 | 4.27 | | 9 | 4.56 | 4.17 | 4.23 | 4.31 | 4.28 | 4.62 | 4.50 | 4.63 | 4.35 | 5.07 | 4.28 | 4.25 | | 10 | 4.53 | 4.17 | 4.23 | 4.31 | 4.28 | 4.63 | 4.50 | 4.62 | 4.35 | 5.03 | 4.33 | 4.25 | | 11 | 4.50 | 4.17 | 4.23 | 4.30 | 4.27 | 4.64 | 4.49 | 4.61 | 4.35 | 5.00 | 4.33 | 4.24 | | 12 | 4.49 | 4.19 | 4.23 | 4.30 | 4.27 | 4.64 | 4.56 | 4.60 | 4.38 | 4.98 | 4.40 | 4.22 | | 13 | 4.47 | 4.21 | 4.25 | 4.31 | 4.27 | 4.65 | 4.59 | 4.59 | 4.63 | 4.99 | 4.44 | 4.22 | | 14 | 4.45 | 4.22 | 4.30 | 4.30 | 4.26 | 4.67 | 4.60 | 4.59 | 4.66 | 4.99 | 4.42 | 4.21 | | 15 | 4.45 | 4.22 | 4.30 | 4.30 | 4.26 | 4.69 | 4.61 | 4.58 | 4.70 | 4.97 | 4.41 | 4.21 | | 16 | 4.44 | 4.21 | 4.30 | 4.30 | 4.25 | 4.69 | 4.61 | 4.56 | 4.70 | 4.95 | 4.39 | 4.19 | | 17 | 4.43 | 4.22 | 4.31 | 4.29 | 4.25 | 4.69 | 4.60 | 4.54 | 4.73 | 4.92 | 4.38 | 4.18 | | 18 | 4.42 | 4.21 | 4.31 | 4.29 | 4.25 | 4.69 | 4.59 | 4.52 | 4.85 | 4.89 | 4.38 | 4.16 | | 19 | 4.41 | 4.21 | 4.31 | 4.29 | 4.29 | 4.69 | 4.58 | 4.50 | 4.88 | 4.86 | 4.37 | 4.15 | | 20 | 4.40 | 4.21 | 4.31 | 4.28 | 4.33 | 4.69 | 4.57 | 4.47 | 4.94 | 4.82 | 4.36 | 4.14 | | 21 | 4.38 | 4.21 | 4.31 | 4.28 | 4.36 | 4.70 | 4.57 | 4.45 | 5.03 | 4.80 | 4.34 | 4.17 | | 22 | 4.37 | 4.22 | 4.31 | 4.28 | 4.36 | 4.69 | 4.55 | 4.45 | 5.05 | 4.78 | 4.32 | 4.23 | | 23 | 4.36 | 4.21 | 4.31 | 4.27 | 4.39 | 4.68 | 4.52 | 4.44 | 5.28 | 4.75 | 4.31 | 4.21 | | 24 | 4.36 | 4.23 | 4.31 | 4.27 | 4.40 | 4.67 | 4.53 | 4.47 | 5.36 | 4.71 | 4.30 | 4.20 | | 25 | 4.35 | 4.26 | 4.31 | 4.27 | 4.40 | 4.66 | 4.57 | 4.46 | 5.37 | 4.68 | 4.29 | 4.20 | | 26 | 4.33 | 4.26 | 4.32 | 4.27 | 4.39 | 4.66 | 4.58 | 4.45 | 5.40 | 4.64 | 4.29 | 4.18 | | 27 | 4.31 | 4.26 | 4.32 | 4.31 | 4.39 | 4.66 | 4.59 | 4.43 | 5.38 | 4.60 | 4.28 | 4.16 | | 28 | 4.29 | 4.26 | 4.32 | 4.33 | 4.39 | 4.65 | 4.61 | 4.40 | 5.35 | 4.56 | 4.27 | 4.15 | | 29 | 4.27 | 4.25 | 4.31 | 4.33 | | 4.63 | 4.63 | 4.39 | 5. <b>3</b> 3 | 4.53 | 4.24 | 4.14 | | 30 | 4.25 | 4.25 | 4.31 | 4.32 | | 4.62 | 4.63 | 4.37 | 5.29 | 4.51 | 4.24 | 4.13 | | 31 | 4.24 | | 4.31 | 4.32 | | 4.61 | | 4.35 | | 4.48 | 4.21 | | | MEAN | 4.46 | 4.21 | 4.28 | 4.30 | 4.31 | 4.62 | 4.57 | 4.53 | 4.77 | 4.91 | 4.34 | 4.21 | | MAX | 4.73 | 4.26 | 4.32 | 4.33 | 4.40 | 4.70 | 4.63 | 4.65 | 5.40 | 5.31 | 4.47 | 4.29 | | MIN | 4.24 | 4.17 | 4.23 | 4.27 | 4.25 | 4.38 | 4.49 | 4.35 | 4.28 | 4.48 | 4.21 | 4.13 | ### LITTLE SIOUX RIVER BASIN ### 06605000 OCHEYEDAN RIVER NEAR SPENCER, IA LOCATION.--Lat 43°07'44", long 95°12'37", in SW1/4 SW1/4 sec.15, T.96N., R.37W., Clay County, Hydrologic Unit 10230003, on left bank 3 ft upstream from bridge on county highway M38, 3.4 mi west by southwest of Spencer, and at mile 4.1. DRAINAGE AREA.--426 mi<sup>2</sup>. PERIOD OF RECORD.--October 1977 to current year. Occasional low-flow measurements, water years 1957-61, 1964, 1966-68, 1970, 1971, 1974-77 GAGE.--Water-stage recorder. Datum of gage is 1,311.66 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 26 to Dec. 15 and Dec. 20 to Mar. 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 8, 1953 reached a stage of 12.89 ft, discharge, 26,000 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow. | | DIS | SCHARGE, | CUBIC I | EET PER S | SECOND, V<br>DAILY | VATER Y<br>MEAN V | EAR OCTO | OBER 1993 | TO SEP | TEMBER 199 | 94 | | |----------|------------|-------------|--------------|------------|--------------------|-------------------|------------|--------------------|--------------|------------|-------------|------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 294 | 149 | e140 | e130 | e40 | e200 | 180 | 535 | 152 | 899 | 134 | 108 | | 2 | 269 | 152 | e140 | e100 | e52 | e250 | 178 | 494 | 149 | 814 | 128 | 107 | | 3 | 259 | 151 | e130 | e84 | e62 | e350 | 168 | 447 | 142 | 723 | 121 | 110 | | 4 | 251 | 152 | e120 | e80 | e54 | e600 | 174 | 418 | 135 | 677 | 121 | 201 | | 5 | 238 | 146 | e120 | e86 | e62 | e1300 | 166 | 419 | 254 | 637 | 113 | 334 | | 6 | 237 | 138 | e110 | e90 | e70 | e2100 | 176 | 516 | 424 | 641 | 108 | 245 | | 7 | 233 | 151 | e110<br>e120 | e90<br>e60 | e50 | e2100<br>e1400 | 177 | 566 | 467 | 640 | 103 | 200 | | 8 | 236 | 131 | e120 | e48 | e38 | e1400 | 170 | 528 | 409 | 575 | 101 | 175 | | ä | 291 | 134 | e110 | e60 | e40 | e700 | 166 | 473 | 357 | 517 | 107 | 158 | | 10 | 290 | 132 | e115 | e70 | e33 | 635 | 163 | 414 | 319 | 470 | 109 | 143 | | 11 | 277 | 334 | - 00 | -76 | -24 | 546 | 159 | 387 | 200 | 438 | 130 | 130 | | 12 | 259 | 134 | e 90 | e76 | e34 | 546 | 219 | 387<br>350 | 290 | 422 | 155 | 118 | | | | 135 | e110 | e60 | e35 | 537 | | | 276 | | | | | 13 | 240<br>232 | 169 | e130 | e66 | e37 | 578 | 449 | 332 | 1930 | 546<br>693 | 283<br>401 | 110 | | 14<br>15 | 228 | 182<br>175 | e140<br>e150 | e54 | e39 | 582 | 507<br>475 | 333<br>31 <b>5</b> | 3820<br>3750 | 570 | 340 | 104<br>99 | | 13 | 226 | 1/3 | 6120 | e43 | e67 | 571 | 4/3 | 313 | 3/30 | 370 | 340 | " | | 16 | 225 | 179 | 162 | e41 | e62 | 467 | 453 | 295 | 1890 | 497 | 314 | 95 | | 17 | 218 | 171 | 156 | e50 | e74 | 407 | 410 | 277 | 1240 | 429 | 298 | 90 | | 18 | 212 | 166 | 157 | e43 | e98 | 357 | 396 | 262 | 1700 | 382 | 285 | 87 | | 19 | 209 | 170 | 158 | e40 | e190 | 332 | 370 | 250 | 1900 | 346 | 272 | 82 | | 20 | 205 | 161 | e140 | e56 | e330 | 321 | 345 | 235 | 1240 | 317 | 254 | 80 | | 21 | 200 | 162 | e120 | e54 | e540 | 293 | 337 | 221 | 1470 | 291 | 234 | 82 | | 22 | 193 | 152 | e94 | e72 | e300 | 281 | 321 | 213 | 1570 | 279 | 217 | 103 | | 23 | 189 | 150 | e78 | e70 | e190 | 272 | 309 | 222 | 1770 | 259 | 201 | 126 | | 24 | 186 | 151 | e84 | e80 | e150 | 250 | 298 | 223 | 3950 | 240 | 193 | 124 | | 25 | 184 | 149 | e90 | e70 | e120 | 229 | 280 | 221 | 3790 | 225 | 166 | 117 | | 26 | 176 | e110 | e65 | e60 | e130 | 224 | 282 | 228 | 2260 | 204 | 178 | 108 | | 27 | 169 | e82 | e45 | e52 | e150 | 216 | 299 | 216 | 1500 | 183 | 160 | 102 | | 28 | 172 | e88 | e35 | e58 | e170 | 202 | 293 | 201 | 1240 | 169 | 145 | 96 | | 29 | 162 | e110 | e40 | e52 | | 194 | 377 | 190 | 1070 | 160 | 130 | 91 | | 30 | 154 | e120 | e52 | e45 | | 185 | 488 | 178 | 921 | 151 | 122 | 97 | | 31 | 152 | | e100 | e41 | | 193 | | 163 | | 141 | 114 | | | TOTAL | 6840 | 4360 | 3401 | 1991 | 3217 | 15662 | 8785 | 10122 | 40285 | 13525 | 5727 | 3812 | | MEAN | 221 | 145 | 110 | 64.2 | 115 | 505 | 293 | 327 | 1343 | 436 | 185 | 127 | | MAX | 294 | 182 | 162 | 130 | 540 | 2100 | 507 | 566 | 3950 | 899 | 401 | 334 | | MIN | 152 | 82 | 35 | 40 | 33 | 183 | 159 | 163 | 135 | 141 | 101 | 80 | | MED | 225 | 150 | 115 | 60 | 64 | 350 | 295 | 295 | 1240 | 429 | 15 <b>5</b> | 108 | | AC-FT | 13570 | 8650 | 6750 | 3950 | 6380 | 31070 | 17430 | 20080 | 79910 | 26830 | 11360 | 7560 | | CFSM | .52 | .34 | .26 | .15 | .27 | 1.19 | . 69 | .77 | 3.15 | 1.02 | .43 | .30 | | IN. | .60 | .38 | .30 | .17 | .28 | 1.37 | .77 | .88 | 3.52 | 1.18 | .50 | .33 | | emamren | TCC OF MC | NIMULT WEEK | N DAMA D | OD WAMED 1 | /// 1020 | 3004 | BY WATER | VEND /WV | | | | | | 2141121 | IICS OF M | MIHLI MEA | N DATA F | OR MATER | EARS 19/6 | - 1994, | BI WATER | IEAR (WI) | | | | | | MEAN | 148 | 166 | 91.0 | 48.9 | 85.1 | 369 | 511 | 378 | 529 | 384 | 165 | 164 | | MAX | 492 | 796 | 305 | 180 | 402 | 1019 | 1462 | 912 | 1973 | 2243 | 706 | 597 | | (WY) | 1983 | 1980 | 1983 | 1983 | 1983 | 1983 | 1983 | 1993 | 1993 | 1993 | 1993 | 1979 | | MIN | 9.23 | 8.11 | 1.91 | .51 | .000 | 14.0 | 20.5 | 54.9 | 33.8 | 33.4 | 15.3 | 14.2 | | (WY) | 1990 | 1990 | 1990 | 1979 | 1979 | 1990 | 1990 | 1981 | 1989 | 1989 | 1989 | 1988 | | SUMMARY | STATIST | cs | FOR | 1993 CALEN | DAR YEAR | F | OR 1994 W | ATER YEAR | | WATER YEA | ARS 1978 | - 1994 | | ANNUAL | TOTAL | | | 264289 | | | 117727 | | | | | | | ANNUAL | | | | 724 | | | 323 | | | 254 | | | | HIGHEST | ANNUAL M | E AN | | | | | | | | 763 | | 1993 | | LOWEST | ANNUAL ME | AN | | | | | | | | 33.4 | | 1989 | | | DAILY ME | | | 5620 | Jul 1 | | 3950 | Jun 24 | | 5620 | Jul | 1 1993<br>24 1979<br>24 1979 | | | DAILY MEA | | | 35 | Dec 28 | | 33 | Feb 10 | | .00 | Jan 2 | 24 1979 | | | SEVEN-DAY | | | 53 | Feb 28 | | 37 | Feb 8 | | .00 | Jan 2 | 24 1979 | | | ANEOUS PE | | | | | | 4490 | Jun 24 | | 6450 | Jun 2 | 21 1983 | | | ANEOUS PE | | | | | | 10.70 | Jun 24 | | 11.28 | Jul | 1 1993 | | ANNUAL | | C-FT) | | 524200 | | | 233500 | | | 184100 | | | | ANNUAL | | FSM) | | 1.70 | | | .76 | | | .60 | | | | ANNUAL | | NCHES) | | 23.08 | ı | | 10.28 | ı | | 8.11 | | | | | ENT EXCEE | | | 2020 | | | 573 | | | 599 | | | | | ENT EXCEE | | | 300 | | | 178 | | | 105 | | | | 90 PERC | ENT EXCEE | DS. | | 60 | | | 64 | | | 13 | | | e Estimated. ## 06605850 LITTLE SIOUX RIVER AT LINN GROVE, IA LOCATION.--Lat 42°53'24", long 95°14'30", in SW1/4 SW1/4 sec.5, T.93 N., R.37 W., Buena Vista County, Hydrologic Unit 10230003, on right bank at downstream side of bridge on County Highway M36, in Linn Grove, and at mile 123.7. DRAINAGE AREA.--1,548 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1972 to current year. REVISED RECORDS .-- WDR IA-80-1: 1978-79. GAGE.--Water-stage encoder. Datum of gage is 1,223.60 ft above sea level. REMARKS.—Estimated daily discharges: Nov. 25-29, Dec. 21 to Mar. 7, Aug. 7-11, and Aug. 29, 30. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of June 10, 1953, gage height 20.96 ft; discharge, 22,500 ft<sup>3</sup>/s. | | <b>D</b> 1 | JCIII III OI | z, cobic | IBBIIM | DAIL | MEAN V | ALUES | JDIA( 1// | J IO SEE | · LAVIDIAN I | 7.4 | | |---------------|-----------------------------|--------------------------|-----------------------------------------------|--------------|---------------------------|--------------------------------------|--------------|-----------------------------------|----------------|--------------------------------------|-------------------------------------|---------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1410 | 702 | 636 | | e150 | e560 | 822 | 1460 | 570 | 3860 | 600 | 327 | | 2 | 1330 | 686 | 621 | e220 | e160 | e620 | 795 | 1580 | 547 | 3470 | 565 | 318 | | 3<br>4 | 1260<br>1200 | 689<br>688 | 618<br>614 | | e140<br>e160 | e700<br>e1100 | 780<br>779 | 1600<br>15 <b>8</b> 0 | 524<br>498 | 3120<br>2900 | 540<br>513 | 316<br>380 | | 5 | 1150 | 675 | 636<br>621<br>618<br>614<br>604 | e190 | e180 | e1700 | 762 | 1550 | 518 | 2570 | 482 | 492 | | 6 | 1110 | 647 | 609 | e160 | e190 | e2700 | 755 | 1570 | 767 | 2330 | 464 | 633 | | 7 | 1070 | 610 | 564 | e140 | e160 | e4000 | 742 | 1670 | 1330 | 2150 | e440 | 606 | | 8<br>9 | 1070<br>1320 | 60 6<br>63 0 | 556 | e160<br>e180 | e170<br>e150 | 7010<br>5 <b>8</b> 20 | 724<br>693 | 1770<br>1780 | 1380<br>1280 | 2070<br>2020 | e410<br>e405 | 542<br>485 | | 10 | 1520 | 623 | 614<br>604<br>609<br>564<br>556<br>573<br>582 | e210 | e150 | 4530 | 683 | 1690 | 1140 | 1920 | e400 | 436 | | 11 | 1450 | 604 | 555 | e180 | e170 | 3400<br>2900<br>2680<br>2550 | 678 | 1540 | 1050 | 1800 | e430 | 393 | | 12 | 1330 | 603 | 464 | e200 | e160 | 2900 | 704 | 1400 | 1050 | 1680 | 586 | 359 | | 13<br>14 | 1240<br>1170 | 621<br>658 | 569 | e170<br>e150 | e170<br>e190 | 2680 | 949<br>1300 | 1290<br>1210 | 1890<br>2360 | 1670<br>2120 | 799<br>1020 | 329<br>305 | | 15 | 1120 | 686 | 555<br>464<br>569<br>668<br>614 | e140 | e210 | 2440 | 1490 | 1150 | 2720 | 2670 | 1170 | 299 | | 16 | 1100 | | 685 | | e220<br>e190 | 2340<br>2230<br>2080<br>1890<br>1670 | 1530 | 1100 | 3740 | 2860 | 1200 | 291 | | 17 | 1070 | 691<br>678<br>672<br>672 | 759 | e140 | e190 | 2230 | 1530 | 1040 | 5440 | 2620 | 1200 | 269 | | 18 | 1040 | 672 | 764 | e130 | e260 | 2080 | 1530 | 960 | 5440<br>4880 | 2350 | 1170 | 255 | | 19<br>20 | 1010<br>987 | 672<br>661 | 780<br>778 | e160 | e450<br>e1000 | 1670 | 1450<br>1360 | 1100<br>1040<br>960<br>887<br>844 | 4450 | 2070<br>1800 | 1090<br>957 | 242<br>230 | | | | | | | | | | | | | | | | 21<br>22 | 969<br>948 | 657<br>647 | e600<br>e640 | e160<br>e190 | e1400<br>e1200 | 1530<br>1440 | 1290<br>1220 | 801<br>760 | 4850<br>4840 | 1580<br>1420 | 821<br>712 | 235<br>432 | | 23 | 916 | 625 | e400 | e220 | e800 | 1340 | 1150 | 724 | 5170 | 1310 | 635 | 614 | | 24 | 890 | 622 | e390 | e200 | e600 | 1260 | 1100 | 723 | 6950 | 1180 | 568 | 611 | | 25 | 861 | e500 | e420 | e190 | e520 | 1180 | 1040 | 740 | 7610 | 1090 | 520 | 543 | | 26 | 839 | e350 | e300 | e170 | e490<br>e480 | 1100 | 991 | 765 | 8540 | 982 | 503 | 485 | | 27 | 814 | e250 | e180 | e150 | e480 | 1050 | 967 | 769 | 8610 | 889 | 485 | 447 | | 28 | 798 | e350 | e120 | e160 | 6740 | 1000 | 990 | 730<br>678 | 6940 | 810<br>750 | 444<br>e410 | 416<br>377 | | 29<br>30 | 7 <b>82</b><br>7 <b>4</b> 5 | e500<br>662 | e150<br>e210 | e140<br>e130 | | 961<br>908 | 1130<br>1300 | 633 | 5450<br>4430 | 750<br>696 | e378 | 351 | | 31 | 730 | | e300 | e140 | | 851 | | 601 | | 646 | 353 | | | TOTAL | 33249 | 18265 | 16323 | 5300 | 10660 | 65540 | 31234 | 35595 | 104964 | 59403 | 20270 | 12018 | | MEAN | 1073 | 609 | 527 | | 201 | 2114 | 1041 | 1148 | 3499 | 1916 | 654 | 401 | | MAX | 1520 | 609<br>702<br>250 | 527<br>780<br>120 | 270 | 1400<br>140 | 7010 | 1530 | 1780 | 8610 | 3860 | 1200 | 633 | | MIN | 730 | 250 | 120 | 130 | | 560 | 678 | 601 | 498 | 646 | 353 | 230 | | AC-FT<br>CFSM | 65950<br>.69 | 36230<br>.39 | 32380<br>.34 | 10510<br>.11 | 21140<br>.25 | 130000<br>1.37 | 61950<br>.67 | 70600<br>.74 | 208200<br>2.26 | 117800 | 40210 | 23840 | | IN. | .80 | .44 | .39 | .13 | .26 | 1.57 | .75 | .86 | 2.52 | 1.24 | .49 | 23840<br>.26<br>.29 | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 197 | 3 - 1994, | BY WATER | YEAR (WY | ) | | | | | | | | | | | - | | | | 1107 | | 4.65 | | MEAN<br>MAX | 456<br>2070 | 483 | 293 | 184<br>859 | 278<br>1161 | 1165<br>3 <b>89</b> 4 | 1659<br>4952 | 1263<br>3233 | 1228 | 1197<br>7905<br>1993 | 211 | 465<br>2171 | | (WY) | 1983 | 1980 | 1983 | 1983 | 1983 | 1983 | 1983 | 1993 | 1993 | 1993 | 1993 | 1993 | | MIN | 21.3 | 22.0 | 6.08 | 3.12 | 5.92 | 75.9 | 77.7 | 69.4 | 60.3 | 36.3 | 26.4 | 22.7 | | (WY) | 1977 | 1977 | 1122<br>1983<br>6.08<br>1990 | 1977 | 1977 | 1990 | 1990 | 1977 | 1977 | 1197<br>7905<br>1993<br>36.3<br>1977 | 517<br>2906<br>1993<br>26.4<br>1976 | 1976 | | SUMMAR | Y STATIST | ics | FOR | 1993 CALE | NDAR YEAR | E | FOR 1994 W | ATER YEAR | | WATER YE | | | | ANNUAL | | | | 974407 | | | 412821 | | | | | | | ANNUAL | | WT 3.17 | | 2670 | | | 1131 | | | 794 | | 1002 | | | I ANNUAL I<br>ANNUAL MI | | | | | | | | | 2763<br>56 3 | | 1993 | | | DAILY M | | | 15000 | Jul 2 | | 8610 | Jun 27 | | 15000 | Jul<br>Feb | 2 1993 | | LOWEST | DAILY ME | AN | | 120<br>226 | Jul 2<br>Dec 28<br>Jan 25 | | 120 | Dec 28 | | | | | | | | MUMINIM Y | | 226 | Jan 25 | | 146 | Jan 14 | | 1.1 | Jan : | 31 1977 | | | | EAK FLOW | | | | | 8460 | Jun 26 | | 16100 | Jul | 2 1993<br>2 1993 | | ANNUAL | | EAK STAGE<br>AC-FT) | | 1933000 | | | 818800 | , Jun 26 | | 16100<br>20.63<br>575400 | Jul | 5 TAA2 | | ANNUAL | RUNOFF ( | CFSM) | | 1.7 | 2 | | .73 | 3 | | .51 | | | | ANNUAL | RUNOFF ( | INCHES) | | 1.7<br>23.4 | 2 | | 9.92 | ? | | 6.97 | | | | 10 PERC | CENT EXCE | EDS | | 0,10 | | | 2340 | | | 2060 | | | | | CENT EXCE | | | 1520 | | | 724 | | | 318<br>37 | | | | JU PERC | CENT EXCE | 2112 | | 258 | | | 180 | | | 31 | | | e Estimated. #### 06606600 LITTLE SIOUX RIVER AT CORRECTIONVILLE, IA LOCATION.--Lat 42°28'20", long 95°47'49", in NE1/4 NW1/4 sec.1, T.88 N., R.43 W., Woodbury County, Hydrologic Unit 10230003 on right bank 50 ft upstream from bridge on State Highway 31, 0.3 mi upstream from Bacon Creek, 0.5 mi west of Correctionville, 0.8 mi downstream bank 50 ft upstream from bridge on State Highway 31, 0.3 mi upstream from Bacon Creek, 0.5 mi west of Correctionville, 0.8 mi downstream from Pierson Creek, and at mile 56.0. DRAINAGE AREA.--2,500 mi<sup>2</sup>. PERIOD OF RECORD.--May 1918 to July 1925, October 1928 to July 1932, June 1936 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 856: 1919. WSP 1240: 1924-25, 1931, 1932 (M), 1937, 1945 (M), 1947 (M), 1949 (M). WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,096.49 ft above sea level. May 28, 1918, to July 1, 1925 and Oct. 29, 1928 to July 15, 1929, nonrecording gage 0.2 mi downstream at datum 1.25 ft lower. July 16, 1929, to July 2, 1932, and June 15, 1936, to Nov. 7, 1938, nonrecording gage at present site and datum. gage at present site and datum. REMARKS.--Estimated daily discharges: Nov. 25-29 and Dec. 22 to Mar. 3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23 or 24, 1891, reached a stage of 29.34 ft, present datum, from levels to floodmark by U.S. Soil Conservation Service (discharge not determined). DISCHARGE CHRIC EEET BED SECOND WATER VEAR OCTOBER 1002 TO SEPTEMBER 1004 | | D | ISCHARGE | E, CUBIC | FEET PER | SECOND,<br>DAILY | WATER<br>MEAN | YEAR OC<br>VALUES | TOBER 199 | 3 TO SEP | TEMBER 1 | 994 | | |-------------|----------------------|--------------|--------------|----------------|------------------|----------------|-------------------|-------------|--------------|----------------|--------------|-----------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | | 1<br>2 | 2340<br>2240 | 1310<br>1300 | 1140<br>1180 | e1200<br>e1000 | e600<br>e640 | e1300<br>e1400 | | | 966<br>945 | 6870<br>5740 | 1350<br>1260 | 645<br>602 | | 3 | 2150 | 1260 | 1110 | e720 | e600 | e1500 | 1460 | 1970 | 910 | 5070 | 1220 | 575 | | 4 | 2070 | 1240 | 1090 | e780 | e700 | 2610 | 1420 | 2030 | 868 | 4840 | 1170 | 646 | | 5 | 1990 | 1220 | 1080 | e880 | e940 | 3550 | 1390 | 2040 | 876 | 4350 | 1060 | 916 | | 6<br>7 | 1930<br>1880 | 1190<br>1170 | 1040<br>991 | e720<br>e600 | e860<br>e800 | 5280<br>4880 | | | 992<br>1290 | 4050<br>3730 | 982<br>915 | 1070<br>10 <b>4</b> 0 | | ġ | 1840 | 1140 | 983 | e640 | e800 | 3740 | | | 1590 | 3370 | 945 | 1050 | | ğ | 1950 | 1120 | 974 | e720 | e720 | 5000 | | 2230 | 1810 | 3120 | 829 | 969 | | 10 | 2190 | 1100 | 993 | e880 | e720 | 6040 | 1240 | | 1760 | 2950 | 797 | 882 | | 11 | 2370 | 1100 | 955 | e800 | e800 | 5640 | 1190 | | 1680 | 2770 | 752 | 787 | | 12 | 2360 | 1090 | 915<br>997 | e880 | e760 | 4770 | 1260 | | 1610 | 2670 | 899<br>1830 | 707 | | 13<br>14 | 2220<br>2090 | 1120<br>1150 | 958 | e740<br>e600 | e800<br>e940 | 3920<br>3600 | 1390<br>1520 | | 3190<br>3830 | 2730<br>2820 | 1570 | 637<br>591 | | 15 | 2050 | 1140 | 1010 | e540 | e1100 | 3460 | 1780 | | 4090 | 3210 | 1450 | 542 | | | | | | | | | | | 3590 | 3540 | 1520 | 504 | | 16<br>17 | 2010<br>1940 | 1170<br>1180 | 1170 | e580 | e1300<br>e1200 | 3330<br>3170 | 1930<br>1970 | | 3780 | 3620 | 1560 | 480 | | 18 | 1880 | 1170 | 1190<br>1250 | e560<br>e520 | e1700 | 3050 | 1960 | | 5000 | 3460 | 1550 | 458 | | 19 | 1840 | 1140 | 1260 | e640 | e6600 | 2890 | 1950 | | 5410 | 3100 | 1530 | 433 | | 20 | 1790 | 1130 | 1250 | e600 | e5400 | 2720 | 1900 | | 5640 | 2800 | 1470 | 416 | | 21 | 1750 | 1120 | 1220 | e640 | e4500 | 2530 | 1840 | 1360 | 5310 | 2550 | 1380 | 404 | | 22 | 1710 | 1100 | e1000 | e900 | e3300 | 2360 | 1780 | | 5260 | 2350 | 1260 | 557 | | 23 | 1680 | 1090 | e1000 | e1100 | e2700 | 2250 | 1720 | | 6080 | 2190 | 1170 | 1250 | | 24 | 1650 | 1080 | e1100 | e940 | e2000 | 2150 | 1660 | 1190 | 6830 | 2070 | 1050 | 1380 | | 25 | 1610 | e900 | e1000 | e860 | e1200 | 2050 | 1610 | 1170 | 7800 | 1970 | 958 | 1340 | | 26 | 1550 | e450 | e880 | e720 | e1100 | 1980 | 1560 | | 8060 | 1860 | 906 | 1240 | | 27 | 1500 | e540 | e470 | e600 | e1100 | 1910 | 1500 | | 8040 | 1750 | 1190 | 1130 | | 28 | 1460 | e720 | e540 | e660 | e1200 | 1830 | 1490 | | 8050 | 1660 | 1050 | 1020 | | 29 | 1420 | e840 | e800 | e600 | | 1760 | 1560 | | 8300 | 1570 | 864 | 943 | | 30 | 1380 | 981 | e1000 | e520 | | 1690 | 1610 | 1100 | 8050 | 1480 | 769 | 872 | | 31 | 1340 | | e1300 | e540 | | 1630 | | 1030 | | 1400 | 693 | | | TOTAL | 58180 | 32261 | 31846 | 22680 | 45080 | 93990 | 47030 | | 121607 | 95660 | 35949 | 24086 | | MEAN | 1877 | 1075 | 1027 | 732 | 1610 | 3032 | 1568 | | 4054 | 3086 | 1160 | 803 | | MAX | 2370 | 1310 | 1300 | 1200 | 6600 | 6040 | 1970 | | 8300 | 6870 | 1830 | 1380 | | MIN | 1340 | 450 | 470 | 520 | 600 | 1300 | 1190 | 1030 | 868 | 1400 | 693 | 404 | | AC-FT | 115400 | 63990 | 63170 | 44990 | 89420 | 186400 | 93280 | 101500 | 241200 | 189700<br>1.23 | 71300<br>.46 | 47770 | | CFSM<br>IN. | .75<br>.87 | .43<br>.48 | .41<br>.47 | .29<br>.34 | .64<br>.67 | 1.21 | .63<br>.70 | .66<br>.76 | 1.62<br>1.81 | 1.42 | .53 | .32<br>.36 | | | | | | | | | | | | 1.72 | | .50 | | STATIS | TICS OF | MONTHLY ME | AN DATA I | FOR WATER | YEARS 191 | 8 - 1994 | , BY WAT | ER YEAR (WY | | | | | | MEAN | 420 | 419 | 282 | 207 | 457 | 1430 | 1813 | 1261 | 1733 | 1222 | 589 | 501 | | MAX | 2994 | 3079 | 1698 | 1323 | 2708 | 7328 | 8677 | 5002 | 10110 | 11600 | 4469 | 3671 | | (WY) | 1983 | 1980 | 1983 | 1983 | 1971 | 1983 | 1983 | 1993 | 1993 | 1993 | 1993 | 1938 | | MIN | 8.33 | 25.3 | 15.1 | 8.31 | 7.08 | 53.5 | 61.9 | 57.3 | 58.1 | 43.4 | 15.0 | 14.4 | | (WY) | 1957 | 1959 | 1959 | 1959 | 1959 | 1931 | 1931 | 1931 | 1956 | 1956 | 1931 | 1958 | | SUMMAR | Y STATIS | rics | FOR | 1993 CALE | NDAR YEAR | | FOR 1994 | WATER YEAR | 1 | WATER Y | EARS 1918 | - 1994 | | ANNUAL | | | | 1524164 | | | 659549 | | | | | | | ANNUAL | | | | 4176 | | | 1807 | | | 875 | | 1000 | | | T ANNUAL | | | | | | | | | 4304<br>53.7 | | 1993<br>1931 | | | ANNUAL | | | 20200 | 71 10 | | 8300 | Jun 29 | | 27900 | | 7 1965 | | | T DAILY N | | | 330 | Jul 18<br>Feb 17 | | 404 | Sep 21 | | 2,500 | | 7 1936 | | | | AY MINIMUM | | 391 | Feb 12 | | 462 | Sep 15 | | 4.6 | | 4 1956 | | | | PEAK FLOW | | 371 | LED II | | 8360 | Jun 29 | ı | 29800 | Apr | 7 1965 | | INSTAN | TANEOUS I | PEAK STAGE | | | | | | .11 Jun 29 | | 25.8 | | 7 1965 | | INSTAN' | TANEOUS 1 | LOW FLOW | | | | | 393 | Sep 21 | | | - | | | | | (AC-FT) | | 3023000 | | | 1308000 | - | | 634000 | _ | | | | | (CFSM) | | 1.6 | | | _ • | .72 | | .3 | | | | ANNUAL | RUNOFF | (INCHES) | | 22.6 | 8 | | 9, | .81 | | 4.7<br>2150 | ь | | | TO PER | CENT EXCI | SEUS | | 10300<br>2490 | | | 3590 | | | 350 | | | | | CENT EXC<br>CENT EXC | | | 2490<br>490 | | | 1300 | | | 51 | | | | PO PER | CERI EACI | 2003 | | 490 | | | 680 | | | 31 | | | e Estimated. #### 06607200 MAPLE RIVER AT MAPLETON, IA LOCATION.--Lat 42°09'25", long 95°48'35", in SE1/4 SE1/4 sec.23, T.85 N., R.43 W., Monona County, Hydrologic Unit 10230005, on right bank at downstream side of bridge on State Highway 175, 1.0 mi downstream from Simmons Creek, 1.1 mi southwest of intersection of State Highways 175 and 141 in Mapleton, 2.1 mi upstream from McCleery Creek, and 16.0 mi upstream from mouth. DRAINAGE AREA.--669 mi<sup>2</sup>. e Estimated. PERIOD OF RECORD .-- October 1941 to current year. REVISED RECORDS.--WSP 1310: 1942 (M), 1946 (M), 1948 (M). WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,085.86 ft above sea level. See WSP 1730 for history of changes prior to Sept. 20, 1956. REMARKS.--Estimated daily discharges: Nov. 24 to Dec. 1, Dec. 21 to Feb. 19, Feb. 22 to Mar. 1, Apr. 20-26, May 25-26, July 14-22, and Aug. 27-28. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. | | DI | SCHARGI | E, CUBIC | FEET PER | | | YEAR OCTO | DBER 1993 | TO SEP | TEMBER 19 | 994 | | |--------------|-----------------------|--------------|--------------|--------------|------------------|--------------|--------------|------------------|--------------------|--------------|--------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 410 | 410 | e450 | e370 | e170 | e380 | 288 | 298 | 217 | 550 | 492 | 212 | | 2 | 397 | 411 | 414 | e270 | el90 | 428 | 278 | 292 | 220 | 665 | 652 | 216 | | 3 | 394 | 413 | 400 | e210 | e180 | 645 | 269 | 287 | 224 | 535 | 460 | 219 | | 4 | 395 | 414 | 401 | e260 | e220 | 1690 | 270 | 271 | 221 | 927 | 1030 | 333 | | 5 | 388 | 411 | 389 | e270 | e400 | 1690 | 259 | 281 | 278 | 821 | 470 | 685 | | 6<br>7 | 386<br>388 | 400<br>391 | 363<br>344 | e250<br>e190 | e330<br>e270 | 1120<br>726 | 251<br>250 | 297<br>333 | 283<br>270 | 872<br>741 | 376<br>340 | 468<br>396 | | 8 | 391 | 399 | 341 | e200 | e260 | 561 | 258 | 349 | 259 | 732 | 672 | 335 | | 9 | 488 | 402 | 358 | e220 | e220 | 484 | 258 | 347 | 249 | 643 | 328 | 299 | | 10 | 513 | 398 | 3 60 | e300 | e240 | 459 | 255 | 325 | 240 | 583 | 347 | 277 | | 11 | 504 | 397 | 328 | e240 | e270 | 429 | 254 | 296 | 227 | 548 | 327 | 256 | | 12<br>13 | 472<br>466 | 400<br>419 | 335<br>391 | e270<br>e180 | e240<br>e270 | 414<br>404 | 293<br>326 | 282<br>287 | 219<br>235 | 601<br>740 | 367<br>577 | 242<br>235 | | 14 | 447 | 416 | 487 | e160 | e320 | 395 | 342 | 306 | 598 | e700 | 530 | 229 | | 15 | 500 | 404 | 483 | e150 | e400 | 388 | 352 | 310 | 682 | e620 | 428 | 219 | | 16 | 516 | 395 | 487 | e180 | e500 | 368 | 332 | 303 | 437 | e580 | 375 | 218 | | 17 | 486 | 390 | 475 | e160 | e470 | 349 | 318 | 289 | 377 | e580 | 343 | 210 | | 18 | 474 | 385 | 475 | e150 | e1400 | 334 | 310 | 271 | 943 | e540 | 321 | 203 | | 19<br>20 | 463<br>450 | 381<br>373 | 479<br>477 | e220<br>e190 | e2200<br>2590 | 329<br>322 | 306<br>e310 | 260<br>248 | 907<br>650 | e520<br>e490 | 308<br>297 | 196<br>193 | | | | | | | | | | | | | | | | 21 | 433<br>437 | 363 | e420 | e230 | 1760 | 313 | e300 | 244 | 805 | e450 | 285 | 193 | | 22<br>23 | 440 | 349<br>338 | e250<br>e200 | e340<br>e520 | e760<br>e500 | 308<br>313 | e290<br>e280 | 238<br>233 | 793<br><b>6</b> 52 | e420<br>407 | 276<br>268 | 257<br>427 | | 24 | 433 | e200 | e270 | e390 | e320 | 302 | e290 | 234 | 833 | 388 | 257 | 521 | | 25 | 437 | e100 | e210 | e270 | e330 | 297 | e300 | e230 | 1010 | 386 | 250 | 523 | | 26 | 431 | e110 | e200 | e240 | e320 | 320 | e270 | e230 | 790 | 372 | 263 | 399 | | 27 | 431 | e200 | e130 | e210 | e330 | 295 | 256 | 234 | 692 | 368 | e290 | 353 | | 28<br>29 | 428<br>414 | e350 | e150 | e230 | e350 | 283 | 265 | 233 | 626 | 362 | e285 | 321 | | 30 | 406 | e450<br>e490 | e250<br>e340 | e190<br>e150 | | 295<br>302 | 294<br>299 | 238<br>239 | 572<br>530 | 358<br>351 | 255<br>241 | 304<br>295 | | 31 | 403 | | e420 | e160 | | 298 | | 227 | | 345 | 220 | | | TOTAL | 13621 | 10959 | 11077 | 7370 | 15810 | 15241 | 8623 | 8512 | 15039 | 17195 | 11930 | 9234 | | MEAN | 439 | 365 | 357 | 238 | 565 | 492 | 287 | 275 | 501 | 555 | 385 | 308 | | XAM | 516 | 490 | 487 | 520 | 2590 | 1690 | 352 | 349 | 1010 | 927 | 1030 | 685 | | MIN<br>AC-FT | 386<br>27020 | 100<br>21740 | 130<br>21970 | 150<br>14620 | 170<br>31360 | 283<br>30230 | 250<br>17100 | 227<br>16880 | 217<br>29830 | 345<br>34110 | 220<br>23660 | 193<br>18320 | | CFSM | .66 | .55 | .53 | .36 | .84 | .73 | .43 | .41 | .75 | .83 | .58 | .46 | | IN. | .76 | .61 | . 62 | .41 | .88 | .85 | .48 | .47 | .84 | .96 | .66 | .51 | | STATIST | TICS OF M | ONTHLY ME | AN DATA E | OR WATER | YEARS 1942 | - 1994 | , BY WATER | YEAR (WY) | | | | | | MEAN | 150 | 140 | 104 | 85.9 | 217 | 501 | 395 | 370 | 616 | 351 | 242 | 178 | | MAX | 634 | 506 | 386 | 330 | 1016 | 1588 | 1889 | 1345 | 2856 | 1588 | 1230 | 1034 | | (WY) | 1983 | 1993 | 1983 | 1983 | 1971 | 1983 | 1983 | 1984 | 1984 | 1993 | 1951 | 1951 | | MIN | 9.36 | 14.6 | 5.74 | 3.25 | 3.64 | 25.6 | 19.9 | 35.9 | 48.5 | 33.3 | 12.6 | 5.48 | | (WY) | 1957 | 1959 | 1959 | 1959 | 1959 | 1957 | 1957 | 1968 | 1955 | 1956 | 1956 | 1956 | | SUMMARY | Y STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | FOR 1994 WA | TER YEAR | | WATER YE | ARS 1942 | - 1994 | | ANNUAL | | | | 273935 | | | 144611 | | | | | | | ANNUAL | | | | 751 | | | 396 | | | 279 | | | | | ANNUAL I | | | | | | | | | 983 | | 1983 | | | ANNUAL ME<br>DAILY ME | | | 5240 | Ma = 20 | | 2590 | Dab 20 | | 24.5 | Tum. | 1956 | | | DAILY ME | | | 100 | Mar 29<br>Nov 25 | | 100 | Feb 20<br>Nov 25 | | 14400<br>.00 | | 21 1983<br>21 1945 | | ANNUAL | SEVEN-DAY | MINIMUM | | 174 | Feb 23 | | 171 | Jan 13 | | 2.6 | Feb | 14 1959 | | INSTANT | PANEOUS PE | EAK FLOW | | | | | 3830 | Feb 19 | | 20800 | Sep : | 12 1978 | | | ANEOUS PE | | | | | | | Feb 19 | | 22.10 | Jun : | L2 1950 | | | RUNOFF (A | | | 543300 | _ | | 286800 | | | 202200 | | | | | RUNOFF (C | | | 1.1.<br>15.2 | | | .59<br>8.04 | | | .42<br>5,67 | | | | | ENT EXCE | | | 1340 | J | | 609 | | | 598 | | | | | ENT EXCE | | | 554 | | | 340 | | | 125 | | | | | ENT EXCE | | | 280 | | | 219 | | | 27 | | | | | | | | | | | | | | | | | #### LITTLE SIOUX RIVER BASIN #### 06607500 LITTLE SIOUX RIVER NEAR TURIN, IA LOCATION.--Lat 41°57'52", long 95 58'21", in NW1/4 NE1/4 sec.33, T.83 N., R.44 W., Monona County, Hydrologic Unit 10230003, on left bank on downstream side of bridge on county highway E54, 1.0 mi east of gaging station on Monona-Harrison ditch near Turin, 2.5 mi downstream from Maple River, 3.8 mi south of Turin, 6.2 mi northeast of Blencoe, and at mile 13.5. DRAINAGE AREA. --3,526 mi<sup>2</sup>. Prior to Jan. 15, 1958, 4,426 mi2, combined area above this station and Monona-Harrison ditch station 1.0 mi west. PERIOD OF RECORD.--January 1958 to current year. April 1939 to May 1942 at site 4.7 mi downstream, published as "near Blencoe" June 1942 to January 1958 at site 1,200 ft east on old river channel; records not equivalent owing to diversion into Monona-Harrison ditch through equalizer ditch 1.5 mi upstream 1923 to 1958, and diversion between Monona-Harrison ditch through diversion ditch 8.3 miles upstream since 1958. GAGE.--Water-stage encoder. Datum of gage is 1,019.85 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to July 15, 1958, nonrecording gages near present site at different datums. July 15 to Sept. 3, 1958, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Nov. 25 to Dec. 12, Dec. 22 to Feb. 19, Feb. 23 to Mar. 2, and July 22-28. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and and satellite data collection platform at station. | | DI | SCHARGE | , CUBIC | FEET PER | SECOND,<br>DAILY | WATER Y<br>MEAN V | YEAR OCT<br>VALUES | OBER 199 | 3 TO SEP | TEMBER 19 | 94 | | |----------|-----------------------|----------------|----------------|----------------|------------------|-------------------|--------------------|------------------|-----------------------|--------------|--------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2820 | 1710 | e2400 | e1700 | e800 | e2400 | 1830 | 1960 | 1470 | 7710 | 1530 | 1070 | | 2 | 2630 | 1700 | e2300 | e1400 | e880 | e2800 | 1760 | 2130 | 1460 | 6650 | 1740 | 1050 | | 3 | 2520 | 1690 | e2200 | e1000 | e840 | 3130 | 1710 | 2280 | 1460 | 5810 | 1600 | 1010 | | 4 | 2440 | 1660 | e1900 | e1100 | e960 | 3740 | 1680 | 2390 | 1460 | 5560 | 2010 | 1220 | | 5 | 2320 | 1600 | e1800 | e1200 | e1300 | 4740 | 1660 | 2450 | 1470 | 5430 | 1600 | 1400 | | 6 | 2220 | 1610 | e1800 | e1000 | e1200 | 6250 | 1660 | 2480 | 1460 | 5190 | 1370 | 1500 | | 7<br>8 | 2200<br>2170 | 1620<br>1610 | e1700<br>e1600 | e860<br>e880 | e1100 | 7050<br>5090 | 1630<br>1630 | 2530<br>2580 | 1470 | 4610<br>4300 | 1280<br>1700 | 1490<br>1420 | | 9 | 2300 | 1620 | e1600 | e1000 | e1100<br>e1000 | 4690 | 1600 | 2690 | 1610<br>1 <b>9</b> 70 | 3880 | 1330 | 1390 | | 10 | 2400 | 1620 | e1500 | e1200 | e1000 | 7310 | 1570 | 2720 | 2130 | 3620 | 1240 | 1300 | | | 2620 | 1620 | | | | | 1540 | 2700 | | | 1210 | 1210 | | 11<br>12 | 2740 | 1640 | e1400<br>e1450 | e1100<br>e1200 | e1100<br>e1050 | 7670<br>6240 | 1540<br>1570 | 2600 | 2070<br>2120 | 3450<br>3420 | 1210 | 1140 | | 13 | 2670 | 1650 | 1520 | e1000 | e1100 | 4730 | 1670 | 2440 | 2240 | 3570 | 1620 | 1080 | | 14 | 2540 | 1670 | 1600 | e840 | e1300 | 4100 | 1760 | 2340 | 3800 | 3580 | 2440 | 1030 | | 15 | 2490 | 1680 | 1600 | e740 | e1500 | 3910 | 1940 | 2260 | 4750 | 3740 | 1970 | 978 | | 16 | 2500 | 1680 | 1650 | e800 | e1800 | 3790 | 2210 | 2150 | 4250 | 4060 | 1850 | 935 | | 17 | 2390 | 1680 | 1740 | e760 | e1700 | 3640 | 2340 | 2030 | 3980 | 4260 | 1920 | 901 | | 18 | 2300 | 1670 | 1760 | e740 | e2300 | 3500 | 2390 | 1940 | 4920 | 4240 | 1930 | 880 | | 19 | 2230 | 1610 | 1820 | e880 | e9000 | 3330 | 2370 | 1860 | 6040 | 3940 | 1910 | 858 | | 20 | 2160 | 1600 | 1810 | e840 | 7400 | 3200 | 2340 | 1770 | 6280 | 3580 | 1850 | 832 | | 21 | 2090 | 1600 | 1700 | e900 | 6200 | 2980 | 2270 | 1670 | 6220 | 3300 | 1750 | 846 | | 22 | 2050 | 1580 | e1400 | e1200 | 4690 | 2780 | 2200 | 1630 | 5970 | e2900 | 1630 | 983 | | 23 | 2000 | 1560 | e1400 | e1500 | e3600 | 2630 | 2080 | 1610 | 6250 | e2600 | 1500 | 1350 | | 24 | 1990 | 1570 | e1500 | e1400 | e3000 | 2480 | 2020 | 1570 | 7100 | e2400 | 1400 | 1820 | | 25 | 1970 | <b>e10</b> 00 | e1400 | e1200 | e2000 | 2350 | 1960 | 1510 | 8020 | e2200 | 1330 | 2010 | | 26 | 1910 | e640 | e1200 | e1000 | e2000 | 2250 | 1910 | 1470 | 8540 | e2100 | 1310 | 1790 | | 27 | 1850 | e800 | e660 | e850 | e2000 | 2170 | 1820 | 1480 | 8380 | e1900 | 1250 | 1610 | | 28<br>29 | 1820 | e1500<br>e1900 | e760 | e900 | e2200 | 2090 | 1770 | 1490 | 8240<br>8280 | e1800 | 1480<br>1340 | 1460<br>1370 | | 30 | 1770<br>17 <b>4</b> 0 | e2400 | e1100<br>e1400 | e860<br>e720 | | 2010<br>1940 | 1820<br>1890 | 1500<br>1480 | 8380 | 1700<br>1620 | 1220 | 1370 | | 31 | 1730 | | e1800 | e740 | | 1890 | 1690 | 1460 | | 1540 | 1140 | | | TOTAL | 69580 | 47490 | 49470 | 31510 | 64120 | 116880 | 56600 | 63170 | 131790 | 114660 | 48650 | 37233 | | MEAN | 2245 | 1583 | 1596 | 1016 | 2290 | 3770 | 1887 | 2038 | 4393 | 3699 | 1569 | 1241 | | MAX | 2820 | 2400 | 2400 | 1700 | 9000 | 7670 | 2390 | 2720 | 8540 | 7710 | 2440 | 2010 | | MIN | 1730 | 640 | 660 | 720 | 800 | 1890 | 1540 | 1460 | 1460 | 1540 | 1140 | 832 | | AC-FT | 138000 | 94200 | 98120 | 62500 | 127200 | 231800 | 112300 | 125300 | 261400 | 227400 | 96500 | 73850 | | CFSM | .64 | .45 | . 45 | .29 | . 65 | 1.07 | . 54 | .58 | 1.25 | 1.05 | . 45 | .35 | | IN. | .73 | .50 | .52 | .33 | .68 | 1.23 | .60 | .67 | 1.39 | 1.21 | .51 | .39 | | STATIS | TICS OF M | ONTHLY ME | AN DATA E | FOR WATER | YEARS 194 | 0 - 1994 | , BY WATER | YEAR (WY | ') | | | | | MEAN | 563 | 579 | 438 | 314 | 609 | 1646 | 2123 | 1491 | 2084 | 1474 | 735 | 605 | | MAX | 3625 | 3612 | 2424 | 2250 | 3353 | 9054 | 10790 | 6253 | 15070 | 13110 | 5181 | 3980 | | (WY) | 1983 | 1980 | 1983 | 1992 | 1971 | 1983 | 1965 | 1993 | 1984 | 1993 | 1993 | 1993 | | MIN | .065 | .000 | .000 | .000 | .043 | .42 | .12 | .000 | .30 | .90 | .000 | .000 | | (WY) | 1949 | 1952 | 1951 | 1951 | 1957 | 1957 | 1957 | 1957 | 1956 | 1953 | 1957 | 1950 | | SUMMAR | Y STATIST | ICS | FOR | 1993 CALE | ENDAR YEAR | I | OR 1994 W | ATER YEAR | | WATER YE. | ARS 1940 | - 1994 | | ANNUAL | TOTAL | | | 1853170 | | | 831153 | | | | | | | ANNUAL | | | | 5077 | | | 2277 | | | 1067 | | | | | T ANNUAL | | | | | | | | | 5261 | | 1993 | | LOWEST | ANNUAL M | EAN | | | | | | | | .46 | _ | 1957 | | | T DAILY M | | | 25100 | Jul 19 | | 9000 | Feb 19 | | 28000 | | 19 1984 | | | DAILY ME | | | 500 | Feb 24 | | 640 | Nov 26<br>Jan 14 | | .00 | | 1 1939<br>14 1940 | | | SEVEN-DA | | | 596 | Feb 23 | | 800<br>a17000 | Jan 14<br>Feb 19 | | 31200 | | 21 1983 | | | TANEOUS P | | | | | | a17000<br>a24.7 | | | 27.44 | | 19 1971 | | | RUNOFF ( | | | 3676000 | | | 1649000 | O PED IS | | 772900 | | A. A. D.I.A. | | | RUNOFF ( | | | 1.4 | 14 | | .6 | 5 | | .30 | | | | ANNUAL | RUNOFF ( | INCHES) | | 19.5 | | | 8.7 | | | 4.11 | | | | | CENT EXCE | | | 11000 | | | 4250 | | | 2680 | | | | | CENT EXCE | | | 3540 | | | 1760 | | | 383 | | | | 90 PER | CENT EXCE | EDS | | 1200 | | | 1000 | | | .40 | | | e Estimated. a Ice affected. #### SOLDIER RIVER BASIN #### 06608500 SOLDIER RIVER AT PISGAH, IA LOCATION.--Lat 41°49'50", long 95°55'52", in NW1/4 NE1/4 sec.14, T.81 N., R.44 W., Harrison County, Hydrologic Unit 10230001, on right bank at upstream side of bridge on county highway F20, at west edge of Pisgah, 0.4 mi downstream from Cobb Creek, 0.5 mi upstream from Mogger Ditch, and 13.1 mi upstream from mouth. DRAINAGE AREA.--407 mi<sup>2</sup>. PERIOD OF RECORD .-- March 1940 to current year. REVISED RECORDS.--WSP 956: 1940 (M). WSP 1240: 1940, 1941 (M), 1947. WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,036.53 ft above sea level. Prior to Oct. 11, 1954, nonrecording gage at same site and datum with supplementary water-stage recorder operating above 8.2 ft gage height Mar. 2, 1946 to Sept. 24, 1953. Prior to Feb. 1954, on left bank at downstream side of bridge. Prior to June 21, 1989, at site 100 ft downstream at same datum. REMARKS.--Estimated daily discharges: Nov. 9-11, 24-30, Dec. 3-13, Dec. 22 to Feb. 18, and Feb. 23 to Mar. 2. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. | | DI | SCHARGE | , CUBIC | FEET PER | SECOND, V | WATER Y | ZEAR OCTO | BER 1993 | TO SEP | TEMBER 19 | 94 | | |------------------|-----------------------|--------------|--------------|--------------|-----------------|-------------|-------------|--------------------|--------------|----------------------|--------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 355 | 276 | 790 | e330 | e130 | e320 | 180 | 165 | 121 | 136 | 226 | 140 | | 2 | 336 | 280 | 722 | e210 | e140 | e500 | 177 | 156 | 144 | 171 | 152 | 140 | | 3 | 335 | 283 | e564 | e170 | e130 | 749 | 170 | 152 | 132 | 155 | 458 | 140 | | 4<br>5 | 332<br>320 | 286<br>275 | e277<br>e259 | e200<br>e210 | e150<br>e280 | 1180<br>562 | 172<br>164 | 156<br>15 <b>5</b> | 125<br>243 | 517<br>1 <b>62</b> 0 | 550<br>194 | 574<br>553 | | | | | | | | | | | | | | | | 6<br>7 | 321<br>321 | 248<br>262 | e252 | e180 | e220 | 388<br>284 | 154<br>160 | 169<br>177 | 245<br>142 | 797<br>396 | 165<br>161 | 214<br>178 | | 8 | 321 | 270 | e270<br>e230 | e130<br>e140 | e180<br>e180 | 284<br>245 | 158 | 168 | 151 | 291 | 670 | 167 | | ğ | 511 | e267 | e250 | e150 | e150 | 231 | 157 | 163 | 153 | 239 | 217 | 161 | | 10 | 393 | e266 | e210 | e200 | e160 | 233 | 154 | 156 | 136 | 221 | 247 | 155 | | 11 | 342 | e264 | e180 | e170 | e190 | 219 | 148 | 151 | 159 | 207 | 231 | 148 | | 12 | 332 | 267 | e210 | e190 | e170 | 231 | 193 | 145 | 1150 | 459 | 206 | 142 | | 13 | 317 | 301<br>268 | e250<br>313 | e140 | e190 | 224 | 212<br>176 | 145<br>154 | 374<br>200 | 743<br>307 | 339<br>208 | 138<br>134 | | 1 <b>4</b><br>15 | 314<br>432 | 263 | 250 | e110<br>e110 | e250<br>e410 | 224<br>224 | 197 | 153 | 159 | 247 | 180 | 128 | | 16 | 394 | 262 | 255 | e120 | e700 | 207 | 174 | 143 | 146 | 247 | 173 | 126 | | 17 | 341 | 264 | 254 | e120 | e1500 | 202 | 161 | 140 | 144 | 220 | 167 | 121 | | 18 | 332 | 257 | 264 | e110 | e2500 | 202 | 165 | 134 | 886 | 202 | 160 | 121 | | 19 | 325 | 256 | 251 | e150 | 1250 | 204 | 160 | 130 | 265 | 195 | 156 | 121 | | 20 | 320 | 241 | 238 | e130 | 374 | 206 | 15 <b>6</b> | 128 | 187 | 189 | 148 | 120 | | 21 | 315<br>309 | 248<br>250 | 210<br>e170 | e150 | 253<br>225 | 201<br>197 | 162<br>158 | 125<br>122 | 241<br>193 | 189<br>184 | 142<br>142 | 129<br>258 | | 22<br>23 | 311 | 245 | e170<br>e190 | e270<br>e400 | e210 | 202 | 156 | 123 | 238 | 178 | 142 | 360 | | 24 | 308 | e200 | e210 | e200 | e150 | 193 | 159 | 124 | 187 | 180 | 139 | 205 | | 25 | 306 | e60 | e180 | e190 | e160 | 178 | 159 | 120 | 161 | 175 | 146 | 179 | | 26 | 296 | e66 | e170 | e160 | e150 | 188 | 153 | 118 | 148 | 160 | 263 | 165 | | 27 | 292 | e150 | e90 | e140 | e170 | 188 | 143 | 120 | 142 | 152 | 170 | 151 | | 28 | 297 | e300 | e100 | e150 | - e230 | 178 | 150 | 121 | 139 | 153 | 151 | 148 | | 29<br>30 | 282<br>269 | e600<br>e760 | e140<br>e230 | e130<br>e110 | | 178<br>171 | 178<br>161 | 136<br>138 | 134<br>133 | 153<br>154 | 157<br>151 | 145<br>145 | | 31 | 263 | | e400 | e120 | | 180 | | 125 | | 152 | 163 | | | TOTAL | 10241 | 8235 | 8379 | 5290 | 10802 | 8889 | 4967 | 4412 | 6978 | 9389 | 6774 | 5606 | | MEAN | 330 | 274 | 270 | 171 | 386 | 287 | 166 | 142 | 233 | 303 | 219 | 187 | | MAX | 511 | 760 | 790 | 400 | 2500 | 1180 | 212 | 177 | 1150 | 1620 | 670 | 574 | | MIN | 263 | 60 | 90 | 110 | 130 | 171 | 143 | 118 | 121 | 136 | 139 | 120 | | AC-FT<br>CFSM | 20310<br>.81 | 16330 | 16620<br>.66 | 10490<br>.42 | 21430<br>.95 | 17630 | 9850<br>.41 | 8750<br>.35 | 13840<br>.57 | 18620<br>.74 | 13440<br>.54 | 11120<br>.46 | | IN. | .94 | .67<br>.75 | .77 | .42 | .99 | .70<br>.81 | .45 | .40 | .64 | .86 | .62 | .51 | | STATIS' | TICS OF MC | ONTHLY MEA | N DATA I | FOR WATER | YEARS 1941 | - 1994 | , BY WATER | YEAR (WY) | | | | | | MEAN | 72.7 | 67.7 | 57.5 | 59.8 | 294 | 278 | 153 | 185 | 297 | 176 | 133 | 109 | | MAX | 330 | 274 | 270 | 431 | 7917 | 897 | 623 | 555 | 1233 | 1607 | 632 | 482 | | (WY) | 1994 | 1994 | 1994 | 1952 | 1985 | 1993 | 1983 | 1984 | 1991 | 1993 | 1993 | 1978 | | MIN | 9.61 | 12.8 | 6.05 | 3.29 | 9.43 | 27.8 | 12.5 | 13.6 | 22.1 | 22.8 | 14.4 | 6.70 | | (WY) | 1957 | 1959 | 1959 | 1959 | 1956 | 1957 | 1957 | 1957 | 1956 | 1970 | 1971 | 1956 | | SUMMAR | Y STATIST | cs | FOR | 1993 CALE | NDAR YEAR | I | FOR 1994 WA | TER YEAR | | WATER YE | ARS 1941 | - 1994 | | ANNUAL | TOTAL | | | 187336 | | | 89962 | | | | | | | ANNUAL | | | | 513 | | | 246 | | | 145 | | | | | r annual m | | | | | | | | | 487 | | 1993 | | | ANNUAL ME | | | 18400 | 71 0 | | 2500 | n-1 10 | | 27.3 | D | 1956 | | | DAILY ME<br>DAILY MEA | | | 18400 | Jul 9<br>Nov 25 | | 2500<br>60 | Feb 18<br>Nov 25 | | 19200<br>2.0 | | 23 1984<br>2 1945 | | | SEVEN-DAY | | | 134 | Feb 22 | | 121 | May 22 | | 2.0 | Jan | 2 1945 | | | TANEOUS PE | | | | | | a5200 | Feb 18 | | 23400 | Jul | 9 1993 | | INSTANT | TANEOUS PE | AK STAGE | | | | | a14.06 | Feb 18 | | 28.17 | | L2 1950 | | ANNUAL | | (C-FT) | | 371600 | | | 178400 | | | 104800 | | | | ANNUAL<br>ANNUAL | RUNOFF (C | FSM) | | 1.2<br>17.1 | | | .61<br>8.22 | | | .36<br>4.83 | | | | 10 PERG | ENT EXCEE | DS | | 777 | ۷. | | 366 | | | 281 | | | | | CENT EXCEE | | | 329 | | | 187 | | | 61 | | | | 90 PERC | CENT EXCEE | DS | | 170 | | | 131 | | | 15 | | | e Estimated. a Ice affected. #### 06609500 BOYER RIVER AT LOGAN, IA LOCATION.--Lat 41°38'33", long 95°46'57", in SE1/4 NW1/4 sec.19, T.79 N., R.42 W., Harrison County, Hydrologic Unit 10230007, on left bank 9 ft downstream from Chicago Central and Pacific Railroad bridge at Logan, 0.4 mi downstream from Elk Grove Creek, 10.5 mi upstream from Willow Creek, and 15.8 mi upstream from mouth. DRAINAGE AREA.--871 mi<sup>2</sup>. PERIOD OF RECORD.--May 1918 to July 1925, November 1937 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 956: 1938-39. WSP 1240: 1918-19, 1920 (M), 1921, 1922 (M), 1924-25, 1938 (M), 1945. WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,009.38 ft above sea level (Chicago and Northwestern Railway Company bench mark). See WSP 1918 for history of changes prior to Oct. 18, 1960. REMARKS.--Estimated daily discharges: Oct. 2-6, Nov. 24 to Dec. 3, Dec. 22 to Feb. 18, Feb. 20 to Mar. 3, June 20-23, and July 1,2, 8. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. | DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 695 533 660 620 620 620 600 325 288 201 6313 100 187 2 666 537 660 6370 6320 600 325 288 201 6313 100 187 3 667 537 660 6370 6320 600 325 288 201 6313 100 187 3 667 530 638 440 6313 100 310 220 210 213 537 362 136 5 6635 520 475 6420 6300 2210 310 229 315 1040 379 615 6 6614 992 458 630 621 72 220 630 722 727 6 6 614 992 458 630 621 620 620 620 620 620 620 620 620 620 620 | | DI | SCHARGE | E, CUBIC | FEET PER | SECOND, V | WATER Y<br>MEAN V | YEAR OCTO<br>/ALUES | DBER 1993 | TO SEP | TEMBER 19 | 94 | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|------------|-----------|-----------|------------|-------------------|---------------------|-----------|--------|-----------|----------|--------| | 2 | DAY | | | | | | | | | | | | SEP | | 2 | 1 | 695 | 533 | 9680 | e520 | e290 | e600 | 325 | 288 | 201 | A313 | 190 | 187 | | 3 | | | | | e370 | | | | | | | | | | 4 e676 540 518 e400 e370 2500 310 260 219 487 554 336 55 e555 520 475 e420 e500 2210 310 260 279 315 1040 379 615 65 6655 520 475 e420 e500 2210 310 250 315 1040 379 615 66 e614 492 495 e340 e340 e340 1190 255 267 352 927 284 453 288 8 624 500 421 e300 e390 614 233 297 234 e430 272 272 124 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | | | | | | | | | | S | 4 | e676 | 540 | 518 | e400 | e370 | | | 260 | 219 | 487 | 554 | | | 7 618 485 429 e280 e390 785 291 300 2772 548 249 328 8 624 500 421 e300 e300 614 233 297 234 e330 272 272 272 9 826 506 498 e300 2294 230 230 239 281 383 255 244 10 813 490 445 e320 e360 498 290 294 230 350 219 221 11 714 502 408 e360 e430 471 279 285 251 316 281 201 12 663 505 407 e400 e410 458 318 275 530 230 239 189 114 653 577 e400 e410 458 318 275 530 230 239 189 114 653 577 e400 e410 458 318 275 578 578 578 578 578 578 578 578 578 5 | | | | | | | | | | | | | | | 8 624 500 421 e300 e390 614 233 297 234 e430 272 272 272 9 286 286 286 286 286 286 289 286 289 289 282 282 283 282 285 284 282 281 281 281 281 281 281 281 281 281 | | | | | | | | | | | | | | | 9 9 826 506 442 e320 e340 520 290 299 285 383 258 244 210 10 813 490 445 e420 e326 498 290 294 232 350 249 221 11 714 502 408 e360 e430 471 279 285 281 331 6 281 201 12 683 505 407 4400 e410 458 318 274 630 302 238 189 133 653 527 460 e230 e440 451 376 265 714 540 357 175 146 645 516 496 e230 e500 444 355 273 489 421 331 173 15 739 497 488 e230 e600 428 342 274 429 343 276 165 165 167 676 498 491 e240 e700 412 348 258 331 320 240 167 177 179 180 180 180 180 180 180 180 180 180 180 | | 618 | | | | e390 | | | | | | | 328 | | 10 813 490 445 e420 e360 498 290 294 232 350 249 221 111 714 502 408 e360 e4130 411 279 285 231 316 281 281 112 663 505 407 e400 e410 458 318 276 650 714 500 335 215 114 665 516 496 e230 e500 444 3355 273 489 421 331 173 115 739 497 488 e230 e600 428 342 274 429 343 276 165 16 760 489 491 e240 e700 412 348 258 331 320 240 167 17 676 494 491 e240 e2200 e330 20 220 6300 220 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 6320 20 640 262 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 20 622 | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | 12 683 505 407 e400 e410 458 318 274 630 302 238 189 131 653 527 460 e290 e440 451 376 265 714 540 357 175 14 645 516 496 e230 e500 444 3355 273 489 421 331 173 15 739 497 488 e230 e500 444 3355 273 489 421 331 173 15 739 497 488 e230 e500 448 342 274 429 343 276 165 165 16 760 489 491 e240 e700 412 348 258 321 320 240 167 17 676 494 491 e240 e1200 403 308 242 305 300 220 161 18 652 484 507 e230 e3300 401 298 231 865 290 210 159 19 634 490 505 e290 2255 393 287 226 553 274 199 155 20 624 468 487 e270 e1600 390 274 221 e408 228 187 158 19 634 490 505 e290 2250 393 287 226 553 274 199 155 20 624 468 487 e270 e1600 390 274 221 e408 228 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 158 187 1 | 10 | 813 | 490 | 445 | e420 | e360 | 498 | 290 | 294 | 232 | 350 | 249 | | | 13 | | | | | | | | | | | | | | | 14 645 516 496 e230 e500 444 355 273 489 421 331 173 15 739 487 488 e230 e600 428 342 274 429 343 276 165 16 760 489 491 e240 e700 412 348 22 274 429 343 276 165 116 760 489 491 e240 e200 e103 380 242 213 865 290 220 161 118 652 444 507 e230 e1200 e1300 e130 220 213 865 290 220 151 118 652 444 507 e230 e1300 e130 228 221 865 290 220 151 119 634 490 505 e290 e2550 393 287 226 563 274 199 155 20 624 468 487 e270 e1600 390 274 221 e108 258 187 158 21 615 465 424 e100 e1000 380 291 216 e108 258 187 158 22 599 463 e10 e600 e600 420 e700 388 283 214 e108 258 187 158 22 599 465 e10 e600 e600 e600 620 652 266 216 e125 237 169 338 24 592 e420 e10 e650 e390 360 264 216 887 238 165 339 25 599 e200 e360 e390 e400 340 264 212 332 234 181 291 25 579 e200 e360 e390 e400 340 264 212 332 234 181 291 26 573 e230 e320 e360 e390 e400 340 264 212 332 234 181 291 26 575 e230 e300 e300 e300 e300 e101 345 253 211 329 220 346 255 29 553 e480 e300 e300 e300 e300 e 324 281 295 228 266 182 204 197 31 521 e600 e100 e200 e 324 285 228 266 182 204 197 31 521 e600 e270 322 2 217 175 205 TOTAL 19800 14148 1882 10110 19800 18882 8885 7760 10946 1100 7824 7178 MEAN 422 f33 447 1389 279 609 250 376 300 665 1000 554 615 MIN 521 200 230 230 230 230 230 230 230 230 230 | | | | | | | | | | | | | | | 15 739 497 488 e230 e600 428 342 274 429 343 276 165 16 760 489 491 e240 e700 412 348 258 331 320 240 161 17 676 489 491 e240 e1200 413 328 228 331 320 240 161 18 62 484 591 e240 e1200 403 328 228 355 300 220 161 18 634 460 505 e290 e350 933 287 226 555 274 109 155 20 624 468 487 e270 e1600 390 274 221 e408 258 187 158 21 613 465 424 e300 e1000 380 291 216 e387 250 178 158 21 613 465 624 e466 e80 e20 e360 e420 e700 368 283 214 e381 243 174 228 22 599 463 e360 e420 e700 368 283 214 e381 243 174 228 23 592 e420 e310 e450 e390 362 266 216 e425 237 163 338 24 592 e420 e310 e450 e390 340 264 212 332 224 181 291 25 573 e220 e320 e360 e330 345 253 211 329 220 346 269 277 575 680 e420 e320 e360 e330 e310 e410 346 242 208 320 205 307 235 28 560 e400 e240 e320 e300 343 241 199 296 198 229 219 30 527 e600 e300 e300 e300 e340 242 208 320 205 307 235 28 560 e400 e240 e320 e300 e300 e300 e300 e300 e300 e30 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17 | 15 | 739 | 497 | 488 | e230 | e600 | 428 | 342 | 274 | 429 | 343 | 276 | 165 | | 18 | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | 161 | | 20 624 468 487 e270 e1600 390 274 221 e408 258 187 158 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 22 599 463 | 20 | 624 | 468 | 487 | e270 | e1600 | 390 | 274 | 221 | e408 | 258 | 187 | 128 | | 23 594 465 e380 e640 e620 362 266 216 397 238 165 339 25 599 e200 e360 e390 e400 340 264 216 397 238 165 339 25 599 e200 e360 e390 e400 340 264 212 332 234 181 291 26 573 e230 e320 e360 e390 e400 340 264 212 332 224 181 291 26 573 e230 e310 e410 346 242 208 320 205 307 235 28 560 e400 e240 e320 e500 343 241 199 296 198 229 219 30 527 e600 e400 e260 324 285 228 266 182 204 197 31 521 e600 e270 322 2 217 175 205 TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 826 500 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 290 322 241 199 201 175 165 155 MIN 521 200 250 230 290 322 241 199 201 175 165 155 MIN 521 200 250 230 290 322 241 199 201 175 165 155 MIN 521 300 250 3935 37450 17620 15280 21710 21820 15540 14240 CESM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 190 155 128 124 306 622 430 486 727 431 299 259 MIN 11.1 8.33 .6.68 3.06 3.55 540.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1988 1688 2541 3022 1636 1288 MIN 1974 1974 1973 1973 1973 1971 1979 1983 1984 1990 1993 1951 1979 MIN 11.1 8.33 .6.68 3.06 3.55 540.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOROFF (CFSM) 1.20 Feb 24 155 Sep 1 | 21 | 613 | 465 | 424 | e300 | e1000 | 380 | 291 | 216 | e387 | 250 | 178 | 157 | | 23 594 465 e380 e640 e620 362 266 216 397 238 165 339 25 599 e200 e360 e390 e400 340 264 216 397 238 165 339 25 599 e200 e360 e390 e400 340 264 212 332 234 181 291 26 573 e230 e320 e360 e390 e400 340 264 212 332 224 181 291 26 573 e230 e310 e410 346 242 208 320 205 307 235 28 560 e400 e240 e320 e500 343 241 199 296 198 229 219 30 527 e600 e400 e260 324 285 228 266 182 204 197 31 521 e600 e270 322 2 217 175 205 TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 826 500 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 290 322 241 199 201 175 165 155 MIN 521 200 250 230 290 322 241 199 201 175 165 155 MIN 521 200 250 230 290 322 241 199 201 175 165 155 MIN 521 300 250 3935 37450 17620 15280 21710 21820 15540 14240 CESM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 190 155 128 124 306 622 430 486 727 431 299 259 MIN 11.1 8.33 .6.68 3.06 3.55 540.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1988 1688 2541 3022 1636 1288 MIN 1974 1974 1973 1973 1973 1971 1979 1983 1984 1990 1993 1951 1979 MIN 11.1 8.33 .6.68 3.06 3.55 540.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOTAL ANNUAL MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANUAL TOROFF (CFSM) 1.20 Feb 24 155 Sep 1 | 22 | | 463 | e360 | e420 | e700 | 368 | 283 | 214 | e381 | 243 | 174 | 228 | | 25 589 e200 e360 e390 e400 340 264 212 332 234 181 291 26 573 e230 e320 e360 e390 345 253 211 329 220 346 269 27 557 e350 e230 e310 e410 346 242 208 320 205 307 235 28 560 e400 e240 e320 e500 343 241 199 296 198 229 219 29 553 e480 e300 e300 334 273 227 278 192 201 210 30 527 e600 e400 e260 324 285 228 266 182 204 197 31 521 e600 e270 322 217 175 205 TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 826 600 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 290 322 241 199 201 175 165 155 ACF-FT 39450 28130 27480 20850 39350 37450 17620 12580 21710 21820 15540 14240 CFSM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .55 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 180 165 128 124 306 622 430 496 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1976 MIN 11:1 8.33 6.68 3.06 3.55 40.4 2.3 39.9 33.3 51.0 34.5 11.6 MIN 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1976 1993 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL TOTAL 382401 | 23 | 594 | 465 | e380 | e640 | | 362 | 266 | 216 | e425 | 237 | 169 | 338 | | 26 573 e230 e320 e360 e390 345 253 211 329 220 346 269 27 557 e350 e230 e310 e410 346 242 208 320 205 307 235 28 560 e400 e240 e320 e500 343 241 199 296 198 229 219 29 553 e480 e300 e300 334 273 227 278 192 201 210 30 527 e600 e400 e260 324 285 228 266 182 204 197 31 521 e600 e270 324 285 228 266 182 204 197 31 521 e600 e270 322 2 217 175 205 TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 826 600 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 290 322 241 199 201 175 165 155 AC-FT 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 14240 CFSM .74 1.54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .42 .7175 .7175 .7175 .7175 .7175 .7175 .7175 .7175 .7175 .7175 .7175 .7175 .7575757575757575 | | | | | | | | | | | | | | | 27 557 e350 e230 e330 e310 e410 346 242 208 320 205 307 235 28 560 e400 e240 e320 e500 343 241 199 296 198 229 219 29 553 e480 e300 e300 e 324 285 228 226 266 182 204 197 31 521 e600 e400 e260 324 285 228 266 182 204 197 31 521 e600 e270 322 217 175 205 TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 669 296 249 365 355 253 239 MAX 826 600 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 230 230 322 241 199 201 175 165 155 AC-FT 39450 20130 27480 20850 39350 37450 17620 15280 21710 21820 1540 14240 CFSM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 180 165 128 124 306 622 430 486 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.05 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1938 24601 Jul 9 3000 Feb 18 24600 Jul 9 1993 ANNUAL MEAN 1048 1048 1048 413 349 HIGHEST ANNUAL MEAN 340 HIGHEST ANNUAL MEAN 1048 413 550 FREENT EXCEED 5 758500 ANNUAL RUN | 25 | 589 | e200 | e360 | e390 | e400 | 340 | 264 | 212 | 332 | 234 | 181 | 291 | | 28 560 e400 e240 e320 e500 343 241 199 296 198 229 219 30 527 e600 e400 e260 334 273 227 278 192 201 210 30 527 e600 e400 e260 322 282 266 182 204 197 31 521 e600 e270 322 282 266 182 204 197 31 521 e600 e270 322 217 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 175 205 205 205 205 205 205 205 205 205 20 | 26 | 573 | e230 | e320 | e360 | e390 | 345 | 253 | 211 | 329 | 220 | 346 | 269 | | 29 553 e480 e300 e300 334 273 227 278 192 201 210 30 527 e-600 e400 e260 324 285 228 266 182 204 197 31 521 e600 e270 322 217 175 205 TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 926 600 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 290 322 241 199 201 175 165 155 AC-FT 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 14240 CFSM .74 .54 .51 .39 .61 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 180 165 128 124 306 622 430 486 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEAR 1919 - 1994 ANNUAL TOTAL 382401 1048 413 LOWEST ANNUAL MEAN 1048 1048 1048 1050 Feb 18 24600 Jul 9 1993 19940 1993 1950 1957 1968 1957 1968 1957 1976 1979 1989 ANNUAL TOTAL 382401 155 Sep 19 1.5 Jul 16 1938 ANNUAL MEAN 1048 1048 1050 Feb 18 24600 Jul 9 1993 1995 1993 1995 1994 1995 1995 1995 1995 1995 1995 | | | | | | | | | | | | | | | 30 527 e600 e400 e260 324 285 228 266 182 204 197 31 521 e600 e270 322 217 175 205 TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 826 600 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 220 290 322 241 199 201 175 165 155 AC-FT 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 14240 CFSM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 180 165 128 124 306 622 430 486 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1994 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL MEAN 1048 413 349 LOWEST ANNUAL MEAN 1048 1940 1938 1940 1956 1977 1976 1939 LOWEST ANNUAL MEAN 1048 160 Feb 24 155 Sep 19 1.5 Jul 16 1938 LOWEST ANNUAL MEAN 160 Feb 24 155 Sep 19 1.5 Jul 16 1938 LOWEST DAILY MEAN 247 Feb 22 160 Sep 15 2.0 Jul 19 1993 LOWEST DAILY MEAN 247 Feb 22 160 Sep 15 2.0 Jul 19 1993 LOWEST DAILY MEAN 247 Feb 22 160 Sep 15 2.0 Jul 19 1993 LOWEST DAILY MEAN 247 Feb 22 160 Sep 15 2.0 Jul 19 1993 LOWEST DAILY MEAN 247 Feb 22 160 Sep 15 2.0 Jul 19 1993 LOWEST DAILY MEAN 247 Feb 22 160 Sep 15 2.0 Jul 16 1938 ANNUAL BEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jul 16 1938 ANNUAL BEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jul 16 1938 ANNUAL RUNOFF (CF SM) 1.20 47 Feb 22 160 Sep 15 2.0 Jul 17 1990 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CF SM) 1.20 47 Feb 22 160 Sep 15 2.0 Jul 17 1990 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CF SM) 1.20 47 Feb 22 160 Sep 15 2.0 Jul 17 1990 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CF SM) 1.20 47 Feb 22 160 Sep 15 2.0 Jul 17 1990 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CF SM) | | | | e240 | e320 | e500 | | | | | | | | | TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 826 600 680 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 290 322 241 199 201 175 165 155 AC-FT 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 14240 CFSM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 180 165 128 124 306 622 430 486 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1658 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1658 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR YEAR YEAR YEAR YEAR YEAR YEAR YE | 29 | | e480 | e300 | e300 | | | 273 | 227 | | | | | | TOTAL 19890 14184 13852 10510 19840 18882 8885 7706 10946 11000 7834 7178 MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 826 600 680 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 230 322 241 199 201 175 165 155 AC-ET 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 14240 CFSM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 180 165 128 124 306 622 430 486 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEAR 1919 - 1994 ANNUAL MEAN 1048 413 349 LOWEST ANNUAL MEAN 1048 413 349 LOWEST ANNUAL MEAN 1048 1048 413 58.7 1956 LOWEST ANNUAL MEAN 1048 1048 413 58.7 1956 LOWEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 LOWEST DAILY MEAN 24600 Jul 9 3300 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 24600 Jul 9 3300 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 24600 Jul 9 3300 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 24600 Jul 9 3000 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 24600 Jul 9 3000 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 24600 Jul 9 3000 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 24600 Jul 9 3000 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 3600 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL RONOFF (CFSM) 1.20 4600 Jul 9 3000 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 3600 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL RONOFF (CFSM) 1.20 4600 Jul 9 3000 Feb 18 30800 Jun 17 1990 LOWEST DAILY MEAN 3600 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL RONOFF (CFSM) 1.20 4600 Jul 9 10000 Feb 18 30800 Jun 17 1990 LOWEST DA | 30 | | e600 | | | | | 285 | 228 | 266 | | | 197 | | MEAN 642 473 447 339 709 609 296 249 365 355 253 239 MAX 826 600 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 290 322 241 199 201 175 165 155 AC-FT 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 15280 21710 21820 15540 14240 20850 39350 37450 17620 1770 340 1780 1780 1780 1780 1780 1780 1780 178 | 31 | 521 | | e600 | e270 | | 322 | | 217 | | 175 | 205 | | | MAX 826 600 680 640 3300 2500 376 300 865 1040 554 615 MIN 521 200 230 230 290 322 241 199 201 175 165 155 AC-FT 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 14240 CFSM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 180 165 128 124 306 622 430 486 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL TOTAL 382401 155707 ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 1048 413 349 HIGHEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 1057 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK FLOW 1157 78500 298900 258000 ANNUAL RUNOFF (CFSM) 1.20 47 47 40 ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44 10 PERCENT EXCEEDS 1774 342 542 555 | TOTAL | 19890 | 14184 | 13852 | 10510 | 19840 | 18882 | 8885 | 7706 | 10946 | 11000 | 7834 | 7178 | | MIN 521 200 230 230 290 322 241 199 201 175 165 155 156 AC-FT 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 12420 CFSM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN | | 642 | 473 | 447 | | 709 | | | | | | | 239 | | AC-FT 39450 28130 27480 20850 39350 37450 17620 15280 21710 21820 15540 14240 CFSM .74 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 .31 .31 .35 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 .31 .31 .33 .33 .47 .47 .33 .31 .31 .33 .33 .47 .47 .33 .31 .31 .33 .33 .47 .47 .33 .31 .31 .33 .33 .47 .47 .33 .31 .33 .33 .33 .34 .34 .34 .34 .34 .34 .34 | MAX | | 600 | | 640 | 3300 | | | | | | | 615 | | CFSM .74 .54 .51 .39 .81 .70 .34 .29 .42 .41 .29 .27 IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN | | | | | | | | | | | | | | | IN85 .61 .59 .45 .85 .81 .38 .33 .47 .47 .33 .31 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN | | 39450 | | | | | 37450 | | | | 21820 | | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1994, BY WATER YEAR (WY) MEAN 180 165 128 124 306 622 430 486 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL TOTAL 382401 150707 ANNUAL MEAN 1048 413 349 LOWEST ANNUAL MEAN 58.7 1996 HIGHEST ANNUAL MEAN 58.7 1996 HIGHEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 1050 1150 1150 1150 1150 1150 1150 115 | | | | | | | .70 | | | | .41 | | | | MEAN 180 165 128 124 306 622 430 486 727 431 299 259 MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1974 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL MEAN 1048 150707 413 349 1196 193 LOWEST ANNUAL MEAN 1048 15070 1196 193 1018 193 10 | IN. | .85 | .61 | .59 | .45 | .85 | .81 | .38 | .33 | .47 | .47 | .33 | .31 | | MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1973 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 1048 413 349 HIGHEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 1055 1055 1055 1055 1055 1055 1055 105 | STATIS | TICS OF M | ONTHLY ME. | AN DATA E | FOR WATER | YEARS 1919 | - 1994, | BY WATER | YEAR (WY) | | | | | | MAX 796 558 565 692 1209 2619 1988 1698 2541 3022 1636 1288 (WY) 1974 1973 1973 1973 1971 1979 1983 1984 1990 1993 1951 1978 MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 58.7 1956 1993 LOWEST ANNUAL MEAN 58.7 1956 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 1058 1980 1980 1980 1980 1980 1980 1980 198 | MEAN | 180 | 165 | 128 | 124 | 306 | 622 | 430 | 486 | 727 | 431 | 299 | 259 | | MIN | | | | | | | | | | | | | | | MIN 11.1 8.33 6.68 3.06 3.55 40.4 23.3 39.9 33.3 51.0 34.5 11.6 (WY) 1957 1940 1938 1940 1940 1981 1957 1968 1956 1977 1976 1939 SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1919 - 1994 ANNUAL TOTAL 382401 150707 ANNUAL MEAN 1048 413 349 1018 1993 LOWEST ANNUAL MEAN 1048 58.7 1956 HIGHEST ANNUAL MEAN 58.7 1956 HIGHEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 758500 298900 252800 ANNUAL RUNOFF (AC-FT) 758500 298900 252800 ANNUAL RUNOFF (AC-FT) 758500 298900 525200 ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44 10 PERCENT EXCEEDS 774 342 155 | | | | | | | | | | | | | | | Name | | | | | | | | | | | | | | | ANNUAL TOTAL 382401 150707 ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 58.7 1956 LOWEST ANNUAL MEAN 58.7 1956 HIGHEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 10500 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK STAGE 155.07 Feb 18 25.22 Mar 1 1965 ANNUAL RUNOFF (AC-FT) 758500 298900 252800 ANNUAL RUNOFF (CFSM) 1.20 .47 .40 ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44 10 PERCENT EXCEEDS 1720 632 757 50 PERCENT EXCEEDS 774 342 155 | | | | | | | | | | | | | 1939 | | ANNUAL TOTAL 382401 150707 ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 587 1953 LOWEST ANNUAL MEAN 587 1953 LOWEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 10500 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK STAGE 10500 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK STAGE 298900 252800 ANNUAL RUNOFF (CFSM) 1.20 298900 252800 ANNUAL RUNOFF (CFSM) 1.20 6.44 5.44 10 PERCENT EXCEEDS 1720 632 757 50 PERCENT EXCEEDS 774 342 155 | SUMMARY | Y STATIST | ICS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | ATER YEAR | | WATER YE | ARS 1919 | - 1994 | | ANNUAL MEAN 1048 413 349 HIGHEST ANNUAL MEAN 1018 1993 LOWEST ANNUAL MEAN 58.7 1956 HIGHEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 10500 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK STAGE 10500 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK STAGE 155.22 Mar 1 1965 ANNUAL RUNOFF (CFSM) 1.20 298900 252800 ANNUAL RUNOFF (CFSM) 1.20 47 .40 ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44 10 PERCENT EXCEEDS 1720 632 757 50 PERCENT EXCEEDS 774 342 155 | 3 3737773 7 | moma. | Ÿ | | | | | 150707 | | | | | | | HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN 180 Feb 24 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 105 ANNUAL SEVEN-DAY MINIMUM 180 Feb 24 180 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW 105 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 1.20 298900 252800 ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44 10 PERCENT EXCEEDS 774 342 155 | | | | | | | | | | | 240 | | | | LOWEST ANNUAL MEAN 58.7 1956 | | | MESN | | 1040 | | | 413 | | | | | 1003 | | HIGHEST DAILY MEAN 24600 Jul 9 3300 Feb 18 24600 Jul 9 1993 LOWEST DAILY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW a10500 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK STAGE a15.07 Feb 18 25.22 Mar 1 1965 ANNUAL RUNOFF (AC-FT) 758500 298900 252800 ANNUAL RUNOFF (CFSM) 1.20 .47 .40 ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44 10 PERCENT EXCEEDS 1720 632 757 50 PERCENT EXCEEDS 774 342 155 | | | | | | | | | | | | | | | LOWEST DALLY MEAN 180 Feb 24 155 Sep 19 1.5 Jul 16 1938 ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW a10500 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK STAGE a15.07 Feb 18 25.22 Mar 1 1965 ANNUAL RUNOFF (CFSM) 1.20 298900 252800 ANNUAL RUNOFF (CFSM) 16.33 6.44 5.44 10 PERCENT EXCEEDS 1720 632 757 5.44 155 50 PERCENT EXCEEDS 774 342 155 | | | | | 24600 | T1 A | | 2200 | Dab 10 | | | 71 | | | ANNUAL SEVEN-DAY MINIMUM 247 Feb 22 160 Sep 15 2.0 Jan 13 1940 INSTANTANEOUS PEAK FLOW a10500 Feb 18 30800 Jun 17 1990 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 758500 298900 252800 ANNUAL RUNOFF (CFSM) 1.20 .47 .40 ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44 10 PERCENT EXCEEDS 1720 632 757 50 PERCENT EXCEEDS 774 342 155 | | | | | | Dur 3 | | | | | | | | | INSTANTAMEOUS PEAK FLOW INSTANTAMEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANUAL RUNOFF (INCHES) 16.33 6.44 10 PERCENT EXCEEDS 1720 30800 Jun 17 1990 252800 252800 252800 47 .40 5.44 5.44 5.44 5.47 5.99 PERCENT EXCEEDS 1720 632 757 50 PERCENT EXCEEDS 774 342 | | | | | | Feb 23 | | | | | | | | | This Tantameous Peak Stage 15.07 Feb 18 25.22 Mar 1 1965 | TNOUNL | SEVEN-DA | I WINIMUM | | 241 | FeD ZZ | | | | | | | | | ANNUAL RUNOFF (AC-FT) 758500 298900 252800<br>ANNUAL RUNOFF (CFSM) 1.20 .47 .40<br>ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44<br>10 PERCENT EXCEEDS 1720 632 757<br>50 PERCENT EXCEEDS 774 342 155 | | | | | | | | | | | | | | | ANNUAL RUNOFF (CFSM) 1.20 .47 .40<br>ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44<br>10 PERCENT EXCEEDS 1720 632 757<br>50 PERCENT EXCEEDS 774 342 155 | | | | | 758500 | | | 298900 | 100 10 | | | 1141 | | | ANNUAL RUNOFF (INCHES) 16.33 6.44 5.44 10 PERCENT EXCEEDS 1720 632 757 50 PERCENT EXCEEDS 774 342 155 | | | | | | o | | | , | | | | | | 10 PERCENT EXCEEDS 1720 632 757<br>50 PERCENT EXCEEDS 774 342 155 | | | | | | | | 6.44 | | | | | | | 50 PERCENT EXCEEDS 774 342 155 | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | e Estimated. a Ice affected. ### 06610000 MISSOURI RIVER AT OMAHA, NE LOCATION.--Lat 41°15'32", long 95°55'20", in SE1/4 NW1/4 sec.23, T.15 N., R.13 E., Douglas County, Hydrologic Unit 10230006, on right bank on left side of concrete floodwall, at foot of Douglas Street, 275 ft downstream from Interstate 480 Highway bridge in Omaha, and at mile 615.9. DRAINAGE AREA.--322,800 mi<sup>2</sup>, approximately. The 3,959 mi<sup>2</sup> in Great Divide basin are not included. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1928 to current year. April 1872 to December 1899 (gage heights only) in reports of the Missouri River Commission and since January 1875, (gage heights only) in reports of the U.S. Weather Bureau. REVISED RECORDS.--WSP 761: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 948.24 ft above sea level. See WSP 1730 for history of changes prior to Sept. 30, 1936. Oct. 1, 1936 to Sept. 30, 1982 at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Feb. 7-13, 27, 28. Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 396,000 ft<sup>3</sup>/s Apr. 18, 1952, gage height, 40.20 ft, present datum; minimum, about 2,200 ft<sup>3</sup>/s Jan. 6, 1937; minimum gage height, 6.85 ft, present datum, Feb. 5, 1989, result of freezeup. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | DAILI MEAN VALUES | | | | | | | | | | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------| | DAY O | T NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 3196<br>2 3176<br>3 3186<br>4 3176<br>5 3186 | 00 31100<br>00 30800<br>00 31000 | 25100<br>26300 | 27100<br>27100 | 22800<br>22600<br>23100<br>23200<br>23100 | 30200<br>30100<br>29800<br>36500<br>45300 | 35300<br>36000<br>36800 | 36900<br>37300<br>41200 | 41500<br>41800<br>40800<br>40300<br>40400 | 53300<br>52100<br>50600<br>50000<br>49100 | 35400<br>36300<br>36500<br>37700<br>38700 | 36100<br>35800<br>35800<br>37200<br>39500 | | 6 3180<br>7 3210<br>8 3270<br>9 3340<br>10 3590 | 30700<br>30500<br>30500<br>30100<br>29800 | 26000<br>26100 | 24500 | 23200<br>e23400<br>e23200<br>e23000<br>e22000 | 50300<br>54800<br>53900<br>50900<br>51800 | 36700<br>37000<br>39200<br>39800 | 47500<br>46400<br>44400<br>43500 | 42800<br>41200<br>41000<br>43200<br>44300 | 50300<br>51100<br>48500<br>46900<br>43200 | 36800<br>36200<br>36600<br>38000<br>36600 | 39400<br>37000<br>36500<br>36300<br>35900 | | 11 3590<br>12 3500<br>13 3380<br>14 3290<br>15 3290 | 00 30100<br>00 30900<br>00 31900<br>00 33000 | 25400<br>24400<br>23400<br>23900<br>24100 | 21800<br>24200<br>24800<br>25100<br>25300 | e22300<br>e23000<br>e24000<br>24100<br>23500 | 51700<br>47400<br>44000<br>42500<br>40500 | 38300<br>38800<br>39400<br>39800 | 45400<br>47400<br>47300<br>45800 | 45700<br>45100<br>46900<br>45800<br>46500 | 43300<br>43000<br>44000<br>45400<br>45300 | 36500<br>36500<br>36600<br>39000<br>39400 | 35400<br>34900<br>34900<br>35500<br>35500 | | 16 3300<br>17 3230<br>18 3170<br>19 3270<br>20 3330 | 0 33200<br>0 33200<br>10 32500 | 24000<br>25200<br>26100<br>26700<br>27100 | 22400<br>20500<br>21000<br>21000<br>21300 | 24200<br>24800<br>23600<br>35400<br>43500 | 39100<br>39800<br>39200<br>38600<br>37300 | 38900<br>39800<br>38400<br>37700 | 45200<br>44200 | 46800<br>47800<br>55100<br>58200<br>48600 | 45100<br>45100<br>46100<br>44300<br>43500 | 38000<br>37700<br>37100<br>36600<br>36700 | 34900<br>34800<br>34600<br>34900<br>34900 | | 21 3060<br>22 3000<br>23 3040<br>24 3070<br>25 3050 | 0 31100<br>0 30800<br>0 30400 | 27000<br>26100<br>24700<br>23000<br>22300 | 23400<br>24300<br>24100<br>24600<br>25200 | 40600<br>36300<br>34800<br>33300<br>31400 | 36600<br>36500<br>36800<br>35700<br>35200 | 36200<br>35500 | 43000<br>42600<br>42500<br>42200<br>42000 | 48200<br>52000<br>53700<br>55700<br>60000 | 42500<br>41400<br>39700<br>39300<br>38900 | 37200<br>37100<br>36500<br>35800<br>35700 | 35100<br>36500<br>38400<br>41300<br>40700 | | 26 3060<br>27 3110<br>28 3140<br>29 3140<br>30 3090<br>31 3100 | 0 22700<br>0 22400<br>0 23300<br>0 24000 | 23200<br>23500<br>23300<br>23000<br>23000<br>23100 | 25000<br>24200<br>23600<br>23200<br>22800<br>23100 | 29900<br>e28500<br>e28900<br> | 34600<br>33800<br>33300<br>33600<br>34200<br>34300 | 35600<br>36000<br>36200<br>36500<br>38100 | 42100<br>42100<br>42000<br>42200<br>42300<br>41700 | 58500<br>62100<br>60800<br>56400<br>55900 | 38200<br>37600<br>36800<br>36300<br>35600<br>35200 | 36500<br>37300<br>36800<br>36200<br>35900<br>36000 | 38500<br>37300<br>36700<br>36500<br>36100 | | TOTAL 99690 MEAN 3216 MAX 3590 MIN 3090 MED 3180 AC-FT 197700 CFSM .1 | 0 29900<br>0 33500<br>0 22400<br>0 30800<br>0 1779000<br>0 .09 | 768100<br>24780<br>27100<br>22300<br>24700<br>1524000 | 727300<br>23460<br>27100<br>17900<br>24100<br>1443000 | 761700<br>27200<br>43500<br>22000<br>23800<br>1511000 | 1238300<br>39950<br>54800<br>29800<br>37300<br>2456000 | 1121500<br>37380<br>39800<br>34500<br>37100<br>2224000<br>.12<br>.13 | 1342400<br>43300<br>47500<br>36900<br>43500<br>2663000 | 1467100<br>48900<br>62100<br>40300<br>46800<br>2910000 | 1361700<br>43930<br>53300<br>35200<br>44000<br>2701000<br>.14<br>.16 | 1143900<br>36900<br>39400<br>35400<br>36600<br>2269000 | 1096900<br>36560<br>41300<br>34600<br>36100<br>2176000 | | IN1<br>STATISTICS O | | 09.<br>ATAN NATA | .08<br>FOR WATER | .09 | .14 | | .15<br>P VEAD (W | .17<br>V) a | .10 | .13 | .13 | | MEAN 3735<br>MAX 6441<br>(WY) 197<br>MIN 1692<br>(WY) 196 | 0 33140<br>0 66130<br>6 1976<br>0 8324 | 20400<br>42800<br>1987<br>8296<br>1962 | 17380<br>33250<br>1987<br>8425<br>1964 | 19330<br>36590<br>1983<br>8162<br>1963 | 27300<br>53980<br>1983<br>12090<br>1958 | 38310<br>66320<br>1969<br>24630<br>1959 | 37110<br>60430<br>1986<br>26450<br>1961 | 39840<br>75730<br>1984<br>26890<br>1961 | 39630<br>78560<br>1993<br>27150<br>1958 | 38150<br>64830<br>1975<br>27280<br>1958 | 38120<br>65020<br>1975<br>28290<br>1958 | | SUMMARY STAT | ISTICS | FOR | 1993 CAL | ENDAR YEA | R | FOR 1994 | WATER YEAR | R | WATER | YEARS 195 | 8 - 1994a | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUA LOWEST ANNUA HIGHEST DAILY ANNUAL SEVEN- INSTANTANEOU INSTANTANEOU ANNUAL RUNOFI ANNUAL RUNOFI ANNUAL RUNOFI 10 PERCENT E: 90 PERCENT E: | AL MEAN<br>L MEAN<br>Y MEAN<br>MEAN<br>-DAY MINIMU | M | 13835700<br>37910<br>113000<br>13200<br>16400<br>27440000 | Jul 1<br>Jan<br>Jan | 0<br>3<br>1 | 46400 | 75 0411 2 | 7<br>9<br>6<br>7<br>7 | 50100 | Apr<br>Dec<br>Dec<br>Apr<br>26 Jul<br>10 | 1984<br>1958<br>4 1960<br>14 1961<br>10 1961<br>1 1960<br>10 1993 | | 50 PERCENT E | KCEEDS<br>KCEEDS | | 33000<br>17900 | | | 35900<br>23500 | | | 32400<br>14100 | | | Estimated. Post-regulation period. ### 06610000 MISSOURI RIVER AT OMAHA, NE--Continued #### WATER-QUALITY RECORDS LOCATION .-- Water quality samples were collected from Interstate 80 highway bridge 2.0 mi downstream from gaging station. PERIOD OF RECORD .-- July 1969 to 1976, 1978 to current year. Daily sediment loads for April 1939 to September 1971 are in reports of U.S. Army Corps of Engineers. #### PERIOD OF DAILY RECORD .-- CHEMICAL ANALYSES: July 1969 to June 1972. SPECIFIC CONDUCTANCE: October 1972 to September 1976, January 1978 to September 1981, October 1991 to current year. WATER TEMPERATURES: October 1971 to September 1976, January 1978 to September 1981, October 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976, October 1991 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens Dec. 4, 5, 1980; minimum daily, 335 microsiemens Mar. 22, 1978. WATER TEMPERATURES: Maximum daily, 32.0°C July 24, 1972; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,180 mg/L May 19, 1974; minimum daily mean, 71 mg/L Jan. 3, 1993. SEDIMENT LOADS: Maximum daily, 1,060,000 tons May 19, 1974; minimum daily, 2,560 tons Jan. 3, 1993. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 847 microsiemens Nov. 19; minimum daily, 571 microsiemens Mar. 11. WATER TEMPERATURES: Maximum daily, 36.0°C July 19, 25; minimum daily, 1.0°C Nov. 30 and Dec. 14. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,420 mg/L Mar. 7; minimum daily mean, 162 mg/L Aug. 24. SEDIMENT LOADS: Maximum daily, 359,000 tons Mar. 7; minimum daily, 8,430 tons Jan. 9. ## SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------------|-----|-----|-----|-----|-----|-----|------|-----|------|-----|-------------| | 1 | 804 | | | | | 714 | 759 | | | 714 | 796 | | | 2 | | 794 | | | | | | | | | | <b>7</b> 78 | | 3 | | | | | | | | 803 | 770 | | | | | 4 | | | | | | | 741 | | | | | | | 5 | 795 | 833 | | | | | | | | | 768 | | | | | | | | | | | | | | | | | 6 | | | | | | | | 786 | | 714 | | | | 7 | | | | | | | | | | | | 749 | | 8 | 792 | | | | | | 742 | | | 723 | 779 | | | 9 | | 744 | | | | | | | 752 | | | 770 | | 10 | | | 809 | | | | | 831 | | | | | | | | | | | | | | | | | | | | 11 | | | | | | 571 | | | | 763 | | | | 12 | 792 | 812 | | | | | | | | | 776 | 752 | | 13 | | | | | | | 752 | 809 | | | | | | 14 | | | 814 | | | | | | 720 | | | | | 15 | 798 | | | | | | 751 | | | 748 | | | | | | | | | | | | | | | | = | | 16 | | 815 | | | | | | | | | 763 | 780 | | 17 | | | | | | | | 795 | 664 | | | | | 18 | | | | | | 654 | 779 | | | === | === | | | 19 | 762 | 847 | | | | | | | | 769 | 764 | <b>77</b> 7 | | 20 | | | | | | | | 804 | | | | | | 21 | | | | | | | | | 709 | 778 | | | | 22 | 795 | | | | | 640 | 794 | | | | | | | 23 | | 814 | | | | | | | 705 | | 761 | 755 | | 24 | | 014 | | | | | | 780 | | | | | | 25 | | | | | | 668 | 808 | | | 756 | | | | 23 | | | | | | 000 | 606 | | | ,,,, | | | | 26 | 780 | | | | | | | 780 | | | 764 | 747 | | 27 | | | | | | | | | | | | | | 28 | <b>7</b> 77 | | | | | 733 | | | 644 | 769 | | | | 29 | | | | | | | 788 | | | | 777 | 803 | | 30 | | 711 | | | | | | | | | | | | 31 | | | | | | | | 768 | | | | | | 31 | | | | | | | | , 00 | | | | | ## 06610000 MISSOURI RIVER AT OMAHA, NE--Continued ### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------------| | | OCTO | BER | NOVEN | BER | DECEM | BER | JANUA | RY | FEBRU. | ARY | MARC | H | | 1<br>2<br>3<br>4<br>5 | 263<br>250<br>243<br>249<br>252 | 22600<br>21400<br>20900<br>21400<br>21700 | 372<br>383<br>326<br>279<br>283 | 31400<br>32100<br>27100<br>23300<br>23500 | 288<br>308<br>344<br>351<br>346 | 19000<br>20900<br>24500<br>24900<br>24400 | 293<br>378<br>371<br>298<br>278 | 19200<br>27800<br>27200<br>20100<br>17900 | 247<br>255<br>284<br>280<br>267 | 15200<br>15600<br>17700<br>17500<br>16600 | 319<br>348<br>355<br>766<br>1510 | 26100<br>28400<br>28600<br>77500<br>186000 | | 6<br>7<br>8<br>9 | 244<br>244<br>255<br>279 | 21000<br>21100<br>22500<br>25300 | 308<br>329<br>321<br>301 | 25600<br>27100<br>26100<br>24200 | 345<br>340<br>323<br>329 | 24300<br>24000<br>22400<br>22400 | 303<br>299<br>234<br>174 | 20100<br>20200<br>14400<br>8430 | 270<br>276<br>295<br>316 | 17000<br>17400<br>18500<br>19600 | 2180<br>2420<br>2190<br>1860 | 298000<br>359000<br>319000<br>256000 | | 10<br>11 | 346<br>356 | 33600<br>34500 | 283<br>284 | 22700<br>23100 | 312<br>339 | 20600<br>23200 | 172<br>180 | 9200<br>13800 | 327<br>303 | 19400<br>18200 | 2020<br>1970 | 283000<br>275000 | | 12<br>13<br>14<br>15 | 318<br>264<br>234<br>245 | 30100<br>24100<br>20800<br>21800 | 293<br>308<br>314<br>286 | 24500<br>26600<br>28000<br>25900 | 336<br>304<br>330<br>335 | 22100<br>19200<br>21300<br>21700 | 173<br>200<br>310<br>322 | 19100<br>20100<br>21000<br>21900 | 258<br>219<br>218<br>232 | 16000<br>14200<br>14200<br>14700 | 1630<br>1270<br>949<br>687 | 208000<br>151000<br>109000<br>75200 | | 16<br>17<br>18<br>19<br>20 | 260<br>255<br>241<br>295<br>331 | 23100<br>22200<br>20700<br>26100<br>29700 | 248<br>275<br>306<br>294<br>278 | 22300<br>24600<br>26900<br>24900 | 301<br>319<br>328<br>325 | 19500<br>21700<br>23100<br>23400 | 280<br>270<br>293<br>286<br>269 | 16900<br>14 <b>9</b> 00<br>16600<br>16300<br>15500 | 245<br>330<br>466<br>1200 | 16000<br>21800<br>30000<br>121000<br>109000 | 538<br>658<br>745<br>716<br>692 | 56700<br>70700<br>78900<br>74600<br>69800 | | 21<br>22<br>23 | 301<br>290<br>301 | 24800<br>23500<br>24700 | 269<br>268<br>269 | 23500<br>22900<br>22500<br>22400 | 319<br>292<br>279<br>270 | 23400<br>21300<br>19600<br>18000 | 304<br>309<br>306 | 19300<br>20300<br>19900 | 925<br>764<br>732<br>666 | 83800<br>71700<br>62500 | 633<br>550<br>655 | 62500<br>54100<br>65000 | | 24<br>25<br>26 | 284<br>247<br>220 | 23600<br>20400<br>18100 | 262<br>242<br>220 | 21400<br>18700<br>14900 | 252<br>255<br>272 | 15600<br>15300<br>17000 | 330<br>332<br>299 | 21900<br>22600<br>20100 | 547<br>409<br>304 | 49200<br>34600<br>24600 | 679<br>597<br>536 | 65600<br>56800<br>50000 | | 27<br>28<br>29<br>30<br>31 | 224<br>260<br>279<br>307<br>350 | 18800<br>22000<br>23700<br>25600<br>29300 | 203<br>202<br>234<br>270 | 12400<br>12200<br>14700<br>17500 | 290<br>282<br>266<br>267<br>269 | 18400<br>17800<br>16500<br>16600<br>16700 | 267<br>257<br>245<br>248<br>269 | 17400<br>16300<br>15300<br>15300<br>16700 | 239<br>231<br> | 18400<br>18000<br> | 462<br>405<br>392<br>388<br>390 | 42200<br>36400<br>35500<br>35800<br>36200 | | TOTAL | | 739100 | | 693000 | | 638800 | | 565730 | | 912400 | | 3570600 | | | AP | RIL | м | YA | J | UNE | • | JULY | A | JGUST | SEPT | EMBER | | 1<br>2<br>3<br>4<br>5 | 391<br>396<br>407<br>419<br>426 | 36500<br>37700<br>39500<br>41600<br>42400 | 470<br>366<br>314<br>353<br>389 | 48200<br>36500<br>31700<br>39400<br>48700 | 270<br>277<br>243<br>232<br>266 | 30300<br>31200<br>26800<br>25200<br>29100 | 607<br>835<br>1030<br>1010<br>1150 | 87300<br>117000<br>141000<br>136000<br>153000 | 347<br>332<br>464 | 31100<br>34000<br>32700<br>47400<br>53800 | 256<br>227<br>207<br>298<br>394 | 24900<br>21900<br>20000<br>30000<br>42100 | | 6<br>7<br>8<br>9 | 423<br>446<br>546<br>569 | 41900<br>44600<br>57900<br>61000 | 375<br>360<br>355<br>354 | 48100<br>45100<br>42600<br>41500 | 370<br>362<br>337<br>401 | 42800<br>40200<br>37300<br>46800 | 1470<br>1330<br>765<br>659 | 199000<br>183000<br>100000<br>83400 | 264<br>223<br>299 | 38100<br>25800<br>22100<br>30800 | 385<br>253<br>223<br>218 | 40900<br>25300<br>22000<br>21300 | | 10<br>11<br>12<br>13 | 489<br>394<br>364<br>386 | 51500<br>40800<br>38100<br>41000 | 346<br>322<br>288<br>277 | 41100<br>39500<br>36800<br>35400 | 477<br>716<br>660<br>804 | 57200<br>88500<br>80300<br>102000 | 444<br>433<br>398<br>428 | 51900<br>50600<br>46200<br>51000 | 261<br>248<br>237 | 25900<br>25700<br>24500<br>23500 | 211<br>204<br>204<br>204 | 20500<br>19500<br>19200<br>19200 | | 14<br>15<br>16 | 428<br>376<br>414 | 46000<br>39700<br>43600 | 293<br>309<br>309 | 36100<br>37900<br>37700 | 605<br>630<br>733 | 74800<br>79200<br>92600 | 481<br>454<br>470 | 59000<br>55400<br>57300 | 394 | 38200<br>41900<br>34300 | 218<br>208<br>181 | 20900<br>19900<br>17000 | | 17<br>18<br>19<br>20 | 576<br>553<br>502<br>519 | 61800<br>57200<br>51100<br>53600 | 301<br>285<br>259<br>233 | 36000<br>33800<br>30900<br>27400 | 887<br>1250<br>1560<br>714 | 115000<br>188000<br>246000<br>94200 | 472<br>498<br>428<br>342 | 57600<br>62000<br>51100<br>40100 | 337<br>320<br>277 | 34300<br>32100<br>27300<br>28000 | 177<br>188<br>221<br>200 | 16600<br>17500<br>20900<br>18800 | | 21<br>22<br>23<br>24<br>25 | 448<br>341<br>306<br>261<br>222 | 45100<br>33300<br>29300<br>24900<br>21300 | 232<br>242<br>263<br>290<br>278 | 27000<br>27800<br>30200<br>33000<br>31500 | 735<br>1390<br>1010<br>1140<br>1210 | 96000<br>196000<br>147000<br>172000<br>197000 | 272<br>243<br>240<br>270<br>265 | 31200<br>27100<br>25800<br>28700<br>27800 | 292<br>225<br>162 | 29700<br>29300<br>22100<br>15700<br>15800 | 199<br>205<br>230<br>357<br>366 | 18900<br>20200<br>23900<br>39900<br>40200 | | 26<br>27<br>28<br>29<br>30 | 259<br>381<br>467<br>447<br>498 | 25000<br>37100<br>45600<br>44100<br>51300 | 250<br>239<br>239<br>272<br>304 | 28400<br>27200<br>27100<br>30900<br>34700 | 782<br>884<br>822<br>696<br>739 | 124000<br>149000<br>135000<br>106000<br>111000 | 248<br>260<br>222<br>209<br>200 | 25600<br>26500<br>22100<br>20500<br>19200 | 273<br>264<br>223<br>227 | 18800<br>27500<br>26200<br>21800<br>22000 | 316<br>289<br>266<br>250<br>224 | 32900<br>29100<br>26300<br>24700<br>21900 | | 31<br>TOTAL | | 1284500 | 289 | 32500<br>1104700 | | 2960500 | 251 | 23800<br>2060200 | 241 | 23400<br>903800 | | 736400 | | | 1616973 | ^ | | | | | | | | | | | ## 06610000 MISSOURI RIVER AT OMAHA, NE--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|-----|-----|-----|-----|------|------|------|------|------|------|------| | 1 | 15.0 | | | | | 2.0 | 8.0 | | | 25.0 | 24.0 | | | 2 | | 5.0 | | | | | | | | | | 22.0 | | 3 | | | | | | | | 17.0 | 20.0 | | | | | 4 | | | | | | | 9.0 | | | | | | | 5 | 12.0 | 6.0 | ~ | | | | | | | | 24.0 | | | 6 | | | | | | | | 13.0 | | | | | | 7 | | | | | | | | | | | | 22.0 | | 8 | | | | | | | 9.0 | | | 24.0 | 24.0 | | | 9 | | | | | | | | | 23.0 | | | 23.0 | | 10 | | | 2.0 | | | | | 25.0 | | | | | | 11 | | | | | | 1.5 | | | | 23.0 | | | | 12 | 11.0 | 6.0 | | | | | | | | | 24.0 | 23.0 | | 13 | | | | | | | 9.0 | 16.0 | | | | | | 14 | | | 1.0 | | | | | | 23.0 | | | | | 15 | 11.0 | | | | | | 9.0 | | | 24.0 | | | | 16 | | 3.0 | | | | | | | | | 23.0 | 22.0 | | 17 | | | | | | | | 20.0 | 23.0 | | | | | 18 | | | | | | 12.0 | | | | | | | | 19 | | 4.0 | ~ | | | | | | | 26.0 | 25.0 | 22.0 | | 20 | | | | | | | | 20.0 | | | | | | 21 | | | | | | | | | 25.0 | 25.0 | | | | 22 | 12.0 | | | | | 8.0 | 12.0 | | | | | | | 23 | | 2.0 | | | | | | | 24.0 | | 24.0 | 19.0 | | 24 | | | | | | | | 22.0 | | | | | | 25 | | | | | | 8.0 | 17.0 | | | 26.0 | | | | 26 | 11.0 | | | | | | | 23.0 | | | 23.0 | 18.0 | | 27 | | | | | | | | | | | | | | 28 | 11.0 | | | | | 6.0 | | | 24.0 | 25.0 | | | | 29 | | | | | | | 10.0 | | | | 24.5 | 16.0 | | 30 | | 1.0 | | | | | | | | | | | | 31 | | | | | | | | 22.0 | | | | | #### 06807000 MISSOURI RIVER AT NEBRASKA CITY, NE LOCATION.-Lat 40°40'55", long 95°50'48", in NW1/4 NE1/4 sec.9, T.8 N., R.14 E., Otoe County, Hydrologic Unit 10240001, on right bank 2.0 mi upstream from Highway 2 Bridge at Nebraska City, and at mile 562.6. DRAINAGE AREA .--410,000 mi<sup>2</sup>, approximately. The 3,959 mi<sup>2</sup> in Great Divide basin are not included. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1929 to current year. Gage-height records collected in this vicinity from August 1878 to December 1899 are contained in reports of Missouri River Commission. REVISED RECORDS .-- WSP 761: Drainage area. GAGE .-- Water-stage encoder. Datum of gage is 905.36 ft above sea level, supplementary adjustment of 1954. See WSP 1918 or 1919 for history of changes prior to Apr. 1, 1963. REMARKS.--Estimated daily discharges: Feb. 12-13. Records good, except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 414,000 ft<sup>3</sup>/s Apr. 19, 1952; maximum gage height, 27.66 fr Apr. 18, 1952; minimum discharge, 1,600 ft<sup>3</sup>/s Dec. 31, 1946 (discharge measurement); minimum gage height observed, -0.28 ft Dec. 24, 1960, result of freezeup. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN .TIIN TIIT. AUG SEP FEB MAR APR MAY 2 3 29900 29700 40300 36**9**00 31900 27300 37300 55200 42100 37800 41200 e24800 15 28000 42000 25 TOTAL 1218800 41000 48800 71400 34700 MAX AC-FT 2417000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1958 - 1994, BY WATER YEAR (WY) MEAN MAX (WY) 11610 32560 (WY) SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1958 - 1994a ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 27810 Jul 25 Mar Jul 25 1993 Jan 10 Dec 13 1963 Dec 12 1963 Jul 23 1993 LOWEST DAILY MEAN Jan ANNUAL SEVEN-DAY MINIMUM Jan INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) Mar 17.72 Mar 27.19 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS e Estimated. a Post-regulation period. #### 06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.-- May 1951 to current year. Daily sediment loads August 1957 to September 1971 in reports of U.S. Army Corps of Engineers. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: May 1951 to September 1976, October 1991 to current year. WATER TEMPERATURES: May 1951 to September 1976, October 1991 to current year. SEDIMENT DISCHARGE: October 1971 to September 1976, October 1991 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 994 microsiemens Dec. 17, 1962; minimum daily, 273 microsiemens June 17, 1964. WATER TEMPERATURES: Maximum daily, 31°C July 26, 1977; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,220 mg/L May 19, 1974; minimum daily mean, 115 mg/L Jan. 3, 1993. SEDIMENT LOADS: Maximum daily, 1,590,000 tons May 19, 1974; minimum daily, 4,050 tons Jan. 17, 1972. #### EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum daily, 838 microsiemens Nov. 26; minimum daily, 492 microsiemens Mar. 7. WATER TEMPERATURES: Maximum daily 26.5°C July 21; minimum daily, 0.0°C Jan. 11. SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,300 mg/L Mar. 7; minimum daily, 160 mg/L Jan. 10. SEDIMENT LOADS: Maximum daily, 777,000 tons Mar. 7; minimum daily, 8830 tons Jan. 10. #### SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|-----|-----| | 1 | 775 | 813 | | | | | | | | | 749 | | | 2 | | | | | | | | 755 | | | | 774 | | 3 | | | 799 | | | | | | 726 | | | | | 4 | | | | | | | 746 | | | | | | | 5 | 796 | 789 | | | | | | | | 668 | 765 | | | 6 | | | | | | | | 798 | 718 | | | 744 | | 7 | | | | | | 492 | | | | | | | | 8 | | 779 | 777 | | | | 743 | | | 57 <b>8</b> | 761 | | | 9 | | | | | | | | | 731 | | | 716 | | 10 | | | | | | | | 797 | | | | | | 11 | | | | 752 | | | 744 | | | 701 | | | | 12 | | 790 | | | | | | | | | 756 | 761 | | 13 | | | 829 | | | | | 799 | 718 | | | | | 14 | | | | | 816 | 627 | | | | | | | | 15 | 769 | 788 | | | | | 733 | | | 632 | 748 | | | 16 | | | | | | | | | | | | 782 | | 17 | | | | | | | | 771 | 692 | | | | | 18 | 768 | | | | | | | | | | | | | 19 | | 810 | | | | | | | | 692 | 752 | 796 | | 20 | | | | | | | | 769 | 612 | | | | | 21 | | | | | | 651 | | | | 726 | | | | 22 | 778 | 811 | | | | | 775 | | | | 740 | 829 | | 23 | | | | | | | | 762 | | | | | | 24 | | | | 834 | | | | | 588 | | | | | 25 | 778 | | | | | 674 | 788 | | | 747 | | | | 26 | | 838 | | | | | | 754 | | | 758 | | | 27 | | | | | | | | | | | | 742 | | 28 | 798 | | | | 710 | 720 | | | 612 | 747 | | | | 29 | | | | | | | 771 | | | | 765 | 788 | | 30 | | | | | | | | | 650 | | | | | 31 | | | | | | 741 | | 750 | | | | | ## 06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued # SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | 1BER | JANUA | RY | FEBRU | ARY | MARC | н | | 1 | 344 | 37800 | 600 | 60400 | 527 | 40400 | 231 | 16400 | 328 | 25000 | 431 | 40900 | | 2 | 332 | 36500 | 591 | 59400 | 567 | 45300 | 404 | 30600 | 316 | 23400 | 469 | 46700 | | 3 | 312 | 34000 | 569 | 56600 | 611 | 52800 | 635 | 51300 | 324 | 23900 | 477 | 48100 | | 4 | 281 | 30300 | 563 | 55800 | 646 | 59500 | 612 | 49000 | 337 | 25100 | 862 | 102000 | | 5 | 257 | 27500 | 636 | 64100 | 595 | 54800 | 553 | 43100 | 340 | 25300 | 1650 | 265000 | | 6 | 244 | 26000 | 590 | 59500 | 599 | 56100 | 546 | 41800 | 344 | 25800 | 2950 | 653000 | | 7 | 221 | 23200 | 587 | 59400 | 591 | 55400 | 489 | 35100 | 347 | 25900 | 3300 | 777000 | | 8 | 219 | 23000 | 554 | 54600 | 459 | 41900 | 406 | 26500 | 336 | 24600 | 2080 | 418000 | | 9 | 217 | 22900 | 527 | 52400 | 430 | 38700 | 242 | 14400 | 329 | 23500 | 1470 | 266000 | | 10 | 261 | 28700 | 485 | 48200 | 405 | 35600 | 160 | 8830 | 321 | 22400 | 1230 | 212000 | | 11 | 281 | 31100 | 462 | 46500 | 420 | 37500 | 231 | 14100 | 310 | 21100 | 1400 | 239000 | | 12 | 275 | 30100 | 472 | 48800 | 429 | 38900 | 270 | 17900 | 300 | 20100 | 1170 | 188000 | | 13 | 253 | 27100 | 487 | 51300 | 367 | 32200 | 317 | 22600 | 309 | 21000 | 895 | 133000 | | 14 | 207 | 21600 | 505 | 54600 | 403 | 36600 | 320 | 23000 | 328 | 23100 | 798 | 115000 | | 15 | 220 | 23400 | 526 | 58600 | 405 | 36600 | 385 | 29300 | 324 | 22700 | 728 | 101000 | | 16 | 277 | 29800 | 517 | 56300 | 372 | 32600 | 378 | 28200 | 350 | 25400 | 672 | 86700 | | 17 | 456 | 49400 | 578 | 63300 | 406 | 36000 | 241 | 16100 | 403 | 30700 | 704 | 89200 | | 18 | 496 | 53000 | 539 | 57500 | 444 | 40900 | 209 | 13700 | 547 | 45500 | 712 | 90300 | | 19 | 631 | 68400 | 493 | 51500 | 441 | 40500 | 227 | 15300 | 937 | 103000 | 771 | 97100 | | 20 | 778 | 85600 | 484 | 49400 | 444 | 41100 | 204 | 13500 | 2690 | 481000 | 782 | 98200 | | 21 | 755 | 80600 | 566 | 57500 | 435 | 39700 | 220 | 15100 | 1910 | 300000 | 737 | 91000 | | 22 | 692 | 71200 | 893 | 90400 | 403 | 36200 | 252 | 18700 | 1550 | 222000 | 712 | 88500 | | 23 | 498 | 50900 | 910 | 91600 | 343 | 29700 | 257 | 19500 | 1320 | 175000 | 689 | 86100 | | 24 | 419 | 43500 | 912 | 92100 | 249 | 20200 | 266 | 20500 | 1090 | 132000 | 625 | 76600 | | 25 | 362 | 37600 | 914 | 89500 | 209 | 15700 | 294 | 23700 | 822 | 91600 | 603 | 72400 | | 26<br>27<br>28<br>29<br>30<br>31 | 308<br>298<br>314<br>398<br>608<br>539 | 31800<br>30900<br>32800<br>41500<br>63500<br>53400 | 758<br>449<br>392<br>406<br>478 | 64800<br>33600<br>27600<br>28800<br>35400 | 210<br>225<br>249<br>240<br>220<br>202 | 15600<br>16700<br>18700<br>17900<br>15900<br>14300 | 347<br>340<br>329<br>330<br>326<br>332 | 28700<br>27900<br>26300<br>26100<br>25400<br>25800 | 620<br>504<br>392<br> | 62800<br>47400<br>35300<br> | 590<br>560<br>525<br>577<br><b>8</b> 97<br>838 | 70100<br>65700<br>60100<br>66100<br>102000<br>92700 | | TOTAL | 1 | 247100 | | 1719500 | | 1094000 | | 768430 | ; | 2104600 | 4 | 4937500 | | | APR | )TT | Mi | <b>A</b> Y | 7 | UNE | | JULY | | AUGUST | eppi | rember | | 1 | 952 | 106000 | 547 | 64200 | 280 | 32500 | 515 | 77500 | | 49800 | 274 | 27900 | | 2 | 935 | 101000 | 540 | 62400 | 1090 | 150000 | 855 | 131000 | 506 | 55400 | 253 | 25700 | | 3 | 933 | 99700 | 525 | 60600 | 749 | 91600 | 810 | 121000 | | 69300 | 237 | 24100 | | 4 | 936 | 98300 | 605 | 74300 | 537 | 63700 | 1430 | 230000 | | 55200 | 412 | 45100 | | 5 | 919 | 98900 | 730 | 97900 | 674 | 82800 | 1050 | 166000 | | 60000 | 477 | 52400 | | 6 | 906 | 99700 | 828 | 117000 | 1240 | 171000 | 969 | 151000 | 396 | 44300 | 520 | 58900 | | 7 | 581 | 63200 | 784 | 110000 | 745 | 98400 | 2460 | 467000 | 239 | 25600 | 497 | 54900 | | 8 | 550 | 61300 | 589 | 81400 | 357 | 43700 | 2810 | 520000 | 234 | 26100 | 497 | 54500 | | 9 | 591 | 68700 | 425 | 57300 | 355 | 43800 | 2040 | 335000 | 308 | 35200 | 427 | 46100 | | 10 | 417 | 49100 | 372 | 49400 | 373 | 46900 | 1080 | 154000 | 317 | 35100 | 325 | 34300 | | 11 | 339 | 39900 | 361 | 48000 | 808 | 109000 | 772 | 102000 | 297 | 31700 | 275 | 28300 | | 12 | 353 | 42100 | 370 | 50000 | 1020 | 138000 | 682 | 88500 | 294 | 31300 | 262 | 26400 | | 13 | 365 | 43900 | 365 | 49100 | 998 | 137000 | 690 | 88800 | 292 | 31000 | 250 | 24900 | | 14 | 412 | 51000 | 379 | 51000 | 955 | 130000 | 1520 | 227000 | 331 | 35900 | 246 | 24500 | | 15 | 474 | 61400 | 371 | 49100 | 921 | 126000 | 1760 | 281000 | 385 | 42800 | 261 | 26400 | | 16 | 466 | 60100 | 371 | 49100 | 903 | 124000 | 716 | 107000 | 348 | 37900 | 252 | 25200 | | 17 | 451 | 59400 | 346 | 45100 | 838 | 113000 | 663 | 98200 | 339 | 36400 | 269 | 26800 | | 18 | 436 | 57200 | 296 | 37600 | 1150 | 166000 | 711 | 108000 | 330 | 35300 | 290 | 28900 | | 19 | 415 | 52200 | 237 | 30100 | 1620 | 258000 | 630 | 91100 | 311 | 32900 | 283 | 28200 | | 20 | 405 | 50200 | 227 | 28600 | 1290 | 193000 | 564 | 78700 | 306 | 32100 | 239 | 23900 | | 21 | 392 | 47300 | 226 | 28000 | 1260 | 181000 | 521 | 69700 | 302 | 31700 | 195 | 19500 | | 22 | 379 | 44500 | 237 | 29000 | 1440 | 224000 | 467 | 60300 | 303 | 31800 | 194 | 19600 | | 23 | 348 | 39500 | 296 | 36100 | 1930 | 363000 | 413 | 51300 | 269 | 28100 | 264 | 27800 | | 24 | 341 | 38700 | 245 | 29500 | 2180 | 421000 | 352 | 42300 | 212 | 21700 | 345 | 37700 | | 25 | 327 | 36300 | 207 | 24600 | 2030 | 369000 | 288 | 33700 | 189 | 19200 | 402 | 45900 | | 26<br>27<br>28<br>29<br>30<br>31 | 327<br>336<br>358<br>366<br>443 | 36300<br>37000<br>39600<br>41100<br>51000 | 184<br>169<br>171<br>300<br>302<br>292 | 22100<br>20100<br>20000<br>35800<br>35700<br>34300 | 1680<br>1300<br>1140<br>795<br>624 | 293000<br>225000<br>197000<br>128000<br>97100 | 275<br>304<br>369<br>361<br>366<br>369 | 31700<br>34500<br>41400<br>39900<br>40500<br>40100 | 217<br>297<br>322<br>307<br>297<br>290 | 22500<br>31300<br>33700<br>31600<br>30300<br>29400 | 371<br>342<br>300<br>276<br>241 | 40600<br>36300<br>31300<br>28500<br>24400 | | TOTAL | | 1774600 | | 1527400 | | 4816500 | | 4108200 | | 1114600 | | 999000 | YEAR 26211430 # 06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|------|-----|-----|-----|-----|------|------|------|------|------|------| | 1 | 15.0 | 11.0 | | | | | | | | | 25.5 | | | 2 | | | | | | | | 9.0 | | | | 22.0 | | 3 | | | 4.0 | | | | | | 20.0 | | | | | 4 | | | | | | | 8.5 | | | | | | | 5 | 14.0 | 6.0 | | | | | | | | 25.5 | 24.0 | | | 6 | | | | | | | | 12.0 | 23.0 | | | 23.0 | | 7 | | | | | | 1.0 | | | | | | | | 8 | | 5.0 | 1.0 | | | | 9.0 | | | 24.0 | 24.0 | | | 9 | | | | | | | | | 23.0 | | | 23.0 | | 10 | | | | | | | | 14.0 | | | | | | 11 | | | | .0 | | | 9.0 | | | 25.0 | | | | 12 | | 5.0 | | | | | | | | | 21.0 | 22.0 | | 13 | | | 1.0 | | | | | 18.0 | 24.0 | | | | | 14 | | | | | 1.0 | 4.0 | | | | | | | | 15 | 12.0 | 5.0 | | | | | 11.0 | | | 24.0 | 23.0 | | | 16 | | | | | | | | | | | | 24.0 | | 17 | | | | | | | | 19.0 | 23.0 | | | | | 18 | 13.5 | | | | | | | | | | | | | 19 | | 3.5 | | | | | | | | 26.0 | 25.0 | 22.0 | | 20 | | | | | | | | 20.0 | 25.0 | | | | | 21 | | | | | | 8.0 | | | | 26.5 | | | | 22 | 11.0 | 1.0 | | | | | 13.5 | | | | 25.0 | 21.0 | | 23 | | | | | | | | 22.0 | | | | | | 24 | | | | 1.1 | | | | | 24.0 | | | | | 25 | 11.0 | | | | | 8.0 | 17.0 | | | 26.0 | | | | 26 | | 1.0 | | | | | | 20.0 | | | 23.0 | | | 27 | | | | | | | | | | | | | | 28 | 12.0 | | | | 2.0 | 6.0 | | | 25.0 | 25.0 | | | | 29 | | | | | | | | | | | 25.0 | 18.0 | | 30 | | | | | | | | | 25.0 | | | | | 31 | | | | | | 6.0 | | 23.0 | | | | | #### 06807410 WEST NISHNABOTNA RIVER AT HANCOCK, IA LOCATION.--Lat 41°23'24",long 95°22'17",in NW1/4 NE1/4 sec.18, T.76 N., R.39 W., Pottawattamie County, Hydrologic Unit 10240002, on right bank at upstream side of bridge on county highway G30, 0.6 mi west of Hancock school, 3.0 mi downstream from Jim Creek, 59.6 mi upstream from confluence with East Nishnabotna River, and at mile 75.1 mi upstream from mouth of Nishnabotna River. DRAINAGE AREA.--609 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1959 to current year. GAGE.--Water-stage encoder. Datum of gage is 1,085.83 ft above sea level. Prior to Sept. 15, 1980, on downstream end of right pier at same datum. REMARKS.--Estimated daily discharges: Nov. 25-30, Dec. 22 to Feb. 18, and Feb. 25 to Mar. 2. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. | | DISC | HARGE, | CUBIC FI | EET PER S | SECOND, V<br>DAILY | VATER Y<br>MEAN Y | YEAR OCTO<br>VALUES | OBER 199 | 3 TO SE | EPTEMBER | 1994 | | |-------------|------------------------|-----------------------|--------------|--------------|--------------------|-------------------|---------------------|------------------|--------------|----------------|--------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 628 | 405 | 411 | e390 | e230 | e310 | 201 | 179 | 145 | 299 | 183 | 136 | | 2 | 589 | 405 | 415 | e350 | e250 | e340 | 197 | 180 | 177 | 346 | 183 | 131 | | 3 | 572 | 405 | 416 | e310 | e240 | 418 | 193 | 178 | 165 | 306 | 180 | 127 | | 4 | 567 | 405 | 411 | e320 | e250 | 1340 | 191 | 175 | 155 | 320 | 282 | 213 | | 5 | 55 <b>3</b> | 401 | 411 | e350 | e320 | 1250 | 191 | 172 | 392 | 345 | 228 | 287 | | 6<br>7 | 541<br>536 | 384<br>380 | 404<br>397 | e330<br>e300 | e310<br>e270 | 638<br>443 | 184<br>181 | 174<br>188 | 625<br>305 | 478<br>331 | 184<br>176 | 209<br>159 | | Ŕ | 532 | 380 | 395 | e270 | e270 | 360 | 183 | 185 | 267 | 296 | 202 | 146 | | ğ | 552 | 380 | 393 | e280 | e230 | 323 | 183 | 179 | 247 | 274 | 179 | 137 | | 10 | 549 | 380 | 394 | e300 | e250 | 311 | 182 | 173 | 232 | 261 | 178 | 130 | | 11 | 515 | 383 | 380 | e290 | e270 | 295 | 178 | 168 | 346 | 253 | 182 | 125 | | 12<br>13 | 511<br>497 | 390<br>408 | 383<br>391 | e300<br>e290 | e260<br>e270 | 286<br>283 | 197<br>212 | 162<br>159 | 2610<br>1710 | 336<br>877 | 170<br>202 | 122<br>119 | | 14 | 469 | 408 | 403 | e290<br>e260 | e270<br>e330 | 273 | 197 | 162 | 642 | 439 | 180 | 116 | | 15 | 546 | 388 | 403 | e240 | e450 | 270 | 199 | 163 | 501 | 344 | 163 | 115 | | 16 | 629 | 383 | 398 | e260 | e560 | 256 | 194 | 159 | 435 | 317 | 157 | 118 | | 17 | 533 | 380 | 3 97 | e250 | e1100 | 248 | 179 | 153 | 396 | 292 | 153 | 109 | | 18 | 510 | 373 | 397 | e230 | e1500 | 250 | 176 | 150 | 620 | 275 | 151 | 107 | | 19 | 505 | 372 | 397 | e240 | 1320 | 245 | 172 | 146 | 549 | 261 | 144 | 105 | | 20 | 490 | 363 | 396 | e230 | 551 | 243 | 167 | 145 | 414 | 247 | 141 | 104 | | 21 | 479 | 359 | 373 | e250 | 386 | 241 | 200 | 142 | 414 | 236 | 137 | 106 | | 22 | 464 | 359 | e350 | e330 | 345 | 233 | 195 | 142 | 397 | 229 | 135 | 164 | | 23 | 458 | 359 | e350 | e450 | 237 | 233 | 181 | 143 | 751 | 222 | 134 | 227 | | 24<br>25 | 458<br>456 | 359<br>e250 | e360<br>e320 | e440<br>e400 | 334<br>e320 | 228<br>215 | 178<br>177 | 141<br>141 | 510<br>413 | 218<br>218 | 132<br>131 | 178<br>217 | | 26 | 442 | e170 | e310 | e300 | e240 | 213 | 174 | 144 | 381 | 207 | 255 | 236 | | 27 | 433 | e190 | e180 | e270 | e260 | 215 | 166 | 141 | 354 | 198 | 220 | 171 | | 28 | 431 | e250 | e190 | e280 | e280 | 215 | 161 | 138 | 335 | 196 | 158 | 152 | | 29 | 424 | e330 | e240 | e250 | | 211 | 172 | 173 | 316 | 193 | 147 | 142 | | 30 | 410 | e390 | e310 | e220 | | 205 | 178 | 170 | 304 | 190 | 164 | 135 | | 31 | 408 | | e400 | e220 | | 200 | | 157 | | 179 | 150 | | | TOTAL | 15687 | 10781 | 11375 | 9200 | 11633 | 10791 | 5539 | 4982 | 15108 | 9183 | 5381 | 4543 | | MEAN | 506 | 359 | 367 | 297 | 415 | 348 | 185 | 161 | 504 | 296 | 174 | 151 | | MAX | 629 | 408 | 416 | 450 | 1500 | 1340 | 212 | 188 | 2610 | 877 | 282 | 287 | | MIN | 408 | 170 | 180 | 220 | 230 | 200 | 161 | 138 | 145 | 179 | 131 | 104 | | AC-FT | 31120 | 21380 | 22560 | 18250 | 23070 | 21400 | 10990 | 9880 | 29970 | 18210 | 10670 | 9010 | | CFSM<br>IN. | .83<br>.96 | .59<br>.66 | .60<br>.69 | .49<br>.56 | .68<br>.71 | .57<br>.66 | .30<br>.34 | .26<br>.30 | .83<br>.92 | .49<br>.56 | .29<br>.33 | .25<br>.28 | | | | | | | | | BY WATER | | • | • | ••• | •=- | | | | | | | | • | | | | | | | | MEAN | 199 | 190 | 146 | 120 | 287 | 568 | 400 | 440 | 531 | 372 | 214 | 317 | | MAX | 998 | 910<br>1973 | 628<br>1973 | 625 | 993 | 1946 | 1295 | 1586 | 2019 | 2925 | 977 | 2412<br>1972 | | (WY)<br>MIN | 1987<br>35.3 | 32.1 | 17.9 | 1973<br>4.58 | 1983<br>27.2 | 1979<br>40.3 | 1983<br>45.6 | 1973<br>30.1 | 1984<br>26.7 | 1993<br>38.4 | 1993<br>26.4 | 14.7 | | (WY) | 1972 | 1971 | 1971 | 1971 | 1967 | 1968 | 1968 | 1967 | 1977 | 1970 | 1968 | 1971 | | SUMMARY | STATIST | ics | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WAT | ER YEAR | | WATER YE | ARS 1960 | - 1994 | | ANNUAL | ሞርንሞል፣. | | | 347680 | | | 114203 | | | | | | | ANNUAL | | | | 953 | | | 313 | | | 313 | | | | HIGHEST | ANNUAL | | | | | | | | | 966 | | 1993 | | | ANNUAL M | | | | | | | | | 42.4 | | 1968 | | | DAILY M | | | 22400 | Jul 10 | | 2610 | Jun 12 | | 37300 | | 7 1984 | | | DAILY ME | | | 130 | Feb 17 | | 104 | Sep 20 | | 2.2 | | 8 1971 | | ANNUAL | SEVEN-DAY | MINIMUM Y | | 232 | Feb 21 | | 109 | Sep 15 | | 2.5 | | 4 1971 | | | | EAK FLOW<br>EAK STAGE | | | | | 7750<br>12.58 | Jun 12<br>Jun 12 | | 30100<br>23.52 | Jul | .0 1993<br>.0 1993 | | | ANEOUS LO | | | | | | 101 | Sep 21 | | 23.32 | Jul 1 | .v 1333 | | ANNUAL | RUNOFF ( | AC-FT) | | 689600 | _ | | 226500 | | | 226800 | | | | ANNUAL | | CFSM) | | 1.5 | | | .51 | | | .51 | | | | | RUNOFF (:<br>ENT EXCEI | | | 21.2<br>1530 | 3 | | 6.98<br>493 | | | 6.98<br>752 | | | | 50 PERC | ENT EXCE | EDS | | 712 | | | 260 | | | 157 | | | | | ENT EXCE | | | 294 | | | 146 | | | 33 | | | | | | | | | | | | | | | | | e Estimated. #### 06808500 WEST NISHNABOTNA RIVER AT RANDOLPH, IA LOCATION.-Lat 40°52'23", long 95°34'48", in NE1/4 NE1/4 sec. 17, T.70 N., R.41 W., Fremont County, Hydrologic Unit 10240002, on right bank at upstream side of bridge on State Highway 184, 0.3 mi downstream from Deer Creek, 0.5 mi west of Randolph, and 16.0 mi upstream from confluence with East Nishnabotna River, and at mile 31.5 upstream from mouth of Nishnabotna River. DRAINAGE AREA.--1,326 mi<sup>2</sup>. PERIOD OF RECORD .-- June 1948 to current year. REVISED RECORDS. -- WSP 1440: Drainage area. WDR IA-74-1: 1973 (M). WDR IA-76-1: 1975 (P). GAGE.--Water-stage encoder. Datum of gage is 932.99 ft above sea level, unadjusted. Prior to Aug. 26, 1955, nonrecording gage with supplementary water-stage recorder operating above 8.4 ft June 30, 1949 to Aug. 25, 1955 at same site and datum. REMARKS.--Estimated daily discharges: Nov. 25-29, Dec. 26 to Feb. 19, and Feb. 25 to Mar. 4. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of about 24 ft, discharge not determined, from information by local residents. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | Di | SCHARGE | , CUBIC | PEET PEK | DAILY | MEAN V | ALUES | JBEK 1993 | 10 SEP | I EMBEK 19 | 94 | | |----------|--------------------------|--------------|--------------|--------------|---------------|-------------|------------|------------------|--------------|--------------------------------------------|--------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1740 | 1220 | 979 | e840 | e500 | e600 | 533 | 524 | 454 | 954 | 5 <b>9</b> 7 | 377 | | 2 | 1670 | 1200 | 986 | e760 | e540 | e640 | 529 | 491 | 2420 | 1330 | 559 | 347 | | 3 | 1630 | 1200 | 983 | e680 | e520 | e700 | 518 | 482 | 811 | 1040 | 554 | 339 | | 4 | 1580 | 1210 | 971 | e700 | e540 | e1200 | 509 | 468 | 629 | 2230 | 629 | 506<br>591 | | 5 | 1530 | 1170 | 958 | e780 | e700 | 2640 | 501 | 459 | 1270 | 1280 | 625 | | | 6 | 1510 | 1120 | 945 | e720 | e680 | 1890 | 484 | 460 | 1580 | 1060 | 593 | 539 | | 7<br>8 | 1470<br>1520 | 1100<br>1100 | 918<br>902 | e660<br>e580 | e580<br>e600 | 1110<br>864 | 476<br>475 | 463<br>477 | 1110<br>795 | 1150<br>954 | 531<br>833 | 454<br>394 | | 9 | 1730 | 1100 | 903 | e620 | e500 | 755 | 468 | 463 | 703 | 881 | 614 | 365 | | 10 | 1560 | 1100 | 910 | e660 | e540 | 709 | 462 | 448 | 657 | 831 | 559 | 353 | | 11 | 1520 | 1100 | 885 | e620 | e600 | 685 | 4 65 | 435 | 1320 | 797 | 553 | 343 | | 12 | 1460 | 1140 | 888 | e660 | e560 | 672 | 567 | 425 | 1010 | 777 | 533 | 336 | | 13 | 1420 | 1220 | 933 | e640 | e580 | 665 | 581 | 415 | 4290 | 1210 | 512 | 331 | | 14 | 1410 | 1150 | 977 | e560 | e660 | 657 | 544 | 428 | 1610 | 1430 | 507<br>493 | 326 | | 15 | 2490 | 1130 | 962 | e520 | e740 | 645 | 533 | 436 | 1080 | 952 | 493 | 324 | | 16 | 1960 | 1100 | 969 | e580 | e900 | 634 | 514 | 425 | 918 | 887 | 462 | 333 | | 17 | 1770 | 1090 | 963 | e540 | e1100 | 625 | 485 | 408 | 847 | 830 | 445 | 331 | | 18 | 1630 | 1070 | 964 | e500 | e1500 | 622 | 463 | 399 | 862 | 773<br>740 | 435<br>421 | 326<br>321 | | 19<br>20 | 1630<br>1530 | 1070<br>1040 | 952<br>935 | e520<br>e500 | e1800<br>1620 | 622<br>620 | 456<br>448 | 385<br>377 | 1080<br>957 | 710 | 398 | 316 | | 20 | 1550 | 1040 | 933 | e300 | 1620 | 620 | 440 | 3// | | | | | | 21 | 1460 | 1030 | 905 | e540 | 888 | 620 | 453 | 371 | 875 | 686 | 382 | 317 | | 22 | 1410 | 1030 | 836 | e700 | 727 | 617 | 493 | 371 | 1830 | 661 | 375 | 341 | | 23 | 1380 | 1020 | 787 | e 940 | 634 | 611 | 489 | 365 | 6020<br>2470 | 643<br>623 | 368<br>357 | 416<br>488 | | 24<br>25 | 1360<br>1350 | 1010<br>e700 | 780<br>732 | e920<br>e840 | 502<br>e700 | 599<br>579 | 471<br>463 | 361<br>355 | 1620 | 630 | 353 | 495 | | | 1330 | 6100 | | 6040 | | | | | | | | | | 26 | 1310 | e490 | e680 | e660 | e680 | 570 | 444 | 358 | 1360 | 618 | 373 | 523 | | 27 | 1270 | e540 | e390 | e580 | e520 | 574 | 425 | 354 | 1200<br>1110 | 589<br>5 <b>69</b> | 468<br>460 | 521<br>445 | | 28<br>29 | 1280<br>1240 | e700<br>e900 | e420<br>e540 | e620<br>e540 | e560 | 569<br>558 | 437<br>459 | 353<br>491 | 1040 | 557 | 389 | 411 | | 30 | 1210 | 958 | e700 | e480 | | 547 | 497 | 438 | 988 | 550 | 372 | 396 | | 31 | 1190 | | e880 | e480 | | 535 | | 427 | | 536 | 406 | | | TOTAL | 47220 | 31008 | 26533 | 19940 | 20971 | 23934 | 14642 | 13112 | 42916 | 27478 | 15156 | 11905 | | MEAN | 1523 | 1034 | 856 | 643 | 749 | 772 | 488 | 423 | 1431 | 886 | 489 | 397 | | MAX | 2490 | 1220 | 986 | 940 | 1800 | 2640 | 581 | 524 | 6020 | 2230 | 833 | 591 | | MIN | 1190 | 490 | 390 | 480 | 500 | 535 | 425 | 353 | 454 | 536 | 353 | 316 | | AC-FT | 93660 | 61500 | 52630 | 39550 | 41600 | 47470 | 29040 | 26010 | 85120 | 54500 | 30060 | 23610 | | CFSM | 1.15 | .78 | . 65 | .49 | .56 | .58 | .37 | .32 | 1.08 | .67 | .37 | .30 | | IN. | 1.32 | .87 | .74 | .56 | .59 | .67 | .41 | .37 | 1.20 | .77 | .43 | .33 | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 1948 | - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN | 382 | 342 | 297 | 264 | 522 | 990 | 745 | 957 | 1120 | 811 | 538 | 538 | | MAX | 2002 | 1277 | 1140 | 1201 | 1777 | 3877 | 2867 | 3227 | 4728 | 6357 | 2610 | 2531 | | (WY) | 1987 | 1973 | 1973 | 1973 | 1973 | 1979 | 1973 | 1973 | 1967 | 1993 | 1993 | 1972 | | MIN | 27.1 | 33.6 | 20.6<br>1956 | 17.4 | 19.4 | 67.8 | 42.7 | 97.3 | 65.6 | 71.2 | 30.1 | 41.0 | | (WY) | 1956 | 1956 | 1956 | 1956 | 1956 | 1956 | 1956 | 1967 | 1956 | 1954 | 1955 | 1955 | | | Y STATIST | ICS | FOR | 1993 CALE | ENDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1948 | - 1994 | | ANNUAL | | | | 753637 | | | 294815 | | | | | | | ANNUAL | MEAN<br>FANNUAL 1 | MEAN | | 2065 | | | 808 | | | 629<br>1985 | | 1993 | | | ANNUAL M | | | | | | | | | | | 1968 | | | DAILY M | | | 15900 | Jul 23 | | 6020 | Jun 23 | | 25000 | Mar | 1 1965 | | LOWEST | DAILY ME | AN | | 200 | Feb 17 | | 316 | Sep 20 | | 10 | Dec | 17 1955 | | ANNUAL | SEVEN-DAY | MUMINIM Y | | 337 | Feb 21 | | 324 | Sep 15 | | 11 | Dec | 16 1955 | | | TANEOUS PE | | | | | | 8820 | Jun 23 | | 111<br>25000<br>10<br>11<br>40800<br>24.80 | May :<br>Mar | 26 19 <b>8</b> 7<br>5 1949 | | TNCTANI | laneous di<br>Laneous La | EAR STAGE | | | | | 313 | Jun 23<br>Sep 19 | | 24.80 | Mar | 3 1343 | | ANNUAL. | RUNOFF (2 | AC-FT) | | 1495000 | | | 584800 | - | | 455700 | | | | ANNUAL | RUNOFF ( | CFSM) | | 1.5 | 6 | | .61 | | | .47 | | | | ANNUAL | RUNOFF ( | INCHES) | | 1.5<br>21.1 | .4 | | 8.27 | ! | | 6.45 | | | | | CENT EXCE | | | 4290 | | | 1410 | | | 1330 | | | | 50 PERC | CENT EXCE | EDS | | 1510 | | | 634 | | | 321<br>85 | | | | 90 PERC | CENT EXCE | פטפ | | 540 | | | 392 | | | 63 | | | e Estimated. #### NISHNABOTNA RIVER BASIN ## 06809210 EAST NISHNABOTNA RIVER NEAR ATLANTIC, IA LOCATION.--Lat 41°20'46", long 95°04'36", in NW 1/4 sec.35, T.76 N., R.37 W., Cass County, Hydrologic Unit 10240003, on left bank at downstream side of bridge on county highway, 1.6 mi upstream from Turkey Creek, 5.2 mi southwest of junction of U.S. Highway 6 and State Highway 83 in Atlantic, 69.1 mi upstream from confluence with West Nishnabotna River, and at mile 84.6 upstream from mouth of Nishnabotna River. DRAINAGE AREA. -- 436 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1960 to current year. GAGE.--Water-stage encoder. Datum of gage is 1,105.83 ft above sea level. Prior to Oct. 1, 1970, at site 2.2 mi upstream at datum 5.00 ft higher. REMARKS.--Estimated daily discharges: Oct. 24 to Nov. 4, Nov. 25-30, Dec. 22 to Feb. 18, Feb. 26 to Mar. 2, and Apr. 6-13. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 2, 1958 reached a stage of 22.49 ft, from floodmark, discharge, 34,200 ft<sup>3</sup>/s. | | Di | SCHARGE, | COBIC | reei fek | DAILY | MEAN V | ALUES | DEK 1993 | IO SEF | LEWIDER 195 | <b>'4</b> | | |--------------|--------------------|-----------------------|---------------------|--------------|--------------|-------------------|----------------------------|--------------------------|---------------------|--------------------------------------------------------|------------|-----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 607 | e330 | 185 | e180 | e100 | e160 | 113 | 157 | 112 | 280 | 115 | 76 | | 2 | 554 | e330 | 188 | e150 | el10 | e170 | 110 | 152 | 144 | 474 | 113 | 73 | | 3<br>4 | 535<br>513 | e310<br>e310 | 181<br>179 | e140<br>e150 | e100<br>e105 | 328<br>1340 | 108<br>106 | 146<br>145 | 123<br>112 | 264<br>262 | 113<br>182 | 70<br>169 | | 5 | 483 | 296 | 176 | e160 | e160 | 930 | 105 | 147 | 175 | 243 | 145 | 198 | | 6 | 475 | 290 | 163 | e150 | e150 | 431 | e100 | 154 | 316 | 229 | 122 | 102 | | 7<br>8 | 471<br>475 | 288<br>278 | 159<br>15 <b>8</b> | e130 | e120 | 247<br>192 | e97<br>e98 | 166<br>158 | 194<br>165 | 222<br>209 | 113 | 84<br>76 | | 9 | 475 | 278<br>275 | 165 | e120<br>e130 | ell5<br>el00 | 169 | e98<br>e96 | 158 | 155 | 209<br>192 | 127<br>102 | 73 | | 10 | 446 | 267 | 164 | e150 | e110 | 166 | e 96 | 149 | 152 | 185 | 106 | 71 | | 11 | 432 | 288 | 150 | e140 | e120 | 160 | e 92 | 146 | 219 | 184 | 101 | 67 | | 12 | 422 | 297 | 163 | e150 | e115 | 160 | e130 | 140 | 308 | 214 | 96<br>105 | 66 | | 13<br>14 | 397<br>389 | 315<br>282 | 174<br>183 | e140<br>e120 | e120<br>e160 | 154<br>152 | A 103 | 136<br>138 | 640<br>264 | 410<br>22 <b>8</b> | 93 | 65<br><b>63</b> | | 15 | 715 | 276 | 186 | e115 | e250 | 149 | e130<br>e150<br>103<br>135 | 134 | 211 | 184 | 89 | 63 | | 16 | 694 | 277 | 177 | e120 | e400 | 142 | 121 | 131 | 185 | 186 | 85 | 62 | | 17 | 526 | 274 | 181 | e115 | e700 | 143 | 101 | 128<br>120 | 175 | 165 | 81 | 58 | | 18<br>19 | 481<br>471 | 260<br>249 | 1 <b>8</b> 2<br>177 | e105<br>e110 | e1200<br>911 | 147<br>144 | 96<br>91 | 114 | 885<br>491 | 157<br>151 | 81<br>81 | 56<br>57 | | 20 | 442 | 229 | 173 | e105 | 287 | 139 | 86 | 112 | 324 | 144 | 75 | 58 | | 21 | 439 | 222 | 152 | e120 | 197 | 140 | 206 | 110 | 309 | 138 | 74 | 56 | | 22 | 425 | 215 | e145 | e160 | 189 | 137 | 174 | 110 | 289 | 135 | 75 | 68 | | 23<br>24 | 425<br>e410 | 206<br>201 | e150<br>e160 | e220<br>e210 | 150<br>177 | 138<br>130 | 146 | 110 | 1520<br>5 <b>68</b> | 127<br>128 | 72<br>73 | 78<br>72 | | 25 | e400 | e130 | e140 | e180 | 175 | 126 | 174<br>146<br>134<br>131 | 110<br>110<br>108<br>111 | 402 | 127 | 73 | 79 | | 26 | e390 | e80 | e130 | e140 | e150 | 126 | 125 | 115 | 344 | 125 | 107 | 89 | | 27 | e380 | e90 | e82 | e120 | e140 | 126 | 114 | 111 | 302 | 115 | 83<br>72 | 82 | | 28 | e380 | e120 | 600 | e125 | e150 | 126<br>126<br>123 | 125<br>114<br>122<br>136 | 108 | 275 | ,,, | | 71 | | 29 | e360 | e150 | el10 | e110 | | | | 127 | 256 | 104 | 73 | 66 | | 30<br>31 | e340<br>e330 | e170 | e140<br>e180 | e92<br>e93 | | 115<br>116 | 140 | 127<br>115 | 244 | 105<br>102<br>5888<br>190<br>474<br>99<br>11680<br>.44 | 95<br>95 | 63<br> | | TOTAL | 14299 | 7305 | 4939 | 4250 | 6761<br>241 | 7018 | 3562 | 4080 | 9859 | 5888 | 3017 | 2331 | | MEAN | 461 | 243 | 159 | 137 | 241 | 226 | 119 | 132 | 329 | 190 | 97.3 | 77.7 | | MAX | 715 | 330 | 188 | 220 | 1200 | 1340 | 206 | 166 | 1520 | 474 | 182 | 198 | | MIN<br>AC-FT | 330<br>28360 | 80<br>14490 | 82<br>9800 | 92<br>8430 | 100<br>13410 | 115<br>13920 | . 86<br>7070 | 108<br>8090 | 112<br>19560 | 11600 | 5980 | 56<br>4620 | | CFSM | 1.06 | .56 | .37 | .31 | .55 | .52 | .27 | .30 | .75 | .44 | .22 | .18 | | IN. | 1.22 | .62 | .42 | .36 | .58 | .60 | .30 | .35 | .84 | .50 | .26 | .20 | | STATIST | rics of M | ONTHLY MEA | N DATA F | OR WATER | YEARS 1961 | - 1994, | BY WATER | (EAR (WY) | | | | | | MEAN | 150 | 136 | 110 | 92.3 | 200 | 438 | 345 | 355 | 403 | 304 | 165 | 231 | | MAX | 1069 | 757 | 529 | 529 | 812 | 1378 | 1138 | 1071 | 1377 | 2747 | 1394 | 1855 | | (WY) | 1987 | 1973 | 1993 | 1973 | 1971 | 1965 | 1973 | 1973 | 1991 | 1993 | 1993 | 1972 | | MIN | 21.0<br>1967 | 20.3 | 10.6 | 7.68<br>1971 | 18.7<br>1968 | 28.4 | 27.9 | 15.0 | 23.4 | 15.6 | 13.4 | 14.8 | | (WY) | | 1969 | 1964 | _ | | 1968 | 1981 | 1967 | 1977 | 1968 | 1968 | 1971 | | SUMMARY | STATIST: | ICS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WAT | ER YEAR | | WATER YEA | RS 1961 | - 1994 | | ANNUAL | | | | 294540 | | | 73309 | | | | | | | ANNUAL | MEAN<br>CANNUAL N | ALC SAT | | 807 | | | 201 | | | 244<br>842 | | 1993 | | | ANNUAL ME | | | | | | | | | 23.7 | | 1968 | | | DAILY ME | | | 10700 | Aug 30 | | 1520 | Jun 23 | | 28400 | Nov 2 | 9 1985 | | LOWEST | DAILY ME | AN | | 80 | Nov 26 | | 56<br>59 | Jun 23<br>Sep 18 | | 2.5 | | 0 1977 | | | | MINIMUM | | 121 | Dec 24 | | 59 | | | 7.0 | Dec 1 | 7 1963 | | | TANEOUS PE | EAK FLOW<br>EAK STAGE | | | | | 2640<br>aB.98 | Jun 23<br>Feb 18 | | 22.81 | Sen 1 | 2 1972 | | INSTANT | ANEOUS LC | OW FLOW | | | | | 54 | | | | -ch t | | | | RUNOFF (7 | | | 584200 | - | | 145400 | | | 176800 | | | | | RUNOFF (CRUNOFF () | | | 1.8<br>25.1 | 5<br>2 | | .46<br>6.25 | | | .56<br>7.61 | | | | | ENT EXCEE | | | 1630 | | | 401 | | | 550 | | | | 50 PERC | ENT EXCEE | EDS | | 500 | | | 147 | | | 103 | | | | 90 PERC | ENT EXCES | EDS | | 180 | | | 82 | | | 22 | | | e Estimated. a Ice affected. b Also Sept. 19, 20, and 21. ## 06809500 EAST NISHNABOTNA RIVER AT RED OAK, IA LOCATION.—Lat 41°00'31", long 95°14'29", in NW1/4 SE1/4 sec.29, T.72 N., R.38 W., Montgomery County, Hydrologic Unit 10240003, on upstream side of Coolbaugh Street and 200 ft left of left end of Coolbaugh Street bridge in Red Oak, 0.2 mi upstream from Red Oak Creek, 38.0 mi upstream from confluence with West Nishnabotna River, and at mile 53.6 upstream from mouth of Nishnabotna River. DRAINAGE AREA.--894 mi<sup>2</sup>. PERIOD OF RECORD.--May 1918 to July 1925, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 1240: 1921, 1922-23 (M), 1924, 1942 (M), 1944 (M), 1946, WSP 1440: Drainage area, WSP 1710: 1957. GAGE.--Water-stage encoder. Datum of gage is 1,005.45 ft above sea level. Prior to July 5, 1925, nonrecording gage at present site at datum 4.60 ft higher. May 29, 1936, to Nov. 13, 1952, nonrecording gage with supplementary water-stage recorder in operation above 3.2 ft gage height. July 30, 1939, to Nov. 13, 1952, and Nov. 14, 1952, to June 13, 1966, water-stage recorder, all at site 0.5 mi upstream at datum 5.00 ft higher. June 14, 1966, to Sept. 30, 1969, at present site at datum 5.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 25 to Dec. 1, Dec. 21 to Feb. 19, Feb. 23 to Mar. 4, and Mar. 12-15. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | |---------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------|--|--| | 1<br>2<br>3<br>4 | 1300<br>1190<br>1120<br>1070 | 657<br>655<br>647<br>643 | e500<br>517<br>507<br>498 | e500<br>e420<br>e400<br>e430 | e290<br>e310<br>e280<br>e300 | e480<br>e540<br>e600<br>e1100 | 222<br>223<br>222<br>217 | 354<br>364<br>341<br>325 | 243<br>628<br>329<br>278 | 563<br>1120<br>814<br>1370 | 232<br>264<br>264<br>303 | 189<br>157<br>151<br>206 | | | | 5 | 1000 | 635 | 493 | e450 | e450 | 2140 | 221 | 318 | 477 | 767 | 371 | 404 | | | | 6<br>7<br>8<br>9 | 948<br>921<br>912<br>992 | 604<br>594<br>594<br>588 | 485<br>468<br>458<br>455 | e425<br>e370<br>e340<br>e370 | e430<br>e330<br>e315<br>e280 | 1130<br>699<br>473<br>394 | 215<br>211<br>212<br>216 | 323<br>342<br>347<br>330 | 593<br>522<br>401<br>366 | 605<br>552<br>511<br>472 | 293<br>250<br>262<br>296 | 344<br>224<br>187<br>174 | | | | 10<br>11 | 902<br>842 | 581<br>579 | 464<br>445 | e420<br>e400 | e310<br>e330 | 362<br>347 | 211<br>205 | 317<br>307 | 368<br>542 | 434<br>415 | 240<br>247 | 163<br>155 | | | | 12<br>13<br>14<br>15 | 818<br>786<br>778<br>1520 | 590<br>630<br>624<br>579 | 426<br>468<br>503<br>507 | e420<br>e390<br>e330<br>e320 | e300<br>e310<br>e340<br>e470 | e330<br>e320<br>e315<br>e308 | 232<br>267<br>270<br>295 | 298<br>285<br>284<br>284 | 990<br>1380<br>733<br>524 | 408<br>606<br>664<br>460 | 232<br>238<br>238<br>212 | 149<br>144<br>140<br>136 | | | | 16<br>17<br>18<br>19<br>20 | 1690<br>1220<br>1080<br>1050<br>981 | 566<br>558<br>547<br>548<br>534 | 499<br>482<br>488<br>483<br>472 | e340<br>e315<br>e300<br>e310<br>e300 | e640<br>e840<br>e1200<br>e1500<br>960 | 299<br>289<br>292<br>285<br>281 | 340<br>288<br>259<br>250<br>235 | 272<br>255<br>240<br>227<br>221 | 455<br>425<br>1060<br>1450<br>747 | 424<br>413<br>379<br>359<br>342 | 197<br>188<br>183<br>180<br>171 | 137<br>133<br>129<br>125<br>124 | | | | 21<br>22<br>23 | 928<br>903<br>857 | 517<br>516<br>513 | e440<br>e410<br>e425 | e340<br>e420<br>e520 | 526<br>446<br>e400 | 281<br>287<br>284<br>277 | 244<br>477<br>380 | 218<br>213<br>213 | 657<br>701<br>6790 | 327<br>315<br>307 | 159<br>153<br>151 | 124<br>134<br>163 | | | | 24<br>25 | 837<br>818 | 511<br>e340 | e450<br>e400 | e480<br>e450 | e560<br>e540 | 281<br>264 | 344<br>330 | 209<br>209 | 3240<br>1410 | 303<br>306 | 146<br>143 | 178<br>169 | | | | 26<br>27<br>28<br>29<br>30<br>31 | 781<br>745<br>726<br>721<br>680<br>662 | e230<br>e250<br>e350<br>e420<br>e480 | e380<br>e230<br>e250<br>e320<br>e400<br>e510 | e390<br>e340<br>e350<br>e310<br>e260<br>e270 | e420<br>e440<br>e460 | 254<br>258<br>244<br>237<br>227<br>223 | 319<br>298<br>287<br>306<br>334 | 211<br>210<br>200<br>224<br>247<br>241 | 1080<br>871<br>758<br>671<br>603 | 299<br>293<br>273<br>251<br>247<br>240 | 167<br>259<br>178<br>153<br>164<br>202 | 190<br>197<br>167<br>150<br>143 | | | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT | 29778<br>961<br>1690<br>662<br>59060 | 16080<br>536<br>657<br>230<br>31890 | 13833<br>446<br>517<br>230<br>27440 | 11680<br>377<br>520<br>260<br>23170 | 13977<br>499<br>1500<br>280<br>27720 | 13820<br>446<br>2140<br>223<br>27410 | 8129<br>271<br>477<br>205<br>16120 | 8429<br>272<br>364<br>200<br>16720 | 29292<br>976<br>6790<br>243<br>58100 | 14839<br>479<br>1370<br>240<br>29430 | 6736<br>217<br>371<br>143<br>13360 | 5186<br>173<br>404<br>124<br>10290 | | | | CFSM<br>IN. | 1.07<br>1.24 | .60<br>.67 | .50<br>.58 | .42<br>.49 | .56<br>.58 | .50<br>.58 | .30<br>.34 | .30<br>.35 | 1.09<br>1.22 | .54<br>.62 | .24<br>.28 | .19<br>.22 | | | | | | | | | | • | BY WATER | | | | 25.0 | 256 | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 226<br>1816<br>1987<br>16.5<br>1938 | 208<br>1335<br>1973<br>19.9<br>1940 | 166<br>1038<br>1993<br>14.6<br>1938 | 156<br>1078<br>1973<br>12.3<br>1940 | 354<br>1438<br>1973<br>17.2<br>1940 | 687<br>2596<br>1965<br>32.3<br>1938 | 536<br>2194<br>1973<br>30.4<br>1956 | 646<br>2440<br>1973<br>35.2<br>1939 | 812<br>4891<br>1947<br>40.5<br>1968 | 527<br>6971<br>1993<br>24.5<br>1936 | 352<br>2821<br>1993<br>17.0<br>1936 | 376<br>3074<br>1972<br>14.9<br>1937 | | | | SUMMAR | STATIST | ics | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1919 | - 1994 | | | | LOWEST | | EAN | | 655147<br>1795 | Aug 30 | | 171779<br>471<br>6790 | Jun 23 | | 424<br>1842<br>54.9<br>29800 | Sep | 1993<br>1968<br>13 1972 | | | | LOWEST ANNUAL INSTANT INSTANT INSTANT | DAILY MEN<br>SEVEN-DAY<br>PANEOUS PE<br>PANEOUS PE<br>PANEOUS LO | AN<br>Y MINIMUM<br>EAK FLOW<br>EAK STAGE<br>OW FLOW | | 170<br>303 | Feb 17<br>Feb 21 | | 124<br>129<br>9160<br>15.63<br>122 | Sep 20<br>Sep 16<br>Jun 23 | | 6.0<br>8.1<br>38000<br>28.23 | Aug<br>Dec<br>Sep | 18 1936<br>15 1937<br>13 1972<br>13 1947 | | | | 50 PERC | RUNOFF ( | EDS | | 1299000<br>2.0<br>27.2<br>4060<br>950<br>442 | 1 | | 340700<br>.53<br>7.15<br>848<br>347<br>189 | | | 307500<br>.47<br>6.45<br>901<br>173<br>40 | | | | | e Estimated. ## NISHNABOTNA RIVER BASIN ## 06810000 NISHNABOTNA RIVER ABOVE HAMBURG, IA LOCATION.--Lat 40°37'57", long 95°37'32", in SW1/4 SE1/4 sec.11, T.67 N., R.42 W., Fremont County, Hydrologic Unit 10240004, on left bank 1.7 mi downstream from confluence of East Nishnabotna and West Nishnabotna Rivers, 2 mi northeast of Hamburg, and at mile 13.8. DRAINAGE AREA.--2,806 mi<sup>2</sup>. e Estimated. PERIOD OF RECORD.--March 1922 to September 1923, October 1928 to current year. Monthly discharge only for some periods published in WSP 1310. REVISED RECORDS.--WSP 1240: 1923, 1929-37, 1938-40 (M), 1943 (M). WSP 1440: Drainage area. WDR IA-74-1: 1973. GAGE.--Water-stage encoder. Datum of gage is 894.17 ft above sea level. See WSP 1730 for history of changes prior to Nov. 16, 1950. REMARKS.--Estimated daily discharges: Nov. 25-29, Dec. 23 to Feb. 19, Feb. 24 to Mar. 3, June 24, July 26-27, and Sept. 17-20, 24-28. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. | | D | ISCHARGE | E, CUBIC | FEET PER | SECOND, V | | | OBER 1993 | 3 TO SEP | TEMBER 19 | 94 | | |-------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 3850<br>3620<br>3430<br>3320<br>3200 | 2220<br>2240<br>2220<br>2210<br>2170 | 1680<br>1680<br>1630<br>1580<br>1550 | e1430<br>e1280<br>e1190<br>e1250<br>e1360 | e1110<br>e1150<br>e1090<br>e1110<br>e1410 | e1400<br>e1500<br>e1600<br>1940<br>4520 | 1020<br>1010<br>997<br>984<br>964 | 1110<br>1090<br>1080<br>1030<br>997 | 857<br>4960<br>2770<br>1590<br>2530 | 1980<br>2430<br>2600<br>3220<br>3430 | 1020<br>1010<br>989<br>1090<br>1080 | 691<br>636<br>580<br>970<br>1080 | | 6<br>7<br>8<br>9<br>10 | 3100<br>3030<br>3070<br>3770<br>3230 | 2080<br>2030<br>2030<br>2020<br>2010 | 1520<br>1490<br>1480<br>1450<br>1430 | e1280<br>e1180<br>e1080<br>e1160<br>e1260 | e1350<br>e1140<br>e1130<br>e980<br>e1040 | 3880<br>2360<br>1740<br>1370<br>1240 | 960<br>942<br>940<br>937<br>933 | 1020<br>1030<br>1030<br>1030<br>989 | 3140<br>2470<br>1960<br>1690<br>1570 | 2300<br>2200<br>1990<br>1840<br>1740 | 1170<br>994<br>1130<br>1240<br>1030 | 1090<br>966<br>747<br>650<br>602 | | 11<br>12<br>13<br>14<br>15 | 3020<br>2930<br>2840<br>2780<br>3680 | 1990<br>2020<br>2140<br>2080<br>2030 | 1400<br>1360<br>1410<br>1530<br>1510 | e1210<br>e1280<br>e1240<br>e1110<br>e1070 | e1100<br>e1020<br>e1030<br>e1120<br>e1320 | 1180<br>1150<br>1130<br>1140<br>1120 | 930<br>1090<br>1150<br>1100<br>1060 | 951<br>917<br>887<br>884<br>899 | 2720<br>3150<br>5330<br>3700<br>2440 | 1640<br>1590<br>1720<br>2480<br>2090 | 948<br>928<br>887<br>851<br>839 | 570<br>548<br>530<br>514<br>511 | | 16<br>17<br>18<br>19<br>20 | 4380<br>3900<br>3460<br>3400<br>3220 | 1940<br>1910<br>1890<br>1860<br>1820 | 1500<br>1490<br>1450<br>1440<br>1410 | e1160<br>e1100<br>e1060<br>e1100<br>e1080 | e1640<br>e1900<br>e2200<br>e3100<br>3190 | 1100<br>1090<br>1080<br>1080<br>1090 | 1050<br>1070<br>988<br>925<br>896 | 889<br>858<br>821<br>794<br>775 | 2070<br>1900<br>1890<br>2640<br>2690 | 1770<br>1690<br>1560<br>1460<br>1390 | 762<br>727<br>703<br>687<br>660 | 495<br>e485<br>e485<br>e475<br>469 | | 21<br>22<br>23<br>24<br>25 | 3060<br>2930<br>2860<br>2780<br>2720 | 1780<br>1750<br>1740<br>1710<br>e1250 | 1350<br>1250<br>e1250<br>e1350<br>e1250 | e1170<br>e1420<br>e1600<br>e1500<br>e1400 | 1800<br>1270<br>1040<br>e1300<br>e1700 | 1080<br>1080<br>1080<br>1070<br>1060 | 884<br>934<br>1190<br>1090 | 757<br>747<br>741<br>740<br>722 | 2270<br>2110<br>12300<br>e11200<br>4050 | 1330<br>1270<br>1240<br>1220<br>1210 | 626<br>604<br>589<br>570<br>564 | 449<br>481<br>595<br>e720<br>e740 | | 26<br>27<br>28<br>29<br>30<br>31 | 2620<br>2500<br>2460<br>2400<br>2320<br>2250 | e920<br>e1000<br>e1250<br>e1600<br>1770 | e1150<br>e760<br>e840<br>e1000<br>e1250<br>e1500 | e1300<br>e1200<br>e1350<br>e1210<br>e1090<br>e1080 | e1400<br>e1200<br>e1300 | 1060<br>1060<br>1060<br>1060<br>1060<br>1030 | 986<br>923<br>940<br>990<br>1020 | 730<br>727<br>717<br>890<br>949<br>853 | 3150<br>2700<br>2440<br>2240<br>2090 | e1280<br>e1300<br>1110<br>1030<br>995<br>975 | 637<br>684<br>864<br>730<br>630<br>655 | e760<br>e720<br>e660<br>583<br>531 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 96130<br>3101<br>4380<br>2250<br>190700<br>1.11<br>1.27 | 55680<br>1856<br>2240<br>920<br>110400<br>.66 | 42940<br>1385<br>1680<br>760<br>85170<br>.49 | 38200<br>1232<br>1600<br>1060<br>75770<br>.44 | 40140<br>1434<br>3190<br>980<br>79620<br>.51<br>.53 | 44410<br>1433<br>4520<br>1030<br>88090<br>.51<br>.59 | 29933<br>998<br>1190<br>884<br>59370<br>.36 | 27654<br>892<br>1110<br>717<br>54850<br>.32<br>.37 | 96617<br>3221<br>12300<br>857<br>191600<br>1.15<br>1.28 | 54080<br>1745<br>3430<br>975<br>107300<br>.62<br>.72 | 25898<br>835<br>1240<br>564<br>51370<br>.30 | 19333<br>644<br>1090<br>449<br>38350<br>.23 | | | | | | | YEARS 1922 | | | | | •,,_ | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 670<br>5004<br>1987<br>39.5<br>1938 | 650<br>3083<br>1973<br>42.9<br>1938 | 541<br>2557<br>1973<br>27.1<br>1938 | 552<br>3585<br>1973<br>21.3<br>1940 | 1005<br>4720<br>1973<br>30.3<br>1940 | 1853<br>7229<br>1979<br>115<br>1931 | 1401<br>5866<br>1973<br>89.7<br>1956 | 1705<br>6061<br>1973<br>68.2<br>1934 | 2349<br>16430<br>1947<br>151<br>1956 | 1567<br>17780<br>1993<br>52.8<br>1936 | 1046<br>6266<br>1993<br>16.8<br>1934 | 1021<br>7385<br>1993<br>44.1<br>1937 | | SUMMAR | Y STATIS | rics | | | NDAR YEAR | I | | MATER YEAR | | WATER YE | ARS 1922 | 2 - 1994 | | LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER | MEAN T ANNUAL ANNUAL T DAILY M DAILY ME SEVEN-DA TANEOUS E | MEAN MEAN MEAN MAY MINIMUM MEAK FLOW MEAK STAGE MOW MEACHT) MECHES MEDS MEDS MEDS MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | | 1850940<br>5071<br>37000<br>450<br>880<br>3671000<br>1.8<br>24.5<br>11200<br>3200<br>1440 | | | 571015<br>1564<br>12300<br>449<br>477<br>22000<br>25.1<br>1133000<br>.5<br>7.5<br>2850<br>1210<br>721 | Sep 21 | | 1199 5062 170 49600 4.5 9.9 55500 30.56 868700 .43 5.81 2700 550 113 | Aug<br>Aug<br>Jun | 1993<br>1934<br>14 1947<br>30 1934<br>24 1934<br>24 1947<br>25 1993 | #### 06813500 MISSOURI RIVER AT RULO, NE LOCATION.--Lat 40°03'13", long 95°25'19", in NW1/4 NW1/4 sec.17, T.1 N., R.18 E., Richardson County, Hydrologic Unit 10240005, on right bank at downstream side of bridge on U.S. Highway 159 at Rulo, 3.2 mi upstream from Big Nemaha River, and at mile 498.0. DRAINAGE AREA.-414,900 mi<sup>2</sup>, approximately. The 3,959 mi<sup>2</sup> in Great Divide basin are not included. PERIOD OF RECORD.—October 1949 to current year in reports of U.S. Geological Survey. Gage-height record collected at site 80 ft upstream January 1886 to December 1899 published in reports of Missouri River Commission; September 1929 to September 1950 in files of Kansas City office of U.S. Army Corps of Engineers. GAGE.—Water-stage encoder. Datum of gage is 837.23 ft above sea level. Oct. 1949 to Sept. 12, 1950, nonrecording gage at site 80 ft upstream and Sept. 13, 1950 to Apr. 19, 1983, recording gage on downstream end of middle pier, all at same datum. REMARKS.--Estimated daily discharges: Aug. 26-28 and Sept. 12-16, 18-21. Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 358,000 ft<sup>3</sup>/s Apr. 22, 1952, gage height, 25.60 ft; minimum daily discharge, 4,420 ft<sup>3</sup>/s Jan. 13, 1957; minimum gage height, -0.19 ft Dec. 25, 1990, result of freezeup. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1881 reached a stage of 22.9 ft, from floodmark, discharge not determined. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | | | | | | 2 | | | | | | | | |--------------|-------------------|----------------|------------------------------|--------------------------|-------------------|--------------------|--------------------------------------------------|--------------------|----------------|----------------|------------------|---------------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 47100 | 43900 | 32300 | 31200 | 30800 | 38000 | 45800 | 47000 | 46200 | 61500 | 42700 | 40200 | | ž | 46000 | | | | 29900 | 40500 | 45500 | 47200 | 57500 | 61100 | 42900 | 40400 | | 3 | 45500 | 43600 | | | 30000 | 42300 | 44900 | 46500 | 58700 | 62600 | 43800 | 39800 | | 4 | 45300 | 43200 | 38600 | | 30300 | 47200 | 44800 | 46700 | 49200 | 62900 | 44400 | 41000 | | 5 | 44900 | 43100 | 41000 | 33200 | 30500 | 65600 | 44500 | 50600 | 50600 | 68600 | 44800 | 45300 | | 6 | 44700 | 43400 | 41000 | 32100 | 30700 | 7 <b>9</b> 700 | 44900 | 56000 | 60900 | 64500 | 45000 | 44700 | | 7 | 44800 | 43700 | 40600 | 28600 | 30500 | 90400 | 45100 | 58200 | 56300 | 66300 | 43700 | 44500 | | 8 | 44700 | 43500 | 39900 | 28000 | 30200 | 81500 | 44800 | 56600 | 50600 | 78200 | 43200 | 43500 | | 9 | 54100 | 43000 | 39000 | 27200 | 29300 | 75200 | 46000 | 55200 | 4 9300 | 72000 | 45300 | 42900 | | 10 | 51400 | 42600 | 38000 | 24900 | 29000 | 70700 | 46700 | 53 <b>6</b> 00 | 49700 | 64500 | 45900 | 41800 | | 11 | 49800 | 42600 | 37900 | | 28500 | 70000 | 46300 | 52300 | 50700 | 59500 | 43300 | 40700 | | 12 | 48600 | 43300 | 38400 | | 28400 | 67600 | 46500 | 52600 | 58800 | 57800 | 42300 | e39500 | | 13 | 47900 | 44200 | 38000 | 29000 | 29000 | 62800 | 47900 | 53100 | 57400 | 56000 | 42400 | e38600 | | 14<br>15 | 46400<br>46500 | 44500<br>45300 | 37900<br>38500 | 30500<br>30800 | 29800<br>29800 | 59900<br>57900 | 48300<br>49100 | 52300<br>52400 | 59400<br>56000 | 58100<br>69000 | 42200<br>43100 | e37900<br>e38500 | | 13 | 46300 | 45300 | 36300 | 30800 | | 3/900 | 49100 | 32400 | 36000 | | 43100 | 636300 | | 16 | 48900 | 45600 | 37700 | 30200 | 29900 | 54600 | | 51100 | 55500 | 66700 | 43400 | e38700 | | 17 | 48400 | 45400 | 37300 | 27300 | 32000 | 50700 | | 50000 | 54500 | 65400 | 42400 | 38100 | | 18<br>19 | 47500<br>47500 | 45300<br>44500 | 37800<br>38600 | 24800<br>26200 | 35900<br>42600 | 50500<br>50800 | 51100<br>49200 | 48900<br>48400 | 55000<br>61300 | 62200<br>60000 | 41900<br>41600 | e37900<br>e37900 | | 20 | 48100 | 43800 | 38400 | 27100 | 70300 | 50000 | 48000 | 48600 | 63700 | 56900 | 41100 | e38400 | | | | | | | | | | | | | | | | 21 | 48000 | 43400 | 38400 | 25800 | 75600 | 49000 | 47800 | 48000 | 58000 | 55300 | 41100 | e38600 | | 22 | 46000 | 43300 | 37600 | 28300 | 70000 | 48800 | 47600 | 47700 | 58000 | 52500 | 41300<br>41600 | 38600 | | 23<br>24 | 45200<br>45100 | 43100<br>42400 | 36900<br>34900 | 30500<br>30600 | 64000<br>57100 | 49100<br>48400 | 46000<br>45500 | 47600<br>47400 | 71300<br>88500 | 50400<br>48100 | 41400 | 40000<br>41700 | | 25 | 45300 | 41600 | 33300 | 31100 | 50200 | 47900 | 45200 | 47300 | 77100 | 46400 | 40900 | 44100 | | | | | | | | | | | | | | | | 26 | 44900 | 38900 | 32200 | 32500 | 43900 | 47300 | 44200 | 46700 | 72300 | 45300 | e41700 | 44400 | | 27<br>28 | 44500<br>45100 | 34600<br>31900 | 32500<br>31800 | 33100<br>32600 | 40300<br>37600 | 46800<br>47400 | 43800<br>44100 | 46800<br>46600 | 69700<br>69900 | 44200<br>43900 | e41800<br>e42200 | 42100<br>41200 | | 29 | 45000 | 30800 | 32200 | 32100 | | 46900 | 44700 | 46600 | 66600 | 43300 | 42000 | 41100 | | 30 | 45500 | 31200 | 31800 | 31600 | | 46900 | 45200 | 47300 | 62700 | 43000 | 41300 | 40600 | | 31 | 44100 | | 31600 | 31300 | | 46000 | | 46500 | | 43100 | 40700 | | | TOTAL | 1446800 | 1259600 | 1133500 | 921800 | 1096100 | 1730400 | 1394000 | 1545800 | 1795400 | 1789300 | 1321400 | 1222700 | | MEAN | 46670 | 41990 | 36560 | 29740 | 39150 | 55820 | 46470 | 49860 | 59850 | 57720 | 42630 | 40760 | | MAX | 54100 | 45600 | 41000 | 34700 | 75600 | 90400 | 51100 | 58200 | 88500 | 78200 | 45900 | 45300 | | MIN | 44100 | 30800 | 31600 | 24200 | 28400 | 38000 | 43800 | 46500 | 46200 | 43000 | 40700 | 37900 | | | 2870000 | 2498000 | 2248000 | 1828000 | 2174000 | 3432000 | | 3066000 | 3561000 | 3549000 | 2621000<br>.10 | 2425000<br>.10 | | CFSM<br>IN. | .11<br>.13 | .10<br>.11 | .09<br>.10 | .07 | .09<br>.10 | .13 | .11 | .12<br>.14 | .14<br>.16 | .14<br>.16 | .12 | .10 | | | | | | | | | | | | | | | | STATI: | STICS OF<br>43970 | MONTHLY M | EAN DATA<br>26510 | FOR WATER | YEARS 19<br>28060 | 58 - 1994<br>41750 | , BY WATE<br>51460 | R YEAR (W<br>50330 | Y)<br>54420 | 50470 | 44100 | 44790 | | MAX | 77770 | 69430 | 55240 | 22280<br>42280 | 52560 | 79590 | | 94370 | 130600 | 164800 | 67800 | 69780 | | (WY) | 1987 | 1976 | 1987 | 1973 | 1983 | 1979 | 1984 | 1984 | 1984 | 1993 | 1975 | 1975 | | MIN | 25580 | 17000 | 11330 | 12430 | 14530 | 19380 | 31960 | 34040 | 34830 | 33860 | 32790 | 34140 | | (WY) | 1962 | 1962 | 1964 | 1964 | 1964 | 1964 | 1990 | 1958 | 1958 | 1963 | 1991 | 1991 | | SUMMA | RY STATES | TICS | 1987<br>11330<br>1964<br>FOR | 22626100 | ENDAR YEA | R | FOR 1994 | WATER YEAR | R | WATER | YEARS 195 | 8 - 19 <b>9</b> 4a | | ANNUAL | TOTAL | | 2.01 | 22626100 | | - | 16656800 | | •• | ***** | | | | ANNUAL | MEAN | | | 61990 | | | 45640 | | | 41540 | | | | | T ANNUAL | | | | | | | | | 65930 | | 1984 | | LOWEST | ANNUAL | MEAN | | 289000<br>17600<br>19700 | *-1 0 | | 00400 | | 7 | 29670 | * | 1963 | | HIGHES | T DALLY | MBAN<br>Dan | | 289000 | Jul 2<br>Jan | 9.<br>4 | 90400<br>24200<br>26900<br>92500 | Mar | <i>'</i><br>1 | 289000<br>5200 | JUI.<br>*≈1. | 29 1993<br>27 1061 | | TOMES | CEAEN-L | EAN MINIMI | м | 10700 | Jan<br>Jan | 1 | 26900 | Jan 1. | 7 | 5860 | Dec | 14 1963 | | INSTAN | TANEOUS | PEAK FLOW | · · | 13,00 | | - | 92500 | Mar | 7 | 307000 | Jul | 24 1993 | | INSTAN | ITANEOUS | PEAK STAG | E | | | | 16. | 77 Mar ' | 7 | 25. | 37 Jul | 24 1993 | | N ATMITT N T | DIMORE | (AC-Em) | | 44880000 | | | 92500<br>16.<br>33040000<br>1200<br>4700<br>1200 | | ; | 30090000 | 10 | 1984<br>1963<br>24 1993<br>27 1961<br>14 1963<br>24 1993<br>24 1993 | | ANNUAL | RUNOFF | (CF SM) | | 2. | U.3<br>T.2 | | 1 - | 4 O | | ١. | 36 | | | 10 PFF | CENT EXC | EEDS | | 108000 | - | | 1200 | 7. J | | 63100 | | | | 50 PER | CENT EXC | EEDS | | 52000 | | | 4700 | | | 38900 | | | | 90 PEF | CENT EXC | EEDS | | 108000<br>52000<br>26000 | | | 1200 | | | 19100 | | | | | | | | | | | | | | | | | e Estimated. a Post-regulation period. #### 06817000 NODAWAY RIVER AT CLARINDA, IA LOCATION.—Lat 40°44'19", long 95°00'47", in SW1/4 NE1/4 sec.32, T.69 N., R.36 W., Page County, Hydrologic Unit 10240009, near left abutment on downstream side of bridge on State Highway 2 (city route), 0.5 mi downstream from North Branch, 1.2 mi east of city square of Clarinda, and 7.5 mi custream from East Nodaway River. DRAINAGE AREA.--762 mi<sup>2</sup>. PERIOD OF RECORD.--May 1918 to July 1925, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 1240: 1918-20 (M), 1921, 1922-25 (M), 1936-38, 1942, 1943-45 (M), 1948. WSP 1440: Drainage area. WSP 1710: 1958, 1959 (P). GAGE.--Water-stage recorder. Datum of gage is 955.36 ft above sea level. Prior to July 5, 1925, and May 28, 1936, to Mar. 26, 1957 nonrecording gage at same site, and prior to Oct. 1, 1987, at datum 5.00 ft. higher. REMARKS.--Estimated daily discharges: Nov. 25-30, Dec. 21 to Feb. 19, Feb. 23 to Mar. 2, May 25-28, 31, June 1, 23-24, and Sept. 16-20. Records good except those for estimated daily discharges, which are poor. Clarinda municipal water supply is taken from Nodaway River, 500 ft upstream from station. Average daily pumpage was 1.29 ft<sup>3</sup>/s. U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station. COOPERATION.--Average pumpage provided by City of Clarinda water works. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1903 reached a stage of 25.4 ft, from floodmarks, discharge not determined. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|--|--| | DAY | OCT | VON | DEC | JAN | FEB | MAR | APR | MAY | JUN | Jul | AUG | SEP | | | | 1<br>2<br>3<br>4<br>5 | 1010<br>889<br>854<br>813<br>744 | 422<br>415<br>406<br>397<br>381 | 309<br>311<br>303<br>287<br>277 | e190<br>e170<br>e150<br>e160<br>e180 | e120<br>e130<br>e120<br>e130<br>e160 | e170<br>e180<br>402<br>1890<br>1610 | 153<br>153<br>150<br>149<br>140 | 228<br>250<br>227<br>211<br>201 | e112<br>969<br>680<br>431<br>485 | 799<br>1430<br>1260<br>6550<br>4790 | 174<br>183<br>174<br>167<br>181 | 99<br>81<br>77<br>146<br>222 | | | | 6<br>7<br>8<br>9 | 696<br>668<br>644<br>738<br>739 | 359<br>349<br>349<br>345<br>338 | 264<br>255<br>245<br>250<br>253 | e170<br>e150<br>e130<br>e140<br>e160 | e150<br>e130<br>e125<br>e110<br>e120 | 806<br>513<br>364<br>304<br>275 | 137<br>138<br>142<br>137<br>135 | 221<br>234<br>233<br>212<br>196 | 920<br>583<br>473<br>419<br>387 | 1500<br>1180<br>1020<br>845<br>771 | 160<br>146<br>148<br>159<br>151 | 198<br>112<br>90<br>84<br>79 | | | | 11<br>12<br>13<br>14<br>15 | 630<br>600<br>576<br>551<br>1470 | 338<br>345<br>372<br>369<br>336 | 236<br>226<br>267<br>300<br>297 | e145<br>e160<br>e150<br>e130<br>e120 | e140<br>e125<br>e130<br>e150<br>e170 | 263<br>251<br>247<br>236<br>231 | 133<br>159<br>182<br>182<br>198 | 183<br>171<br>163<br>161<br>161 | 474<br>1100<br>1530<br>679<br>538 | 722<br>1010<br>853<br>819<br>590 | 147<br>144<br>135<br>129<br>117 | 75<br>73<br>67<br>63<br>61 | | | | 16<br>17<br>18<br>19<br>20 | 1650<br>958<br>817<br>826<br>771 | 332<br>325<br>318<br>311<br>303 | 275<br>262<br>260<br>262<br>252 | e130<br>e125<br>e110<br>e120<br>e115 | e220<br>e350<br>e640<br>e580<br>514 | 225<br>214<br>208<br>207<br>201 | 460<br>248<br>204<br>184<br>171 | 157<br>143<br>133<br>129<br>124 | 465<br>428<br>3540<br>1850<br>1190 | 514<br>521<br>436<br>358<br>312 | 109<br>109<br>105<br>97<br>89 | e59<br>e58<br>e59<br>e59 | | | | 21<br>22<br>23<br>24<br>25 | 697<br>637<br>560<br>534<br>502 | 293<br>294<br>288<br>284<br>e190 | e220<br>e200<br>e220<br>e230<br>e200 | e130<br>e160<br>e220<br>e210<br>e190 | 292<br>222<br>e140<br>e190<br>e180 | 201<br>200<br>192<br>186<br>178 | 169<br>474<br>336<br>280<br>252 | 118<br>115<br>115<br>114<br>e110 | 952<br>1010<br>e5800<br>e3690<br>1700 | 260<br>240<br>229<br>222<br>222 | 87<br>86<br>84<br>84<br>77 | 59<br>65<br>68<br>69<br>77 | | | | 26<br>27<br>28<br>29<br>30<br>31 | 486<br>470<br>480<br>470<br>443<br>427 | e140<br>e150<br>e190<br>e240<br>e290 | e150<br>e110<br>e120<br>e130<br>e160<br>e200 | e150<br>e130<br>e150<br>e120<br>e110<br>e110 | e140<br>e150<br>e160<br> | 171<br>172<br>169<br>167<br>160<br>155 | 227<br>204<br>201<br>213<br>218 | e112<br>e108<br>e100<br>117<br>115<br>e110 | 1470<br>1190<br>1040<br>930<br>853 | 236<br>247<br>196<br>182<br>174<br>168 | 80<br>107<br>110<br>87<br>87<br>104 | 82<br>77<br>73<br>65<br>64 | | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 22350<br>721<br>1650<br>427<br>44330<br>.95<br>1.09 | 9469<br>316<br>422<br>140<br>18780<br>.41<br>.46 | 7331<br>236<br>311<br>110<br>14540<br>.31 | 4585<br>148<br>220<br>110<br>9090<br>.19<br>.22 | 5788<br>207<br>640<br>110<br>11480<br>.27<br>.28 | 10748<br>347<br>1890<br>155<br>21320<br>.45 | 6129<br>204<br>474<br>133<br>12160<br>.27 | 4972<br>160<br>250<br>100<br>9860<br>.21 | 35888<br>1196<br>5800<br>112<br>71180<br>1.57<br>1.75 | 28656<br>924<br>6550<br>168<br>56840<br>1.21<br>1.40 | 3817<br>123<br>183<br>77<br>7570<br>.16<br>.19 | 2521<br>84.0<br>222<br>58<br>5000<br>.11<br>.12 | | | | STATIS | | | | | | | BY WATER | | | | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 181<br>1658<br>1974<br>7.52<br>1938 | 172<br>1602<br>1973<br>8.27<br>1938 | 140<br>1090<br>1993<br>2.10<br>1924 | 134<br>853<br>1974<br>6.00<br>1924 | 311<br>1857<br>1973<br>11.3<br>1940 | 576<br>2456<br>1979<br>14.0<br>1938 | 543<br>2449<br>1973<br>14.4<br>1956 | 625<br>2321<br>1982<br>10.3<br>1939 | 732<br>4779<br>1947<br>20.0<br>1968 | 437<br>6778<br>1993<br>17.3<br>1954 | 240<br>1953<br>1987<br>9.81<br>1936 | 339<br>3019<br>1972<br>6.83<br>1937 | | | | | Y STATISTI | :Cs | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YEA | RS 1919 | - 1994 | | | | LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | | AN A | | 548177<br>1502<br>19100<br>110<br>153<br>1087000<br>1.9'<br>26.7<br>3450<br>693<br>240 | | | 142254<br>390<br>6550<br>58<br>59<br>23900<br>16.20<br>58<br>282200<br>.51<br>6.94<br>822<br>201<br>100 | Jul 4<br>Sep 17<br>Sep 15<br>Jul 4<br>Jul 4<br>Sep 17 | | 378<br>1577<br>36.8<br>25500<br>1.0<br>1.3<br>311000<br>25.30<br>274000<br>6.74<br>810<br>100<br>19 | Dec<br>Dec 2<br>Jun 1 | 1993<br>1968<br>3 1972<br>9 1923<br>5 1923<br>3 1947<br>3 1947 | | | e Estimated. #### 06819185 EAST FORK ONE HUNDRED AND TWO RIVER AT BEDFORD, IA LOCATION.-Lat 40°39'38", long 94°42'59", in NE1/4 sec.35, T.68 N., R.34 W., Taylor County, Hydrologic Unit 10240013, on left bank at downstream side of bridge of county highway N44, 0.1 mi south of Bedford, 0.4 mi upstream from concrete stablization dam, and 3.0 mi upstream from Daugherty creek. DRAINAGE AREA.--85.4 mi<sup>2</sup>. PERIOD OF RECORD.—October 1983 to current year. September 1959 to September 1983, at site 2 mi upstream published as "near Bedford" (station 06819190) not equivalent because of difference in drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,069.16 ft above sea level. REMARKS.--Estimated daily discharges: Nov. 23-26, Dec. 19-23, 29, Jan. 2-13, Jan. 27 to Feb. 1, Feb. 14-17, Feb. 23 to Mar. 1, and Aug. 8-15, 25-31. Records fair except those for estimated daily discharges, which are poor. Slight regulation at low flow by low dam used for water supply in Bedford. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. | | DIS | SCHARGE | , CUBIC F | EET PER S | | WATER Y | EAR OCTO | BER 1993 | TO SEPT | EMBER 19 | 94 | | |---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 46<br>39<br>36<br>34<br>27 | 13<br>14<br>13<br>14<br>13 | 13<br>15<br>14<br>14<br>13 | 13<br>e9.0<br>e6.6<br>e7.6<br>e8.5 | e5.0<br>5.4<br>5.4<br>5.3<br>5.5 | e9.6<br>19<br>364<br>513<br>189 | 9.7<br>7.7<br>6.9<br>7.2<br>7.0 | 28<br>18<br>16<br>13 | 15<br>282<br>84<br>47<br>203 | 39<br>301<br>74<br>120<br>62 | 6.2<br>4.1<br>4.6<br>4.6<br>2.6 | 1.2<br>1.2<br>1.4<br>51 | | 6<br>7<br>8<br>9<br>10 | 26<br>25<br>31<br>51<br>29 | 10<br>10<br>12<br>10<br>13 | 12<br>11<br>10<br>11<br>12 | e7.4<br>e6.6<br>e6.0<br>e5.4<br>e7.0 | 6.0<br>4.9<br>5.1<br>4.2<br>3.5 | 107<br>89<br>42<br>25<br>20 | 5.8<br>5.5<br>5.5<br>6.4<br>6.9 | 16<br>31<br>25<br>18<br>12 | 106<br>61<br>44<br>34<br>36 | 38<br>30<br>22<br>15 | 1.7<br>1.6<br>e1.5<br>e1.4<br>e1.3 | 2.9<br>1.9<br>1.5<br>1.2 | | 11<br>12<br>13<br>14<br>15 | 25<br>24<br>20<br>21<br>74 | 14<br>24<br>41<br>20<br>19 | 8.7<br>9.0<br>44<br>126<br>87 | e6.6<br>e7.2<br>e6.6<br>5.5<br>4.3 | 3.8<br>4.2<br>4.3<br>e4.7<br>e5.6 | 14<br>16<br>15<br>14<br>16 | 6.0<br>25<br>40<br>25<br>19 | 9.3<br>8.6<br>8.4<br>9.9 | 135<br>521<br>186<br>99<br>30 | 12<br>8.8<br>22<br>16<br>10 | e6.0<br>e2.5<br>e2.1<br>e1.8<br>e1.6 | 1.2<br>1.2<br>1.2<br>1.2 | | 16<br>17<br>18<br>19<br>20 | 43<br>31<br>31<br>57<br>40 | 17<br>17<br>14<br>16<br>13 | 48<br>44<br>42<br>e27<br>e18 | 3.2<br>2.7<br>2.0<br>1.8<br>1.9 | e12<br>e25<br>43<br>97<br>129 | 11<br>13<br>13<br>10<br>12 | 9.9<br>7.5<br>8.2<br>6.0<br>5.3 | 8.4<br>5.7<br>5.1<br>4.6<br>4.2 | 25<br>16<br>776<br>135<br>64 | 10<br>9.1<br>5.9<br>5.1 | 1.4<br>1.2<br>1.2<br>1.2 | 1.2<br>1.2<br>1.2<br>1.2<br>1.2 | | 21<br>22<br>23<br>24<br>25 | 32<br>25<br>22<br>20<br>17 | 13<br>13<br>e13<br>e12<br>e10 | e11<br>e7.4<br>e10<br>13<br>15 | 1.9<br>2.3<br>3.4<br>5.1 | 31<br>18<br>e9.0<br>e10<br>e12 | 12<br>11<br>14<br>12<br>9.1 | 7.6<br>10<br>8.6<br>14<br>14 | 4.7<br>5.0<br>6.3<br>9.4<br>7.1 | 40<br>24<br>453<br>92<br>52 | 7.3<br>4.4<br>2.8<br>21<br>9.2 | 1.3<br>1.3<br>1.2<br>1.3<br>e1.2 | 1.2<br>1.4<br>1.3<br>1.2<br>1.5 | | 26<br>27<br>28<br>29<br>30<br>31 | 18<br>16<br>18<br>16<br>13 | e8.8<br>9.3<br>10<br>11<br>12 | 14<br>12<br>8.7<br>e6.4<br>7.7<br>9.5 | 12<br>e10<br>e11<br>e9.6<br>e6.0<br>e4.5 | e11<br>e10<br>e10 | 8.9<br>9.3<br>7.8<br>5.9<br>7.9<br>8.5 | 9.2<br>5.8<br>7.6<br>12<br>16 | 5.3<br>4.7<br>4.8<br>6.5<br>6.9<br>7.0 | 39<br>28<br>24<br>18<br>13 | 9.7<br>4.5<br>2.4<br>2.2<br>2.2<br>1.5 | e10<br>e1.7<br>e2.0<br>e1.5<br>e60<br>e1.5 | 1.6<br>2.3<br>1.5<br>1.2 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 921<br>29.7<br>74<br>13<br>1830<br>.35 | 429.1<br>14.3<br>41<br>8.8<br>851<br>.17 | 693.4<br>22.4<br>126<br>6.4<br>1380<br>.26 | 197.7<br>6.38<br>13<br>1.8<br>392<br>.07 | 489.9<br>17.5<br>129<br>3.5<br>972<br>.20 | 1618.0<br>52.2<br>513<br>5.9<br>3210<br>.61 | 325.3<br>10.8<br>40<br>5.3<br>645<br>.13<br>.14 | 330.9<br>10.7<br>31<br>4.2<br>656<br>.12<br>.14 | 3682<br>123<br>776<br>13<br>7300<br>1.44<br>1.60 | 889.1<br>28.7<br>301<br>1.5<br>1760<br>.34 | 132.8<br>4.28<br>60<br>1.2<br>263<br>.05 | 101.1<br>3.37<br>51<br>1.2<br>201<br>.04 | | STATIST | ICS OF M | ONTHLY ME | AN DATA F | OR WATER Y | EARS 198 | 4 - 1994, | BY WATER | YEAR (WY) | | | | | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 34.2<br>159<br>1987<br>.26<br>1992 | 35.9<br>202<br>1993<br>.78<br>1991 | 35.1<br>181<br>1993<br>.47<br>1989 | 10.6<br>21.1<br>1988<br>.50<br>1991 | 30.6<br>72.3<br>1993<br>.17<br>1989 | 74.9<br>218<br>1993<br>2.13<br>1989 | 92.9<br>289<br>1984<br>.82<br>1989 | 107<br>309<br>1984<br>.67<br>1989 | 85.3<br>222<br>1993<br>1.90<br>1988 | 158<br>889<br>1993<br>1.97<br>1988 | 24.7<br>173<br>1987<br>.63<br>1991 | 78.5<br>260<br>1993<br>.31<br>1991 | | SUMMARY | STATIST | cs | FOR | 1993 CALEN | DAR YEAR | F | OR 1994 WA | TER YEAR | | WATER YE | ARS 1984 | - 1994 | | LOWEST A<br>HIGHEST<br>LOWEST A<br>ANNUAL S<br>INSTANTA<br>INSTANTA | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY ANEOUS PE | EAN<br>EAN<br>AN<br>MINIMUM<br>EAK FLOW<br>EAK STAGE | | 7600<br>4.5<br>8.7 | Jul 5<br>Feb 17<br>Feb 17 | | 9810.3<br>26.9<br>776<br>1.2<br>1.2<br>1730<br>15.80<br>1.2 | Jun 18<br>Aug 17<br>Aug 17<br>Jun 18<br>Jun 18<br>Aug 17a | | 64.1<br>200<br>12.0<br>7600<br>.00 | Ju1 | 1993<br>1985<br>5 1993<br>6 1989<br>3 1989 | | ANNUAL E<br>ANNUAL E<br>ANNUAL E<br>10 PERCE<br>50 PERCE | RUNOFF (ARUNOFF (CRUNOFF (IRUNOFF (IRU) | AC-FT)<br>CFSM)<br>ENCHES)<br>EDS | 1 | 123800<br>2.00<br>27.20<br>325<br>40<br>11 | | | 19460<br>.31<br>4.27<br>45<br>10<br>1.5 | | | 46460<br>.75<br>10.20<br>99<br>8.3 | 1 | | e Estimated. a Many days. #### GRAND RIVER BASIN #### 06897950 ELK CREEK NEAR DECATUR CITY, IA (Hydrologic bench-mark station) LOCATION.-Lat 40°43'18", long 93°56'12", near SE corner sec.34, T.69 N., R.27 W., Decatur County, Hydrologic Unit 10280102, at right downstream corner of bridge on county highway, 1,000 ft downstream from West Elk Creek, 5.2 mi upstream from mouth, and 5.7 mi southwest of Decatur City. DRAINAGE AREA, -- 52.5 mi<sup>2</sup>. #### WATER DISCHARGE RECORDS PERIOD OF RECORD .-- October 1967 to current year. GAGE.--Water-stage recorder. Datum of gage is 924.70 ft above sea level. Oct. 1, 1967 to Sept. 30, 1974, at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 24-30, and Dec. 21 to Mar. 11. Records good except those for estimated daily discharges, which are poor. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 14, 1967, reached a stage of 18.35 ft, datum in use prior to Oct. 1, 1974, discharge, 17,800 ft<sup>3</sup>/s, estimated from rating curve extended above 5,300 ft<sup>3</sup>/s on basis of step-backwater computation. Flood of Aug. 6, 1959, reached a stage between 20.5 and 22.5 ft, datum in use prior to Oct. 1, 1974, from information by assistant county engineer, discharge not determined. | | DI | SCHARGE | , CUBIC I | EET PER | SECOND, DAILY | WATER Y<br>MEAN V | | OBER 199 | 3 TO SEPI | EMBER 1 | 994 | | |------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------| | DAY | OCT . | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 7.7<br>7.3<br>7.0<br>7.0<br>6.5 | 5.8<br>6.0<br>5.8<br>5.9<br>5.5 | 6.1<br>6.7<br>6.6<br>6.1<br>5.7 | e4.1<br>e3.5<br>e3.1<br>e3.3<br>e3.7 | e2.3<br>e2.5<br>e2.3<br>e2.6<br>e3.2 | e6.0<br>e10<br>e25<br>e170<br>e110 | 8.2<br>7.6<br>6.6<br>6.9<br>6.2 | 6.8<br>4.6<br>4.3<br>5.6<br>7.5 | 37<br>1010<br>70<br>35<br>58 | 6.8<br>11<br>7.3<br>8.2<br>5.4 | .19<br>.20<br>7.6<br>1.1<br>.20 | .32<br>.07<br>.04<br>52<br>15 | | 6<br>7<br>8<br>9<br>10 | 6.5<br>6.5<br>7.0<br>17<br>7.3 | 5.3<br>5.6<br>5.5<br>5.5 | 5.4<br>5.2<br>5.6<br>5.5<br>5.3 | e3.5<br>e3.0<br>e2.8<br>e2.7<br>e3.2 | e3.1<br>e2.8<br>e2.5<br>e2.2<br>e2.4 | e60<br>e35<br>e27<br>e22<br>e21 | 5.6<br>5.4<br>6.7<br>5.8<br>5.8 | 12<br>18<br>12<br>9.2<br>6.5 | 38<br>23<br>19<br>17<br>16 | 2.6<br>2.0<br>3.2<br>1.2<br>.59 | .13<br>.11<br>.10<br>.10 | 5.1<br>1.0<br>.42<br>.23<br>.15 | | 11<br>12<br>13<br>14<br>15 | 6.9<br>6.5<br>6.3<br>6.1<br>21 | 5.6<br>13<br>15<br>7.4<br>7.0 | 4.9<br>5.4<br>12<br>40<br>22 | e3.0<br>e3.2<br>e3.0<br>e2.8<br>e2.4 | e2.8<br>e2.5<br>e2.7<br>e3.0<br>e3.4 | e19<br>20<br>18<br>1 <b>8</b><br>17 | 7.4<br>14<br>18<br>12<br>8.7 | 5.5<br>4.2<br>3.5<br>12<br>13 | 47<br>326<br>75<br>29<br>20 | .41<br>.26<br>.31<br>.32<br>.26 | 1.8<br>.48<br>.19<br>.09 | .10<br>.07<br>.07<br>.05 | | 16<br>17<br>18<br>19<br>20 | 12<br>7.6<br>7.4<br>12<br>8.3 | 6.5<br>6.4<br>6.0<br>6.0<br>5.6 | 11<br>8.6<br>7.7<br>7.4<br>6.6 | e2.5<br>e2.7<br>e2.3<br>e2.4<br>e2.3 | e4.5<br>e10<br>e45<br>e34<br>e25 | 15<br>15<br>15<br>14<br>14 | 6.5<br>5.3<br>5.3<br>4.0<br>3.1 | 6.8<br>4.6<br>3.4<br>2.9<br>2.4 | 18<br>16<br>12<br>10<br>9.0 | .22<br>.20<br>.13<br>.11<br>3.2 | .07<br>.06<br>.06<br>.06 | .04<br>.03<br>.02<br>.15 | | 21<br>22<br>23<br>24<br>25 | 7.1<br>6.8<br>6.9<br>6.8<br>6.5 | 5.8<br>5.6<br>5.7<br>e4.6<br>e3.8 | e5.0<br>e4.0<br>e4.5<br>e5.0<br>e4.0 | e2.6<br>e3.1<br>e4.5<br>e4.2<br>e3.9 | e17<br>e12<br>e5.0<br>e6.8<br>e8.0 | 14<br>12<br>12<br>11<br>9.2 | 8.4<br>6.7<br>4.4<br>5.8<br>5.3 | 2.0<br>3.1<br>2.8<br>9.5 | 7.9<br>6.2<br>149<br>2 <b>8</b><br>19 | 2.0<br>.15<br>.09<br>.23<br>.18 | .04<br>.04<br>.04<br>.03 | .13<br>.27<br>.08<br>.08 | | 26<br>27<br>28<br>29<br>30<br>31 | 6.0<br>6.0<br>5.7<br>5.6<br>5.7 | e2.8<br>e3.4<br>e4.0<br>e4.2<br>e5.5 | e3.5<br>e2.9<br>e2.5<br>e2.8<br>e3.2<br>e3.7 | e3.5<br>e2.7<br>e3.0<br>e2.6<br>e2.3<br>e2.1 | e7.4<br>e7.0<br>e6.4<br> | 10<br>10<br>8.7<br>8.0<br>7.8<br>7.9 | 4.2<br>2.3<br>5.0<br>4.6<br>5.3 | 4.1<br>2.0<br>.89<br>.80<br>.80 | 15<br>13<br>11<br>9.0<br>7.6 | .10<br>.07<br>.06<br>.06<br>.05 | 4.0<br>.19<br>.22<br>.11<br>80<br>8.7 | 3.4<br>.23<br>.09<br>.06<br>.04 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 243.0<br>7.84<br>21<br>5.6<br>482<br>.15 | 180.1<br>6.00<br>15<br>2.8<br>357<br>.11 | 224.9<br>7.25<br>40<br>2.5<br>446<br>.14 | 94.0<br>3.03<br>4.5<br>2.1<br>186<br>.06 | 228.4<br>8.16<br>45<br>2.2<br>453<br>.16<br>.16 | 761.6<br>24.6<br>170<br>6.0<br>1510<br>.47<br>.54 | 201.1<br>6.70<br>18<br>2.3<br>399<br>.13 | 211.79<br>6.83<br>30<br>.80<br>420<br>.13<br>.15 | 2150.7<br>71.7<br>1010<br>6.2<br>4270<br>1.37<br>1.52 | 56.75<br>1.83<br>11<br>.05<br>113<br>.03 | 107.24<br>3.46<br>80<br>.03<br>213<br>.07 | 82.47<br>2.75<br>52<br>.02<br>164<br>.05 | | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 14.1<br>79.5<br>1978<br>.000<br>1977 | 17.1<br>114<br>1993<br>.000<br>1977 | 19.4<br>131<br>1993<br>.000<br>1977 | 14.2<br>125<br>1973<br>.000<br>1977 | YEARS 1966<br>27.8<br>175<br>1973<br>.001<br>1989 | 55.6<br>282<br>1982<br>.14<br>1989 | 68.4<br>253<br>1973<br>.015<br>1989 | 52.1<br>208<br>1982<br>.17<br>1977 | 35.6<br>152<br>1993<br>.000<br>1977 | 67.4<br>895<br>1993<br>.014<br>1977 | 12.7<br>118<br>1987<br>.001<br>1971 | 44.2<br>344<br>1992<br>.000<br>1976 | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME DAILY ME SEVEN-DAY ANEOUS PE RUNOFF (A | MEAN EAN AN C MINIMUM EAK FLOW EAC-FT) EFSM) INCHES) EDS | FOR | 1993 CALEI 43383.9 119 10200 2.0 2.5 86050 2.2( 30.74 178 17 4.5 | | F | 00 1994 W<br>4542.0<br>12.4<br>1010 .0<br>4880 20.1<br>9010 .2<br>3.2<br>18<br>5.4 | Jun 2<br>2 Sep 18<br>5 Aug 18<br>Jun 2<br>9 Jun 2 | !<br> | 35.7<br>138<br>2.2<br>10200<br>.0<br>32800<br>29.9<br>25880<br>.6<br>9.2<br>49 | Jul<br>O Oct<br>O Jan<br>Jul<br>3 Jul<br>8 | - 1994<br>1993<br>1977<br>5 1993<br>1 1967<br>4 1968<br>5 1993<br>5 1993 | e Estimated. # 06897950 ELK CREEK NEAR DECATUR CITY, IA--Continued (Hydrologic bench-mark station) # WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1968 to current year. REMARKS.--Miscellaneous biological data collected September 1970 to September 1972 are available in the Iowa City district office. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TEMPER-<br>ATURE<br>AIR<br>(DEG C)<br>(00020) | BID-<br>ITY<br>(NTU) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>PRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | KF AGAR<br>(COLS.<br>PER<br>100 ML) | |-----------|------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------| | MAR<br>22 | 1500 | 13 | 506 | 8.5 | 18.5 | 26.5 | 1.5 | 11.6 | 130 | 729 | 15 | 10 | | MAY<br>09 | 1215 | 9.5 | 548 | 8.5 | 23.0 | 23.0 | | 9.7 | 117 | 741 | 1600 | 200 | | JUN<br>14 | 1250 | 29 | 432 | 8.1 | 29.5 | 32.0 | 63 | 7.0 | 96 | 731 | 3800 | 4600 | | AUG<br>10 | 1430 | 0.06 | 556 | 8.3 | 29.5 | 28.5 | 2.8 | 9.3 | 126 | 739 | 920 | 120 | | | | | | | | | | | | | | | | DATE | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | | MAR<br>22 | . 260 | 76 | 16 | 11 | 8 | 0.3 | 3.2 | 200 | 1 | 247 | 58 | 6.4 | | MAY<br>09 | | | | | | | | 216 | 218 | 265 | | | | JUN<br>14 | 200 | 60 | 12 | 8.7 | 8 | 0.3 | 4.2 | 171 | 0 | 207 | 37 | 5.2 | | AUG<br>10 | 270 | 81 | 16 | 10 | 7 | 0.3 | 2.9 | 252 | 0 | 307 | 29 | 10 | | | DATE | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | | MAR<br>2 | 2 | 0.2 | 9.2 | 310 | 303 | 0.42 | 10.9 | 0.37 | 0.07 | 0.03 | 0.03 | 0.4 | | | 9 | | | | | | | | | | | | | | 4 | 0.3 | 13 | 265 | 246 | 0.36 | 21.0 | 0.97 | 0.69 | 0.03 | 0.13 | 1.1 | | AUG<br>1 | 0 | 0.2 | 9.5 | 310 | 311 | 0.42 | 0.05 | 0.57 | <0.05 | <0.01 | 0.03 | 0.6 | | | DATE | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>SIEVE<br>THAM.<br>THAN.<br>.062 MM<br>(70331) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | | MAR<br>2 | 2 | 0.020 | 0.010 | 0.050 | 8 | 0.28 | 75 | <10 | 100 | <3 | 16 | 6 | | MAY<br>0 | 9 | | | | 41 | 1.0 | 83 | | | | | | | JUN | | 0.070 | 0.080 | 0.280 | 227 | 18 | 100 | 30 | 120 | <3 | 10 | 6 | | AUG | | <0.010 | 0.020 | 0.060 | 72 | 0.01 | 88 | 20 | 140 | <3 | 19 | 4 | ## GRAND RIVER BASIN # 06897950 ELK CREEK NEAR DECATUR CITY, IA--Continued | DATE | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145) | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | RADIUM<br>226,<br>DIS-<br>SOLVED,<br>RADON<br>METHOD<br>(PCI/L)<br>(09511) | URANIUM<br>NATURAL<br>DIS-<br>SOLVED<br>(UG/L<br>AS U)<br>(22703) | URANIUM<br>NATURAL<br>2 SIGMA<br>WATER,<br>DISS,<br>(UG/L)<br>(75990) | RA-226<br>2 SIGMA<br>WATER,<br>DISS,<br>(PCI/L)<br>(76001) | |------------------|-----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------| | MAR<br>22<br>MAY | 110 | <10 | 3 | <1 | <1 | 260 | <6 | | | | | | 09 | | | | | | | | | | | | | JUN<br>14 | 40 | 10 | 2 | <2 | <1 | 210 | <6 | | | | | | AUG<br>10 | 1100 | 20 | 4 | <1 | <1 | 330 | <6 | 0.09 | 3.2 | <1.0 | 0.02 | 211 #### 06898000 THOMPSON RIVER AT DAVIS CITY, IA LOCATION.--Lat 40°38'25", long 93°48'29", in SE1/4 SE1/4 sec.35, T.68 N., R.26 W., Decatur County, Hydrologic Unit 10280102, on right bank 15 ft downstream from bridge on U.S. Highway 69 at Davis City, 2.6 mi upstream from Dickersons Branch, and 5.2 mi upstream from Iowa-Missouri State line. DRAINAGE AREA.--701 mi<sup>2</sup>. PERIOD OF RECORD.--May 1918 to July 1925, July 1941 to current year. Monthly discharge only for some periods, published in WSP 1310. Prior to October 1918, published as "Grand River". REVISED RECORDS.--WSP 1240: 1918, 1920-21 (M), 1922-24, 1925 (M), 1946-47 (M). WSP 1440: Drainage area. WSP 1710: 1957. GAGE.--Water-stage encoder. Datum of gage is 874.04 ft above sea level. May 14, 1918 to July 2, 1925, July 14, 1941 to Feb. 24, 1942, nonrecording gage, and Feb. 25, 1942 to Feb. 8, 1967, water-stage recorder at same site at datum 2.00 ft higher. REMARKS.--Estimated daily discharges: Oct. 2-5, Nov. 27-29, and Dec. 25 to Mar. 2. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 8, 1885, reached a stage of 22.8 ft, datum in use prior to Feb. 9, 1967, from floodmark, discharge, 30,000 ft<sup>3</sup>/s. | | I | DISCHARGE, O | CUBIC | FEET PER | SECOND, W | | | DBER 1993 | TO SEP | TEMBER 199 | 4 | | |------------------|--------------|---------------------|--------------|-----------------|------------------|--------------|--------------------|------------------|--------------------|-------------|-------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 601 | | 142 | e88 | e140 | e210 | 113 | 154 | 470 | 85 | 37 | 50 | | 2 | e520 | 175 | 141 | e80 | e120 | e200 | 111 | 193 | 3420 | 88 | 37 | 35 | | 3<br>4 | e450<br>e400 | 175<br>175 | 144<br>147 | e74<br>e80 | e100<br>e110 | 508<br>2230 | 108<br>105 | 193<br>166 | 1010<br>456 | 98<br>152 | 44<br>41 | 25<br>120 | | 5 | e350 | 168 | 153 | e84 | e130 | 3120 | 100 | 156 | 385 | 148 | 47 | 88 | | 6 | 336 | 159 | 146 | e76 | e110 | 1880 | 95 | 169 | 653 | 125 | 39 | 54 | | 7 | 305 | 151 | 135 | e70 | e90 | 1190 | 95 | 299 | 464 | 144 | 33 | 48<br>47 | | 8<br>9 | 297<br>359 | 148<br>148 | 125<br>120 | e62<br>e68 | e84<br>e74 | 786<br>483 | 91<br>90 | 459<br>304 | 343<br>224 | 116<br>101 | 30<br>29 | 34 | | 10 | 542 | 147 | 124 | e80 | e84 | 367 | 90 | 222 | 181 | 83 | 26 | 26 | | 11 | 508 | 147 | 123 | e74 | e90 | 301 | 93 | 181 | 211 | 74 | 26 | 20 | | 12 | 354 | 156 | 111 | e80 | e82 | 266 | 93 | 154 | 1760 | 68 | 30 | 16 | | 13<br>14 | 295<br>270 | 266<br>307 | 118<br>340 | e74<br>e68 | e86<br>e100 | 249 | 107<br>1 <b>49</b> | 141<br>136 | 1370<br>490 | 63<br>65 | 29<br>25 | 14<br>13 | | 15 | 293 | 239 | 481 | e66 | e120 | 239<br>229 | 198 | 172 | 263 | 95 | 23 | 12 | | 16 | 410 | 201 | 332 | e70 | e200 | 214 | 173 | 147 | 188 | 95 | 23 | 10 | | 17 | 736 | 185 | 252 | e66 | e500 | 198 | 134 | 126 | 182 | 68 | 21 | 9.2 | | 18 | 488 | 173 | 209 | e62 | e800 | 190 | 108 | 113 | 143 | 58 | 21 | 8.5 | | 19<br>20 | 410<br>528 | 165<br>157 | 191<br>177 | e66<br>e64 | e1500<br>e3000 | 190<br>191 | 102<br>84 | 101<br>96 | 117<br>1 <b>04</b> | 55<br>57 | 20<br>18 | 7.8<br>7.5 | | 21 | 462 | 151 | 150 | e80 | e1100 | 190 | 83 | 89 | 97 | -60 | 17 | 7.5 | | 22 | 367 | 146 | 121 | e100 | e600 | 183 | 151 | 87 | 96 | 59 | 15 | 7.8 | | 23 | 281 | 142 | 108 | e170 | e210 | 179 | 424 | 88 | 715 | 48 | 14 | 7.5 | | 24<br>25 | 264<br>240 | 144<br>147 | 103<br>e90 | e150<br>e130 | e200<br>e230 | 168<br>153 | 278<br>2 <b>04</b> | 125<br>274 | 270<br>255 | 43<br>40 | 14<br>15 | 7.3<br>8.7 | | 26 | 224 | 137 | e74 | e100 | e270 | 144 | 192 | 183 | 217 | 41 | 20 | 16 | | 27 | 207 | e80 | e62 | e86 | e250 | 141 | 172 | 118 | 146 | 40 | 18 | 17 | | 28 | 220 | e94 | e 67 | e140 | e230 | 133 | 159 | 99 | 129 | 39 | 14 | 20 | | 29 | 207 | e110 | e74 | e130 | | 127 | 138 | 87 | 110 | 49 | 14 | 13<br>10 | | 30<br>31 | 199<br>186 | 146 | e84<br>e90 | e120<br>e130 | | 121<br>115 | 137 | 80<br>246 | 95<br> | 41<br>35 | 247<br>62 | 10 | | TOTAL | 11309 | 4915 | 4734 | 2788 | 10610 | 14895 | 4177 | 5158 | 14564 | 2333 | 1049 | 759.8 | | MEAN | 365 | 164 | 153 | 89.9 | 379 | 480 | 139 | 166 | 485 | 75.3 | 33.8 | 25.3 | | MAX | 736 | 307 | 481 | 170 | 3000 | 3120 | 424 | 459 | 3420 | 152 | 247 | 120 | | MIN<br>AC-FT | 186<br>22430 | 80<br>9750 | 62<br>9390 | 62<br>5530 | 74<br>21040 | 115<br>29540 | 83<br>8290 | 80<br>10230 | 95<br>28890 | 35<br>4630 | 14<br>2080 | 7.3<br>1510 | | CFSM | .52 | .23 | .22 | .13 | .54 | .69 | .20 | .24 | .69 | .11 | .05 | .04 | | IN. | .60 | .26 | .25 | .15 | .56 | .79 | .22 | .27 | .77 | .12 | .06 | .04 | | | | MONTHLY MEAN | | | | | BY WATER | | | | ••• | 260 | | MEAN<br>MAX | 202<br>2138 | 228 | 158 | 167<br>1292 | 337<br>1849 | 667<br>2375 | 692<br>2586 | 628<br>2600 | 653<br>4750 | 446<br>7239 | 202<br>2255 | 360<br>5178 | | MAX<br>(WY) | 1974 | 1462<br>1962 | 1299<br>1983 | 1960 | 1973 | 1979 | 1973 | 1951 | 1947 | 1993 | 1987 | 1992 | | MIN | 1.41 | 2.07 | .94 | .62 | 1.14 | 10.7 | 2.55 | 1.19 | 3.08 | 1.98 | 9.35 | 4.13 | | (WY) | 1957 | 1956 | 1956 | 1956 | 1956 | 1954 | 1956 | 1956 | 1956 | 1977 | 1955 | 1953 | | | Y STATIS | STICS | FOR | | ENDAR YEAR | 1 | FOR 1994 W | ATER YEAR | | WATER YEA | RS 1919 | - 1994 | | ANNUAL<br>ANNUAL | | | | 481770<br>1320 | | | 77291.8<br>212 | | | 399 | | | | | T ANNUAI | . MEAN | | 1320 | | | 2.12 | | | 1469 | | 1993 | | LOWEST | ANNUAL | MEAN | | | | | | | | 52.3 | | 1956 | | | r DAILY | | | 27300 | Jul 6 | | 3420 | Jun 2 | | 52900 | | 16 1992 | | | DAILY M | MEAN<br>DAY MINIMUM | | <b>62</b><br>77 | Dec 27<br>Dec 25 | | 7.3<br>7.7 | Sep 24<br>Sep 18 | | .10<br>.36 | | 25 1956<br>19 1956 | | | | PEAK FLOW | | " | DeC 23 | | 5960 | Jun 2 | | 57000 | Sep 1 | | | | | PEAK STAGE | | | | | 7.64 | | | 24.29 | | 6 1992 | | ANNUAL | | (AC-FT) | | 955600 | | | 153300 | | | 288900 | | | | ANNUAL<br>ANNUAL | | (CFSM) | | 1.<br>25. | | | .30<br>4.10 | | | .57<br>7.73 | | | | | CENT EXC | (INCHES) | | 3430 | <i>.</i> . | | 410 | • | | 845 | | | | 50 PERC | CENT EXC | EEDS | | 450 | | | 127 | | | 82 | | | | 90 PERC | CENT EXC | CEEDS | | 146 | | | 25 | | | 9.2 | | | e Estimated. #### **CHARITON RIVER BASIN** ## 06903400 CHARITON RIVER NEAR CHARITON, IA LOCATION.--Lat 40°57'12", long 93°15'37", in SW1/4 NE1/4 sec.15, T.71 N., R.21 W., Lucas County, Hydrologic Unit 10280201, on right bank 15 ft downstream from bridge on county highway S43, 0.4 mi downstream from Wolf Creek and 5.0 mi southeast of Chariton. DRAINAGE AREA.--182 mi<sup>2</sup>. PERIOD OF RECORD.--October 1965 to current year. Occasional low-flow measurements, water years 1958-60, 1962, 1964. GAGE.--Water-stage encoder. Datum of gage is 917.90 ft above sea level (U.S. Army Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Nov. 26-30, Dec. 21 to Mar. 14, Apr. 27 to May 2, May 17-19, 25, 26, June 12-14, and Aug. 30 to Sept. 30. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1960 reached a stage of about 23 ft, discharge, about 15,000 ft3/s and flood of June 5, 1947 reached a stage of 21.65 ft, from floodmark, discharge, 11,000 ft3/s. A discharge of 0.08 ft³/s was measured on Oct. 30, 1963. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | Di | SCHARGE | s, CODIC I | LETTER | DAILY I | MEAN V | ALUES | ODER 199 | 3 10 BEI 1 | IMPIDIM 19 | 77 | | |-------------|----------------------------|-----------------|----------------------------|----------------------------------------------|--------------------------------------|-------------|--------------------------------|---------------------------|---------------------------------|----------------------------------------|----------------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 28 | 11 | 12 | e5.3<br>e4.9 | e2.6<br>e2.9<br>e2.8<br>e3.1<br>e3.6 | e20 | 17 | e37 | 6.9 | 6.3 | 1.7 | e.05 | | 2<br>3 | 23<br>20 | 11<br>11 | 15 | e4.9<br>e4.3 | e2.9<br>e2.8 | e32 | 16<br>15 | e39<br>30 | 98<br>66 | 17<br>21 | 1.5<br>1.3 | e.05<br>e.06 | | 4 | 18 | īī | 15<br>16 | e3.8 | e3.1 | e971 | 14 | 27 | 40 | 17<br>14 | 1.5 | e.06<br>e.12 | | 5 | 16 | | | | | | 14 | 24 | 98<br>66<br>40<br>69 | 14 | | e.35 | | 6<br>7 | 15<br>13 | 11<br>11 | 17<br>16<br>15<br>14<br>14 | e3.8 | e3.5<br>e3.3<br>e3.0<br>e2.9<br>e3.1 | e836 | 13<br>12 | 422<br>973 | 192<br>124<br>39<br>22<br>18 | 8.1<br>6.0 | .81<br>.75 | e1.2<br>e.46 | | 8 | 12 | 11 | 15 | e3.8 | e3.0 | e276 | 11 | 405 | 39 | 5.1 | .75 | e.26 | | 9<br>10 | 16<br>16 | 10<br>10 | 14 | e4.0 | e2.9 | e133 | 11 | 142 | 22 | 5.6<br>7.7 | . 60<br>. 48 | e.18<br>e.13 | | | | | | | | | | | | | | | | 11<br>12 | 17<br>17 | 10<br>12 | 13<br>13<br>14<br>18<br>33 | e4.0<br>e3.6 | e3.6<br>e4.2<br>e3.9<br>e4.5<br>e5.8 | e64<br>e54 | 13<br>18 | 51<br>38 | 24<br>e80<br>e250<br>e180<br>79 | 7.5<br>4.9 | .61<br>.35 | e.10<br>e.07 | | 13 | 16 | 34 | 14 | e3.3 | e3.9 | e49 | 29 | 30 | e250 | 3.6 | . 42 | e.06 | | 14<br>15 | 15<br>17 | 36<br>33 | 18 | e2.8 | e4.5 | e50 | 36 | 26 | e180 | 3.2<br>2.8 | . 48<br>. 44 | e.05<br>e.05 | | | | | | | | | | | | | | | | 16<br>17 | 23<br>23 | 24<br>19 | 48<br>45<br>35<br>29<br>25 | e2.5<br>e2.3<br>e2.1<br>e2.0<br>e2.3 | e7.0<br>e10 | 43<br>38 | 26<br>20 | 29<br>e24 | 37<br>23<br>17<br>50<br>16 | 2.4<br>2.4<br>2.3<br>2.1<br>2.2 | .35<br>.30 | e.04<br>e.04 | | 18 | 21 | 16 | 35 | e2.1 | e17 | 38 | 16 | e20 | 17 | 2.3 | .17 | e.04 | | 19<br>20 | 21<br>21 | 15<br>14 | 29<br>25 | e2.0 | e30 | 37<br>36 | 13<br>12 | e16 | 50<br>16 | 2.1 | .13<br>.08 | e.03<br>e.03 | | | | | | | | | | | | | | | | 21<br>22 | 20<br>18 | 12 | e19<br>e13 | e2.6<br>e2.9 | e100<br>e64 | 37 | 285<br>312 | 9.6 | 42<br>19 | 3.2 | .08<br>.07 | e.04<br>e.05 | | 23 | 17 | 12 | e8.0 | e3.3 | e 3 6 | 34 | 122 | 9.1 | 181 | 2.6 | .08 | e.04 | | 24<br>25 | 16<br>15 | 12<br>14 | e5.6 | e2.6<br>e2.9<br>e3.3<br>e4.5<br>e4.1 | e23<br>e15 | 33<br>28 | 285<br>312<br>122<br>63<br>45 | 18<br>e20 | 42<br>19<br>181<br>144<br>114 | 4.2<br>3.2<br>2.6<br>2.6<br>3.1 | .10 | e.04<br>e.05 | | 26 | | | | | | | | | | | | | | 27 | 14<br>14 | e11<br>e9.2 | e3.0 | e3.5 | e12<br>e10 | 26<br>25 | e31 | e23<br>19 | 23 | 2.5 | .13 | e.08<br>e.15 | | 28 | 13 | e8.5 | e3.3 | e3.0 | e14 | 23 | e34 | 14 | 15 | 2.7 | .06 | e.30 | | 29<br>30 | 12<br>12 | e9.7 | e3.6 | e2.7 | | 20<br>18 | e38 | 10<br>7.9 | 11<br>7.8 | 2.5 | .05<br>e.04 | e.25<br>e.19 | | 31 | 14<br>13<br>12<br>12<br>11 | | e4.8 | e3.8<br>e3.3<br>e3.0<br>e2.7<br>e2.5<br>e2.4 | | 17 | 38<br>e31<br>e34<br>e38<br>e34 | 6.7 | | 3.1<br>2.5<br>2.7<br>2.5<br>2.1<br>2.0 | e.04 | | | TOTAL | 530 | 432.4 | 493.1 | 104.0 | 442.8 | 5004 | | | | 171.8 | | 4.56 | | MEAN<br>MAX | 17.1 | 432.4<br>14.4 | 15.9 | 3.35 | 442.8<br>15.8 | 161 | 1357<br>45.2<br>312 | 83.9 | 67.7 | 5.54 | | | | MIN | 28<br>11 | 36<br>8.5 | 48<br>3.3 | 5.3<br>2.0<br>.02 | 100<br>2.6<br>.09 | 1370 | 11 | 6.7 | 250<br>6.9 | 21<br>2,0 | -04 | 1.2<br>.03 | | CFSM | .09 | .08 | .09 | .02 | .09 | .89 | .25 | .46 | .37 | .03 | 1.7<br>.04<br>.00 | .00 | | IN. | .11 | .09 | .10 | .02 | .09 | 1.02 | .28 | .53 | .42 | .04 | .00 | .00 | | STATIST | ICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1966 | - 1994, | BY WATER | YEAR (W) | ?) | | | | | MEAN | 88.2 | 63.4 | 69.7 | 38.0 | 79.7 | 181 | 244 | 173 | 150 | 184 | 82.0 | 152 | | MAX<br>(WY) | 568<br>1974 | 294 | 408 | 340<br>1974 | 364<br>1973 | 761<br>1979 | 1093<br>1991 | 570<br>1986 | 856<br>1967 | 1711<br>1993 | 618<br>1 <b>98</b> 7 | 1704<br>1992 | | MIN | .005 | .003 | 1983<br>.000<br>1990 | .23 | .22 | 6.40 | .068 | 3.91 | .38 | 1993<br>.000<br>1988 | .10 | .086 | | (WY) | 1990 | 1990 | 1990 | 1977 | 1989 | 1989 | 1989 | 1977 | 1988 | 1988 | 1989 | 1991 | | SUMMARY | STATIST | ics | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 W | ATER YEAR | l . | WATER YE | ARS 1966 | - 1994 | | ANNUAL | | | | 108557.5 | | | 13185.31 | | | | | | | ANNUAL | MEAN<br>ANNUAL I | ME AN | | 297 | | | 36.1 | | | 125<br>345 | | 1993 | | | ANNUAL M | | | | | | | | | 0.71 | | 1989 | | | DAILY M | | | 9670 | Jul 6 | | 1370 | Mar 5 | | 24600 | Sep : | 15 1992 | | | DAILY ME:<br>SEVEN-DA | AN<br>Y MINIMUM | | 3.3<br>3.9 | Dec 28<br>Dec 25 | | .04 | Sep 15<br>Sep 15<br>Mar 5 | | .00 | Jun 2 | 1 1977<br>21 1988 | | INSTANT | ANEOUS P | EAK FLOW | | | | | 1660 | Mar 5 | | 37700 | San ' | l5 1992 | | | ANEOUS PI<br>ANEOUS LO | EAK STAGE | | | | | 16.10 | Mar 5 | a | 29.32 | Sep : | 15 1992<br>years | | ANNUAL I | RUNOFF ( | CFSM) | | 1.6 | 3 | | .20<br>2.70 | ) | - | .69 | | , | | | RUNOFF ()<br>ENTEXCE | | | 22.19<br>919 | <del>j</del> | | 2.70<br>50 | ) | | 9.36<br>286 | | | | 50 PERCI | ENT EXCE | EDS | | 35 | | | 12 | | | 13 | | | | 90 PERCE | ENT EXCE | EDS | | 11 | | | .18 | 3 | | .53 | | | e Estimated. a Also Sept. 20. #### 06903700 SOUTH FORK CHARITON RIVER NEAR PROMISE CITY, IA LOCATION.--Lat 40°48'02", long 93°11'32", in SW1/4 SW1/4 sec.5, T.69 N., R.20 W., Wayne County, Hydrologic Unit 10280201, on right bank 20 ft downstream from bridge on county highway S50, 1.3 mi downstream from Jordan Creek and 4.3 mi northwest of Promise City. DRAINAGE AREA.--168 mi<sup>2</sup>. PERIOD OF RECORD.—October 1967 to current year. Occasional low-flow measurements, water years 1958-66, published as "near Bethlehem". Monthly discharge measurements for March 1965 to September 1967 available in files of Iowa City district office. GAGE.--Water-stage encoder. Datum of gage is 913.70 ft above sea level (U.S. Army Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Nov. 26 to Dec. 11 and Dec. 21 to Mar. 14. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. EXTREMES\_OUTSIDE PERIOD OF RECORD.--Flood of Sept. 21, 1965, reached a stage of 25.5 ft, from floodmarks, discharge, about 18,000 ft<sup>3</sup>/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | מוט | CHAROL | s, COBIC I | PEBI FER | DAILY | MEAN V | ALUES | ODEK 199 | O IO SEFI | ENIDER 19 | 74 | | |------------------|----------------------------------|----------------------------------|----------------------------|------------------------------|------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------------|------------------------------|---------------------------------|----------------------------------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 108 | 16 | e20 | 16 | e8.8 | e28 | 17 | 75 | 3.9 | 6.9<br>140<br>32<br>16<br>11 | 11 | 1.6 | | 2<br>3 | 93<br>78 | 16<br>17 | e23<br>e22 | e16<br>e14 | e8.4<br>e8.6 | e35 | 16<br>15 | 46 | 153 | 140 | 4.4<br>2.9 | .96<br>.87 | | 4 | 64 | 18 | e21 | e14 | e9.4 | e954 | 15 | 28 | 29 | 16 | 3.9 | 2.5 | | 5 | 54 | 17 | e20 | e13 | e11 | e566 | 17<br>16<br>15<br>15<br>13 | 26 | 3.9<br>153<br>75<br>29<br>53 | | | 3.8 | | 6<br>7 | 47<br>43 | 15<br>15 | e19<br>e18 | e12<br>e10 | GIO | e161<br>e87 | 12<br>11<br>12<br>12<br>13 | 524<br>480 | 124 | 7.1<br>6.9<br>220<br>49<br>17 | 2.4 | 2.3<br>1.4 | | 8 | 40 | 15 | e19 | e11 | e8.2 | e27 | 12 | 154 | 23 | 220 | 2.0 | .94 | | 9 | 152 | 14 | e19 | e12 | e7.4 | e21 | 12 | 77 | 19 | 49 | 1.8 | .85 | | 10 | 158 | 14<br>16<br>22<br>97<br>53<br>35 | e17 | e14 | e7.4<br>e8.0 | e18 | | | | | | .78 | | 11<br>12 | 40<br>28 | 16 | e16<br>18 | e12 | e9.8<br>e12<br>e15<br>e18<br>e21 | e19 | 15 | 38 | 52<br>1170 | 8.7 | 1.7 | .71<br>.68 | | 13 | 21 | 97 | 21 | e9.8 | e15 | e23 | 44 | 23 | 449 | 6.6 | 1.8 | .60 | | 14 | 17 | 53 | 21<br>37 | e8.0 | e18 | e29 | 36 | 22 | 91 | 6.5<br>6.6<br>51<br>11 | 1.8<br>1.8<br>1.6<br>1.8 | . 63 | | <b>1</b> 5 | 28 | | | | | | | | | | | | | 16 | 162 | 31<br>27 | 60<br>44<br>41<br>37 | e7.8 | e24 | 37 | 20 | 20 | 31 | 4.4<br>3.3 | 1.4 | .72 | | 17<br>18 | 73<br>45 | 27<br>25 | 44 | e9.0 | e30<br>e39 | 34 | 15<br>13 | 12 | 25<br>23 | 3.3 | 1.3 | .57<br>.70 | | 19 | 38 | 24 | 37 | e6.4 | e60 | 35 | 11 | 7.9 | 49 | 3.8 | 1.0 | .66 | | 20 | 37 | 23 | 31 | e9.0<br>e7.6<br>e6.4<br>e7.2 | | 37<br>34<br>37<br>35<br>35 | 9.6 | 6.9 | 31<br>25<br>23<br>49<br>19 | 3.1 | 1.4<br>1.3<br>1.1<br>1.0 | .63 | | 21 | 31 | 22 | e23 | e8.6 | e80 | 36 | 115 | 5.9 | 36 | 6.4 | .82 | .69 | | 22<br>23 | 28<br>30 | 20 | e10 | e11 | e35 | 35 | 91 | 5.7 | 20 | 5.4 | 1.0 | .73 | | 23<br>24 | 24 | 20 | e8.2<br>e7.2 | e18 | e30<br>e28 | 28 | 34 | 8.7 | 238 | 3.6<br>4.3 | .84 | .72<br>.72 | | 25 | 23 | 22<br>20<br>20<br>22<br>29 | e6.2 | e11<br>e18<br>e17<br>e15 | e23 | 24 | | | | 6.4<br>5.4<br>3.6<br>4.3<br>6.6 | .88 | 1.2 | | 26 | 21 | e25 | e6.6 | e13 | e20 | 22<br>23 | 26 | 7.8 | 30 | 3.6 | . 97 | 1.8 | | 27<br>28 | 20 | e22 | e6.4<br>e6.0 | e11<br>e10 | e22<br>e24 | 23 | 36 | 3.4 | 20<br>13 | 2.7 | .89 | 1.5<br>1.0 | | 29 | 18 | e19 | e8.0 | e9.6 | | 18 | 67 | 3.3 | 8.4 | 2.0 | 1.1 | .74 | | 30<br>31 | 21<br>20<br>20<br>18<br>17<br>16 | e25<br>e22<br>e18<br>e19<br>e19 | e10 | e9.0 | | 17<br>16 | 53 | 4.7<br>4.5 | 30<br>20<br>13<br>8.4<br>7.0 | 1.7<br>1.5 | .97<br>.89<br>.94<br>1.1<br>2.9<br>2.3 | .83 | | TOTAL | 1574 | 726 | 690 - 6 | 348.0 | 1279.6 | 2589 | 871.6 | 1754.8 | 3729.3 | | 63.55 | 32.66 | | MEAN | 50.8 | 24.2 | 22.3 | 11.2 | 45.7 | 83.5 | 29.1 | 56.6 | 124 | 20.9 | 2.05 | 1.09 | | MAX | 162 | 97 | 82 | 18 | 700 | 954 | 115 | 524 | 1170 | 220 | 11 | 3.8 | | MIN<br>MED | 16<br>37 | 14<br>20 | 6.0<br>10 | 6.4<br>11 | 1.4 | 50<br>T0 | 9.6<br>17 | 3.3 | 3.9 | 1.5<br>6.5 | .81<br>1.7 | .57<br>.80 | | AC-FT | 3120 | 1440 | 1370 | 690 | 2540 | 5140 | 1730 | 3480 | 33<br>7400<br>.74<br>.83 | 1290 | 126 | 65 | | CFSM | .30 | .14 | .13 | .07 | -27 | .50 | .17 | .34 | .74 | .12 | .01 | .01 | | IN. | .35 | .16 | .15 | .08 | 1279.6<br>45.7<br>700<br>7.4<br>19<br>2540<br>.27<br>.28<br>YEARS 1968 | .57 | .19 | .39 | .83 | .14 | .01 | .01 | | STATIST | ICS OF MO | NTHLY ME | AN DATA F | OR WATER | YEARS 1968 | - 1994, | | | | | | | | MEAN | 106 | 63.0 | 72.3 | 39.3 | 82.0 | 183 | 243<br>730 | 166<br>5 <b>92</b> | 138 | 215 | 56.9 | 173 | | MAX<br>(WY) | 498<br>1978 | 357 | 1083 | 335<br>1974 | 337<br>1971 | 853<br>1979 | 730<br>1991 | 592<br>1986 | 580<br>1980 | 2351<br>1993 | 300<br>1993 | 2227<br>1992 | | MIN | .15 | .39 | .40 | .19 | .88 | 3.21 | 1.21 | 5.14 | 1.18 | .24 | .76 | .53 | | (WY) | 1989 | 1990 | 440<br>1983<br>.40<br>1977 | 1977 | 1989 | 3.21<br>1989 | 1989 | 1980 | 1988 | 1977 | 1984 | 1991 | | SUMMARY | STATISTI | CS | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 W | ATER YEAR | t | WATER YE | ARS 1968 | - 1994 | | ANNUAL | | | | 131209.6 | | | 14307.6 | | | | | | | ANNUAL | | T 3 N | | 359 | | | 39.2 | | | 128<br>446 | | 1993 | | | ANNUAL ME | | | | | | | | | 10.7 | | 1989 | | | DAILY ME | | | 9850 | Jul 5 | | 1170 | Jun 12<br>7 Sep 17 | | 34700 | Sep : | 15 1992 | | | DAILY MEA | | | 6.0 | Jul 5<br>Dec 28<br>Dec 23 | | | | | .00 | Jul | 6 1977 | | | SEVEN-DAY<br>ANEOUS PE | | | 6.9 | Dec 23 | | 1710 | 7 Sep 16 | | 70600 | Sep . | 16 1989<br>15 1992 | | INSTANT | ANEOUS PE | AK STAGE | | | | | a14.0 | 0 Feb 20 | | 34.84 | Sep : | l5 1992 | | INSTANT | ANEOUS LO | W FLOW | | 260300 | | | 28380 | Jun 12<br>0 Feb 20<br>0 Sep 13 | | .00<br>92820 | many | years | | ANNUAL<br>ANNUAL | RUNOFF (A)<br>RUNOFF (C) | C-FT)<br>FSM) | | 260300 | 4 | | 28380 | | | .76 | | | | ANNUAL | RUNOFF (II | NCHES) | | 29.0 | | | 3.1 | 7 | | 10.36 | | | | 10 PERC | ENT EXCEE! | DS | | 808 | | | 61 | | | 202 | | | | | ENT EXCEE!<br>ENT EXCEE! | | | 74<br>19 | | | 16<br>1.4 | | | 14<br>.88 | | | | SO PERC | DUI BYCEE! | در | | 19 | | | 1.4 | | | .00 | | | e Estimated. a Ice affected. #### 06903880 RATHBUN LAKE NEAR RATHBUN, IA LOCATION.—Lat 40°49'30", long 92°53'33", in NW1/4 NE1/4 sec.35, T.70 N., R.18 W., Appanoose County, Hydrologic Unit 10280201, at control tower of Rathbun Dam, 1.8 mi north of Rathbun and 3.9 mi upstream from Walnut Creek and at mile 142.3. DRAINAGE AREA. -- 549 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1969 to current year. GAGE .-- Water-stage recorder. Datum of gage is at sea level. REMARKS.—Reservoir is formed by earthfill dam completed in 1969. Storage began in November 1969. Release is controlled by two hydraulically controlled slide gages, 6 ft wide and 12 ft high, into forechamber of an 11-ft diameter horseshoe conduit through the dam. No dead storage. Maximum design discharge through gates is 5,000 ft3/s. Uncontrolled notch spillway is concrete overflow section 500 ft in length, located about 3,000 ft west of the right abutment of the dam and provides emergency discharge into the adjacent drainage area of Little Walnut Creek. Uncontrolled notch spillway is at elevation 926 ft, contents 545,621 acre-ft, surface area, 20,974 acres. Conservation pool level is at elevation 904.0 ft, contents 199,830 acre-ft, surface area, 10,989 acres. Reservoir is used for flood control, low-flow augumentation, conservation and recreation. COOPERATION .-- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 570,000 acre-ft July 28, 1993; maximum elevation, 927.16 ft July 28, 1993; minimum daily contents, 100 acre-ft Oct. 1-15, Nov. 17-21, 1969; minimum elevation, 855.40 ft Oct. 6-10, 1969. EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 391,000 acre-ft Oct. 1; maximum elevation 917.82 ft Oct. 1; minimum daily contents, 149,000 acre-ft Sept. 30; minimum elevation, 898.91 ft Sept. 30. #### Capacity table (elevation, in feet, and contents, in acre-feet) | 860 | 150 | 880 | 31,900 | 905 | 211,000 | |-----|--------|-----|---------|-----|---------| | 862 | 226 | 885 | 52,700 | 910 | 272,600 | | 865 | 950 | 890 | 80,300 | 915 | 345,000 | | 870 | 5,870 | 895 | 115,600 | 920 | 428,900 | | 875 | 17,000 | 900 | 158,800 | 925 | 524,900 | # RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY OBSERVATION AT 08:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | 1<br>2 | 391000<br>387000 | 281000<br>277000 | 177000<br>175000 | 159000<br>159000 | 158000<br>158000 | 161000<br>159000 | 158000<br>158000 | 159000<br>159000 | 158000<br>159000 | 160000<br>161000 | 157000<br>157000 | 152000<br>152000 | | 3 | 383000 | 273000 | 174000 | 159000 | 158000 | 159000 | 158000 | 159000 | 159000 | 161000 | 156000 | 152000 | | 4 | 380000 | 269000 | 174000 | 159000 | 158000 | 160000 | 158000 | 159000 | 160000 | 161000 | 157000 | 151000 | | 5 | 376000 | 267000 | 173000 | 159000 | 158000 | 165000 | 158000 | 159000 | 160000 | 161000 | 157000 | 152000 | | 6<br>7 | 372000 | 262000 | 173000 | 159000 | 158000 | 169000 | 158000 | 159000 | 160000 | 161000 | 156000 | 152000 | | 8 | 368000<br>365000 | 258000<br>254000 | 171000<br>170000 | 159000<br>159000 | 158000<br>158000 | 172000<br>172000 | 158000<br>157000 | 165000<br>168000 | 161000<br>161000 | 161000<br>163000 | 156000<br>156000 | 152000<br>152000 | | ĝ | 363000 | 250000 | 170000 | 159000 | 158000 | 170000 | 158000 | 170000 | 160000 | 163000 | 155000 | 152000 | | 10 | 358000 | 247000 | 169000 | 159000 | 158000 | 168000 | 158000 | 169000 | 159000 | 162000 | 155000 | 151000 | | | 00000 | 21,000 | 103000 | 155000 | 155555 | 10000 | 130000 | 103000 | 203000 | 102000 | 100000 | 101000 | | 11 | 354000 | 243000 | 168000 | 159000 | 157000 | 166000 | 157000 | 168000 | 159000 | 161000 | 156000 | 151000 | | 12 | 351000 | 239000 | 167000 | 158000 | 157000 | 164000 | 158000 | 166000 | 162000 | 160000 | 155000 | 151000 | | 13 | 347000 | 237000 | 167000 | 158000 | 157000 | 162000 | 158000 | 165000 | 167000 | 159000 | 155000 | 151000 | | 14 | 345000 | 233000 | 164000 | 158000 | 157000 | 160000 | 158000 | 163000 | 170000 | 159000 | 155000 | 151000 | | 15 | 345000 | 230000 | 162000 | 158000 | 157000 | 158000 | 159000 | 163000 | 170000 | 159000 | 155000 | 150000 | | 16 | 340000 | 226000 | 162000 | 158000 | 157000 | 157000 | 158000 | 161000 | 169000 | 159000 | 155000 | 151000 | | 17 | 338000 | 223000 | 161000 | 158000 | 157000 | 157000 | 158000 | 159000 | 168000 | 159000 | 155000 | 150000 | | 18 | 334000 | 219000 | 161000 | 158000 | 157000 | 158000 | 158000 | 159000 | 166000 | 159000 | 154000 | 150000 | | 19 | 331000 | 216000 | 161000 | 158000 | 158000 | 158000 | 158000 | 159000 | 165000 | 158000 | 154000 | 150000 | | 20 | 327000 | 212000 | 161000 | 158000 | 161000 | 158000 | 158000 | 159000 | 163000 | 159000 | 154000 | 150000 | | 21 | 324000 | 208000 | 161000 | 158000 | 165000 | 158000 | 160000 | 158000 | 164000 | 159000 | 154000 | 150000 | | 22 | 319000 | 204000 | 162000 | 158000 | 167000 | 158000 | 161000 | 158000 | 163000 | 159000 | 154000 | 150000 | | 23 | 316000 | 201000 | 161000 | 158000 | 168000 | 158000 | 162000 | 158000 | 164000 | 158000 | 153000 | 149000 | | 24 | 312000 | 198000 | 161000 | 158000 | 167000 | 159000 | 163000 | 158000 | 168000 | 158000 | 153000 | 149000 | | 25 | 308000 | 196000 | 161000 | 158000 | 166000 | 158000 | 162000 | 158000 | 168000 | 158000 | 153000 | 149000 | | 26 | 305000 | 192000 | 160000 | 158000 | 165000 | 158000 | 161000 | 158000 | 166000 | 158000 | 153000 | 150000 | | 27 | 301000 | 189000 | 160000 | 158000 | 163000 | 159000 | 161000 | 158000 | 165000 | 158000 | 153000 | 149000 | | 28 | 297000 | 186000 | 160000 | 158000 | 162000 | 158000 | 159000 | 158000 | 164000 | 158000 | 153000 | 149000 | | 29 | 294000 | 183000 | 160000 | 158000 | | 158000 | 159000 | 158000 | 162000 | 157000 | 152000 | 149000 | | 30 | 289000 | 179000 | 160000 | 158000 | | 158000 | 159000 | 158000 | 161000 | 157000 | 152000 | 149000 | | 31 | 285000 | | 159000 | 158000 | | 158000 | | 158000 | | 157000 | 153000 | | | MEAN | 339000 | 228000 | 165000 | 158000 | 160000 | 161000 | 159000 | 161000 | 163000 | 159000 | 155000 | 151000 | | MAX | 391000 | 281000 | 177000 | 159000 | 168000 | 172000 | 163000 | 170000 | 170000 | 163000 | 157000 | 152000 | | MIN | 285000 | 179000 | 159000 | 158000 | 157000 | 157000 | 157000 | 158000 | 158000 | 157000 | 152000 | 149000 | #### 06903900 CHARITON RIVER NEAR RATHBUN, IA LOCATION.--Lat 40°49'22", long 92°53'22", in SE1/4 NE1/4 sec.35, T.70 N., R.18 W., Appanoose County, Hydrologic Unit 10280201, on left bank 600 ft downstream from outlet of Rathbun Dam, 1.8 mi north of Rathbun, 3.7 mi upstream from Walnut Creek, and at mile 142.1. DRAINAGE AREA. -- 549 mi<sup>2</sup>. PERIOD OF RECORD. -- October 1956 to current year. Monthly discharge only for some periods, published in WSP 1730. REVISED RECORDS.--WSP 1560: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 847.92 ft above sea level. Prior to Nov. 16, 1960, nonrecording gage and Nov. 17, 1960, to Sept. 30, 1969, recording gage, at site 3.1 mi downstream at datum 4.65 ft lower. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,800 ft<sup>3</sup>/s Mar. 31, 1960, gage height, 25.3 ft from floodmark, site and datum then in use. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers gage-height telemeter at station. Flow regulated by Rathbun Lake (station 06903880) since Nov. 21, 1969. Records of discharge include diversion of: | | Discharge | | Discharge | | Discharge | |-------------------|-----------|--------------------|-----------|---------------------|-----------| | Date | (ft³/s) | Date | (ft³/s) | Date | (ft³/s) | | Oct. 1 to Jan. 30 | 14.0 | Mar. 24 | 8.0 | July 14 | 11.0 | | Jan. 31 | 25.0 | Mar. 25 to July 13 | 7.0 | July 15 to Sept. 30 | 12.0 | | Feb. 1 to Mar. 23 | 14.0 | | | | | The diversion goes from the reservoir through fish ponds on left bank downstream from dam. Diverted flow returns to stream 0.1 mi downstream from gage. Rathbun Regional Water Association permit No. 3663 allows withdrawal from Rathbun Dam discharge immediately downstream from gage for maximum rate of 4,200 gpm (9.36 $\rm ft^3/s$ ) and maximum quantity of 638 million gallons per year (1,955 acre-ft). | | Ι | DISCHARO | GE, CUBIC | FEET PER | SECOND, DAILY | WATER Y<br>MEAN V | EAR OCTO<br>ALUES | OBER 199 | 3 TO SEPT | EMBER 19 | 94 | | |--------|---------------|--------------|--------------|-----------|---------------|-------------------|-------------------|----------|-------------|------------|------|-----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1790 | 1940 | | 96 | 29 | 643 | 41 | 225 | 40 | 180 | 36 | 32 | | 2 | 1780 | 1940 | 658 | 96 | 29 | 343 | 41 | 164 | 40 | 32 | 35 | 32 | | 2<br>3 | 1780 | 1930 | | 61 | 30 | 186 | 41 | 106 | 39 | 29 | 35 | 32 | | 4 | 1770 | 1930 | | 26 | 43 | 194 | 41 | 106 | 39 | 29 | 35 | 32<br>32 | | 5 | 1760 | 1920 | 368 | 27 | 32 | 195 | 41 | 107 | 39 | 29 | 35 | 32 | | 6 | 1800 | 1910 | | 27 | 31 | 188 | 41 | 146 | 39 | 87 | 36 | 32 | | 7 | 1820 | 1900 | | 29 | 57 | 436 | 41 | 125 | 233 | 165 | 36 | 32<br>32 | | 8 | 1810 | 1900 | 368 | 29 | 31 | 1020 | 41 | 290 | 396 | 165<br>159 | 36 | 32 | | 9 | 1820 | 1920 | | 29 | 31 | 1220 | 42 | 608 | 396 | 181<br>352 | 36 | 32<br>32 | | 10 | 1820 | 1950 | 361 | 29 | 31 | 1220 | 42 | 808 | 245 | 352 | 34 | 32 | | 11 | 1810 | 1950 | | 29 | 32 | 1220 | 42 | 811 | 92 | 353 | 34 | 33 | | 12 | 1810 | 1940 | 357 | 29 | 32 | 1230<br>1220 | 42 | 804 | 97 | 352 | 34 | 33 | | 13 | 1250 | 1940 | 987 | 29 | 32 | 1,220 | 42 | 804 | 160 | 199 | 34 | 32 | | 14 | 349 | 1930 | 1700 | 29 | 32 | 1160 | 42 | 807 | 440 | 33 | 34 | 33 | | 15 | 1410 | 1920 | 371 | 30 | 32 | 626 | 42 | 805 | 668 | 34 | 33 | 32 | | 16 | 1940 | 1930 | 378 | 30 | 31 | 85 | 41 | 802 | 796 | 34 | 33 | 32 | | 17 | 1950 | 1940 | 262 | 30 | 30 | 48 | 42 | 479 | 799 | 35 | 33 | 32<br>33 | | 18 | 1930 | 1930 | 26 | 31 | 29 | 48 | 42 | 171 | <b>79</b> 7 | 35 | 34 | 33 | | 19 | 1930 | 1920 | 26 | 31 | 30 | 48 | 42 | 98 | 796 | 35 | 34 | 33 | | 20 | 1920 | 1910 | 25 | 32 | 61 | 48 | 42 | 98 | 574 | 35 | 34 | 33 | | 21 | 1920 | 1930 | 26 | 32 | 28 | 48 | 43 | 98 | 206 | 36 | 35 | 33 | | 22 | 1930 | 1950 | 26 | 32 | 196 | 47 | 40 | 97 | 473 | 35 | 36 | 34 | | 23 | 1950 | 1760 | 61 | 32 | 443 | 47 | 205 | 63 | 433 | 35 | 36 | 34 | | 24 | 1940 | 1510 | 101 | 32 | 637 | 41 | 325 | 40 | 431 | 36 | 35 | 34 | | 25 | 1940 | 1510 | 102 | 31 | 732 | 41 | 421 | 40 | 660 | 35 | 34 | 34 | | 26 | 1930 | 1520 | 109 | 31 | 729 | 40 | 513 | 40 | 781 | 36 | 34 | 34 | | 27 | 1920 | 1530 | 107 | 30 | 727 | 40 | 512<br>513 | 40 | 781 | 36 | 33 | 34 | | 28 | 1920 | 1530 | 106 | 30 | 726 | 40 | 513 | 39 | 778 | 36 | 32 | 33 | | 29 | 1910 | 1520 | 99 | 30 | | 40 | 401 | 39 | 472 | 36 | 32 | 33 | | 30 | 1920 | 1520 | 100 | 29 | | 40 | 224 | 40 | 194 | 35 | 32 | 32 | | 31 | 1950 | | 97 | 40 | | 40 | | 40 | | 36 | 32 | | | TOTAL | 55479 | 54830 | 10277 | 1098 | 4903 | 11842 | 4028 | 8940 | 11934 | 2780 | 1062 | 981 | | MEAN | 1790 | 1828 | 332 | 35.4 | 175 | 382 | 134 | 288 | 398 | 89.7 | 34.3 | 32.7 | | MAX | 1950 | 1950 | 1700 | 96 | 732 | 1230 | 513 | 811 | 799 | 353 | 36 | 34 | | MIN | 349 | 1510 | 25 | 26 | 28 | 40 | 40 | 39 | 39 | 29 | 32 | 32 | | AC-FT | 110000 | 108800 | 20380 | 2180 | 9730 | 23490 | 7990 | 17730 | 23670 | 5510 | 2110 | 1950 | | STATIS | TICS OF | MONTHLY N | MEAN DATA | FOR WATER | YEARS 1970 | - 1994, | BY WATER | YEAR (WY | ') a | | | | | MEAN | 322 | 333 | 434 | 275 | 354 | 451 | 378 | 419 | 439 | 515 | 462 | 351<br>170 <b>7</b><br>1993 | | MAX | 1790 | 1828<br>1994 | 1364<br>1993 | 1546 | 1550 | 1271 | 1132 | 1281 | 1573 | 1162 | 1826 | 170 <b>7</b> | | (WY) | 1994 | 1994 | 1993 | 1993 | 1993 | 1993 | 1993 | 1973 | 1973 | 1991 | 1993 | 1993 | | MIN | 11.5 | 9.97 | 5.54 | 8.98 | 5.60 | 9.40 | 6.74 | 19.3 | 16.6 | 6.53 | 9.10 | 11.0 | | (WY) | 1 <b>9</b> 75 | 1975 | 1970 | 1970 | 1970 | 1970 | 1970 | 1977 | 1988 | 1970 | 1970 | 1974 | # 06903900 CHARITON RIVER NEAR RATHBUN, IA--Continued | SUMMARY STATISTICS | FOR 1993 CALENDAR | YEAR | FOR 1994 WAT | TER YEAR | WATER YEARS | 1970 - 1994a | |----------------------------------------------------|-------------------|----------------|----------------|-----------------|----------------|----------------------------| | ANNUAL TOTAL | 455605 | | 168154<br>461 | | 395 | | | ANNUAL MEAN<br>HIGHEST ANNUAL MEAN | 1248 | | 401 | | 1164 | 1993 | | LOWEST ANNUAL MEAN<br>HIGHEST DAILY MEAN | 1950 | oct 17 | 1950 | Oct 17 | 20.4<br>1950 | 1989<br>Oct 17 1993 | | LOWEST DAILY MEAN<br>ANNUAL SEVEN-DAY MINIMUM | | lar 4<br>Tul 6 | 25<br>28 | Dec 20<br>Jan 4 | 1.0 | Oct 26 1977<br>Apr 1 1970 | | INSTANTANEOUS PEAK FLOW | 25 | u1 0 | 2780<br>14.94 | Dec 14 | 2780<br>14.94 | Dec 14 1993<br>Dec 14 1993 | | INSTANTANEOUS PEAK STAGE<br>INSTANTANEOUS LOW FLOW | | | | Dec 14 | .00 | Oct 26 1977 | | ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS | 903700<br>1910 | | 333500<br>1900 | | 286100<br>1190 | | | 50 PERCENT EXCEEDS<br>90 PERCENT EXCEEDS | 1530<br>228 | | 48<br>31 | | 62<br>13 | | a Post-regulation period. #### CHARITON RIVER BASIN #### 06904010 CHARITON RIVER NEAR MOULTON, IA LOCATION.--Lat 40°41'30", long 92°46'15", in SE1/4 NE1/4 sec.14, T.68N., R.17W., Appanoose County, Hydrologic Unit 10280201, on right bank 6 ft downstream from bridge on county highway J45, 0.7 mi downstream from Hickory Creek, 5.0 mi west of Moulton, 8.0 mi upstream from Iowa-Missouri border, 20.8 mi downstream from Rathbun Dam, and at mile 121.5. DRAINAGE AREA.--740 mi<sup>2</sup>. PERIOD OF RECORD--August 1979 to current year. GAGE--Water stage encoder. Datum of gage is 800.00 ft above sea level (U.S. Army Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Dec. 11-13, Jan. 2 to Feb. 24, and July 11-13. Records good except those for estimated daily discharges, which are poor. Flow regulated by Rathbun Reservoir (station 06903880) 20.8 mi upstream. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of about 45 ft, discharge unknown, from information by U.S. Army Corps of Engineers. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | D. | ISCHARGE | , CODIC I | PET LEK | | MEAN V | | )DEK 1993 | IO SEF | I EMIDEK 195 | 74 | | |-------------|-----------------------|------------------------------|-------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------|-----------------------------------------|----------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2 | 1870<br>1850 | 2020<br>2020 | 1570<br>1040 | 167<br>e150 | e48<br>e48<br>e47<br>e54<br>e49 | 812<br>618<br>329<br>942<br>1390 | 61<br>58<br>56<br>56<br>56 | 405<br>323<br>190<br>157<br>147 | 47<br>142 | 223<br>388 | 43<br>43 | 48<br>49 | | 3 | 1850 | 2010 | 482<br>437 | e90 | e47 | 329 | 56 | 190 | 249 | 107 | 43 | 53 | | 4 | 1840 | 2010 | 437 | e90<br>e70 | e54 | 942 | 56 | 157 | 134 | 79 | 47 | 83 | | 5 | 1840 | 2000 | 434 | | e49 | 1390 | 56 | 147 | 76 | 68 | 43 | 108 | | 6<br>7 | 1840<br>1900 | 1990<br>1980 | 430<br>427 | e40<br>e41<br>e43<br>e44<br>e45 | e52 | 748<br>624 | 5 <b>4</b><br>53 | 1310 | 88<br>113 | 59<br>160 | 40<br>39 | 91<br>89 | | Ŕ | 1900 | 1980 | 425 | e43 | e58<br>e52 | 1030 | 53<br>53<br>58<br>58 | 873 | 37 <b>3</b> | 2450 | 42 | 61 | | 9 | 1940 | 1980 | 426 | e44 | e48 | 1330 | 58 | 647 | 395<br>383 | 618 | 38 | 34 | | 10 | 1920 | 2030 | 422 | | | | | | | 489 | 37 | 34 | | 11<br>12 | 1930<br>1900 | 2030<br>2050 | e422<br>e422 | e45 | e47<br>e47<br>e46<br>e46 | 1300 | 59 | 913 | 175 | e560<br>e580 | 40<br>40 | 33<br>32 | | 13 | 1840 | 2140 | e422 | e45 | e47 | 1290 | 76 | 881 | 794 | e540 | 40 | 32 | | 14 | 529 | 2140<br>2100 | 1530 | e44 | e46 | 1250 | 76 | 884 | 424 | 192 | 39 | 33 | | 15 | 787 | 20 <b>50</b> | 917 | | | | | | 641 | 97 | 40 | 33 | | 16 | 1970 | 2030 | 448<br>433<br>173<br>65 | e46<br>e46<br>e46<br>e46 | e45 | 268 | 69<br>60<br>54<br>51<br>49 | 881<br>800<br>287<br>158<br>125 | 836 | 87 | 40 | 32 | | 17<br>18 | 2 <b>08</b> 0<br>2050 | 2050<br>2030 | 43 <b>3</b><br>173 | e46 | e48 | 158 | 60<br>54 | 297 | 845<br>852 | 105<br>93 | 41<br>41 | 31<br>32 | | 19 | 2040 | 2020 | 65<br>59 | e46 | e74<br>e120 | 94 | 51 | 158 | 855 | 59 | 40 | 33 | | 20 | 2020 | 2010 | 59 | e46 | e620 | 91 | 49 | 125 | 845 | 54 | 41 | 33 | | 21 | 2030 | 2010 | 54 | e47 | e200<br>e180 | 90<br>87 | 662<br>451<br>182<br>356 | 120<br>117<br>115<br>78 | 332<br>362<br>751<br>385 | 57 | 41 | 34 | | 22 | 2020 | 204 <b>0</b> | 48 | e48 | e180 | 87 | 451 | 117 | 362 | 53 | 41 | 38 | | 23<br>24 | 2040<br>2050 | 2000<br>1660 | 60<br>125 | e50 | e230<br>e500 | 77 | 182<br>356 | 78 | 385 | 53<br>51<br>49 | 41<br>41 | 36<br>35 | | 25 | 2040 | 1620 | 165 | e47<br>e48<br>e50<br>e54<br>e62 | 848 | 71 | 36 <b>6</b> | <b>6</b> 6 | 634 | 56 | 41 | 38 | | 26 | 2020 | 1610 | 158 | e62<br>e56 | 837<br>820<br>818 | 70 | 520<br>522<br>554<br>596<br>392 | 60 | 827<br>846<br>839<br>785 | 55 | 44 | 60 | | 27<br>28 | 2010 | 162 <b>0</b><br>162 <b>0</b> | 157<br>160 | e56 | 820 | 69<br>65 | 522 | 55<br>51 | 846 | 50<br>48 | 42<br>44 | 40<br>39 | | 29 | 2000<br>1990 | 1610 | 163 | e32<br>e48 | 010 | 63 | 596 | 49 | 785 | 45 | 44 | 35 | | 30 | 1980 | 1600 | 163 | e52<br>e48<br>e46<br>e52 | | 62 | 392 | 48 | 270 | 45 | 48 | 35 | | 31 | 2 <b>0</b> 10 | | | | | - | | 47 | | 44 | 51 | | | TOTAL | 58086 | 57920 | 12404 | 17 <b>6</b> 0<br>56.8<br>167 | 6076<br>217<br>848 | 16881 | 5805<br>193<br>662 | 14779 | 14828 | 7561<br>244 | 1295 | 1364 | | MEAN | 1874 | 1931 | 400 | 56.8 | 217 | 545 | 193 | 477 | 494 | 244 | 41.8 | 45.5 | | MAX<br>MIN | 2080<br>529 | 2140<br>16 <b>00</b> | 1570<br>48 | | 848<br>45 | 1390<br>60 | 49 | 2230<br>47 | 855<br>47 | 2450<br>44 | 51<br>37 | 108<br>31 | | MED | 1970 | 2010 | 422 | 46 | 45<br><b>5</b> 2 | 268 | 49<br>65 | 47<br>190<br>29310 | 409 | 79 | 37<br>41 | 31<br>35 | | AC-FT | 115200 | 114900 | 24600 | 3490 | 12050 | 33480 | 11510 | 29310 | 29410 | 15000<br>.33 | 2570 | 2710 | | CFSM<br>IN. | 2.53<br>2.92 | 2.61<br>2.91 | .54<br>.62 | .08<br>.09 | .29<br>.31 | .74<br>.85 | .26 | .64<br>.74 | .67<br>.75 | .33<br>.38 | .06 | .06<br>.07 | | CTATTC | | | | | YEARS 1979 | | | | | • • • • | | | | | | | | | | | | | | | | | | MEAN<br>MAX | 515<br>1874 | 514<br>1931 | 589<br>1557 | 389<br>1696 | 501<br>1772 | 721<br>1831 | 680<br>1481 | 586<br>1195 | 582<br>1341 | 936<br>2849 | 672<br>2004 | 550<br>1976 | | (WY) | 1994 | 1994 | 1983 | 1993 | 1983 | 1993 | 1993 | 1993 | 1980 | 1982 | 1993 | 1993 | | MIN | 24.2 | 23.0 | 20.1 | 22.2 | 20.6 | 24.3 | 22.7 | 33.0 | 20.3 | 17.9 | 21.0 | 26.6 | | (WY) | 1989 | 1989 | 1990 | 1989 | 1989 | 1989 | 1989 | 1980 | 1988 | 1988 | 1988 | 1988 | | SUMMAR | Y STATIST | rics | FOR | 1993 CALE | NDAR YEAR | F | OR 1994 WA | ATER YEAR | | WATER YE | ARS 1979 | - 1994 | | ANNUAL | | | | 590063 | | | 198759 | | | | | | | ANNUAL | MEAN<br>TANNUAL | MPAN | | 1617 | | | 545 | | | 607 | | 1003 | | | ANNUAL M | | | | | | | | | 607<br>1555<br>43.6<br>8720<br>14<br>15 | | 1989 | | HIGHES | T DAILY M | <b>ŒAN</b> | | 5230 | Jul 8 | | 2450 | Jul 8 | | 8720 | Jul 1 | 7 1982 | | LOWEST | DAILY ME | AN | | 48 | Dec 22 | | 31 | Sep 17 | | 14 | Jun 2 | 2 1988 | | | | Y MINIMUM<br>EAK FLOW | | 82 | Dec 19 | | 32<br>3490 | Sep 12 | | 15<br>1120 <b>0</b> | Jun 2<br>Jul 1 | ∠ 1988<br>6 1982 | | | | EAK STAGE | | | | | 29.93 | Jul 8<br>Jul 8 | | 36.83 | Jul 1 | 6 1982 | | INSTAN | TANEOUS I | OW FLOW | | 1170000 | | | 30<br>394200 | Sep 17 | | 439500 | | | | ANNUAL | RUNOFF ( | CFSM) | | 2.1 | 8 | | .74 | | | .82 | | | | ANNUAL | RUNOFF ( | INCHES) | | 29.6 | 6 | | 9.99 | | | 11.14 | | | | 10 PER | CENT EXCE | EDS | | 2180<br>1660 | | | 1980 | | | 1520<br>330 | | | | | CENT EXCE | | | 544 | | | 120<br>41 | | | 26 | | | | | | | | | | | | | | | | | e Estimated. #### CREST-STAGE PARTIAL-RECORD STATIONS The following table contains annual maximum discharge for crest-stage stations. A crest-stage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years up to the current year for which the annual maximum has been determined. ## MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS [+--Not determined, a--peak stage did not reach bottom of gage, b--ice affected, c--old gage datum, d--estimate, e--peak affected by backwater] | | | | Watery | ear 1994 ma | ximum | Period o | Period of record maximum | | | |--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|------------------------|----------------------------------------|----------|--------------------------|----------------------------------------|--| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | U | PPER IO | WA RIVER B | ASIN | | | | | | | Dry Run Creek<br>near Decorah,<br>Ia.<br>(05387490) | Lat 43°17'29",long 91°48'33",<br>in SE1/4, sec.20, T.98 N.,<br>R.8 W., Winneshiek County,<br>Hydrologic Umt 07060002,<br>on State Highway 9, 0.5 mi<br>west of Decorah. Drainage<br>area is 21.0 mi <sup>2</sup> . | 1978- | 02-19-94 | 18.67 | 2,100 | 08-16-93 | 20.80 | 4,620 | | | | A | MISSISSIP | PI RIVER B | ASIN | | | | | | | Mississippi<br>River tributary<br>at McGregor, Ia.<br>(05389501) | Lat 43°01'01", long 91°11'53", in NE1/4, sec.28, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, at culvert on county road X50, at intersection with U.S. Highway 18 (Business Route), in McGregor. Drainage area is 0.72 mi <sup>2</sup> . | 1991- | 06-23-94 | 1.30 | (+) | 03-31-93 | (+) | (+) | | | | | TURKEY | RIVER BAS | SIN | | • | | | | | French Hollow<br>Creek near<br>Elkader, Ia<br>(05412030) | Lat 42°50'19", long 91°24'25",<br>in SW1/4, sec.26, T.93 N.,<br>R.5 W., Clayton County,<br>Hydrologic Unit 07060004,<br>at culvert on State Highway<br>13, 1.1 mi south of Elkader.<br>Drainage area is 3.56 mi <sup>2</sup> . | 1991- | 07-20-94 | (a) | (+) | 06-15-91 | (+) | (+) | | | | LITTL | E MAQU | OKETA RIV | ER BASIN | | | | | | | Little<br>Maquoketa River<br>at Graf, Ia.<br>(05414350) | Lat 42°30'09", long 90°51'50",<br>in SE1/4 NW1/4, sec.20,<br>T.89 N., R.1 E., Dubuque<br>County, Hydrologic Unit<br>07060003, at bridge on county<br>highway, 300 ft downstream<br>from Illinois Central rail-<br>road bridge, 0.5 mi northeast<br>of Graf. Drainage area is<br>39.6 mi <sup>2</sup> . | 1951- | 07-05-94 | 9.03 | <b>(+)</b> | 07-08-51 | 15.78 | 7,220 | | | Middle Fork<br>Little Maquoketa<br>River near<br>Rickardsville,<br>Ia.<br>(05414400) | Lat 42°33'38", long 90°51'50",<br>in SE1/4, sec.32, T.90 N.,<br>R.1 E., Dubuque County,<br>Hydrologic Unit 07060003, at<br>bridge on county highway, 2 mi<br>southeast of Rickardsville.<br>Drainage area is 30.2 mi <sup>2</sup> . | 1951- | 04-25-94 | 18.86 | (+) | 08-02-72 | 27.70 | 23,000 | | | North Fork<br>Little Maquoketa<br>River near<br>Rickardsville,<br>Ia.<br>(05414450) | Lat 42°35'09", long 90°51'20", near NW corner, sec.28, T.90 N., R.1 E., Dubuque County, Hydrologic Unit 07060003, at bridge on county highway, 1 mi northeast of Rickardsville. Drainage area is 21.6 mi <sup>2</sup> . | 1951- | 06-21-94 | 5.81 | 590 | 08-02-72 | 14.02 | 7,180 | | | | | | Water y | ear 1994 ma | ximum | Period of record maximum | | | |----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|------------------------|----------------------------------------|--------------------------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | LITTLE MA | OUOKEI | A RIVER B | ASINCont | inued | | | | | Little<br>Maquoketa River<br>near Durango, Ia.<br>(05414500)<br>(discontinued) | Lat 42°33'18", long 90°44'46", in NW1/4 NE1/4, sec.5, T.89 N., R.2 E., Dubuque County, Hydrologic Unit 07060003, on left bank 10 ft upstream from bridge on county highway, 300 ft upstream from Cloie Branch, 1.7 mi east of Durango, 5.6 mi northwest of court house at Dubuque, and 6.4 mi upstream from mouth. Drainage area is 130 mi <sup>2</sup> . | 1934- | 07-05-94 | 14.54 | (+) | 08-02-72 | 23.13 | 40,000 | | Little Maquoketa River tributary at Dubuque, Ia. (05414600) | Lat 42°32'33", long 90°41'38",<br>near NW comer, sec.11,<br>T.89 N., R.2 E, Dubuque<br>County, Hydrologic Unit<br>07060003, at bridge on State<br>Highway 386, near north city<br>limits of Dubuque. Drainage<br>area is 1.54 mi <sup>2</sup> . | 1951- | 07-05-94 | 11.12 | 164 | 07-31-57 | c7.98 | d1,650 | | Bloody Run<br>tributary near<br>Sherrill, Ia.<br>(05414605) | Lat 42°37'13", long 90°45'44",<br>in SE1/4, sec.7, T.90 N.,<br>R.2 E., Dubuque County,<br>Hydrologic Unit 07060003, at<br>culvert on county road 1.6 mi<br>northeast of Sherrill. Drain-<br>age area is 0.59 mi <sup>2</sup> . | 1991- | 02-19-94 | 0.64 | (+) | 06-15-91 | (+) | (+) | | | I | AMONT | CREEK BA | SIN | | | | | | Lamont Creek<br>tributary at<br>Lamont, Ia.<br>(05416200) | Lat 42°35'22", long 91°38'52",<br>in SE1/4, sec.22, T.90 N.,<br>R.7 W., Buchanan County,<br>Hydrologic Unit 07060006,<br>at culvert on State Highway<br>187, 0.8 mi southwest of<br>Lamont. Drainage area is<br>1.78 mi <sup>2</sup> . | 1991- | 06-23-94 | 2.99 | (+) | 07-11-93 | (+) | (+) | | | MA | QUOKE | TA RIVER B | ASIN | | | | | | Sand Creek near<br>Manchester, Ia.<br>(05416972) | Lat 42°26'57", long 91°28'50",<br>in SE1/4, sec. 12, T.88 N.,<br>R.6 W., Delaware County,<br>Hydrologic Unit 07060006, at<br>culvert on State Highway 13,<br>2.7 mi southwest of Manchester.<br>Drainage area is 11.0 mi <sup>2</sup> . | 1991- | 06-23-94 | 1.69 | (+) | 07-11- <del>9</del> 3 | (+) | (+) | | Williams Creek<br>near Charlotte,<br>Ia.<br>(05418645) | Lat 41°55'55", long 90°31'44", in SE1/4, sec.6, T.82 N., R.4 E., Clinton County, Hydrologic Unit 07060006, at culvert on county road Y70, 5 mi southwest of Charlotte, 2.1 mi north of county highway E63. Drainage area is 1.77 mi <sup>2</sup> . | 1990- | 02-19-94 | 3.23 | (+) | 06-18-93 | (+) | (+) | | | WAI | SIPINIC | ON RIVER I | BASIN | | | | | | Little Wapsi-<br>pinicon River<br>tributary near<br>Riceville, Ia.<br>(05420600) | Lat 43°21'31", long 92°29'08",<br>near SW1/4 corner, sec. 27,<br>T.99 N., R.14 W., Howard<br>County, Hydrologic Unit<br>07080102, at culvert on<br>county highway, 3.5 mi east<br>of Riceville. Drainage area<br>is 1.10 mi <sup>2</sup> . | 1953- | 07-20-94 | 3.90 | 105 | 08-15-93 | 5.71 | 2,470 | | | | | Water y | rear 1994 ma | ximum | Period o | Period of record maximum | | | |-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|------------------------|----------------------------------------|----------|--------------------------|----------------------------------------|--| | Station name<br>and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | WAPSIP | INICON I | RIVER BASII | NContinu | ed . | | | | | | Little Wapsi-<br>pinicon River<br>near Oran, Ia.<br>(05420850) | Lat 42°42'53", long 92°02'29",<br>near NW comer, sec.9,<br>T.91 N., R.10 W., Fayette<br>County, Hydrologic Unit<br>07080102, at bridge on<br>State Highway 3, 2 mi<br>northeast of Oran. Drainage<br>area is 94.1 mi <sup>2</sup> . | 1966- | 02-18-94 | 86.05 | 820 | 08-30-79 | 91.81 | d5,000 | | | Buck Creek<br>near Oran, Ia.<br>(05420855) | Lat 42°42'53", long 92°07'33",<br>in NE1/4, sec.10, T.91 N.,<br>R.11 W., Bremer County,<br>Hydrologic Unit 07080102, at<br>bridge on State Highway 3, 2.5<br>mi northwest of Oran. Drain-<br>age area is 37.9 mi <sup>2</sup> . | 1966- | 06-23-94 | 87.93 | 540 | 06-15-91 | 90.18 | 1,720 | | | Pine Creek<br>tributary near<br>Winthrop, Ia.<br>(05421100) | Lat 42°29'17", long 91°47'10",<br>in SW1/4, sec.27, T.89 N.,<br>R.8 W., Buchanan County,<br>Hydrologic Unit 07080102, at<br>culvert on county road, 2.5<br>mi northwest of Winthrop.<br>Drainage area is 0.33 mi <sup>2</sup> . | 1953- | 1994 | (a) | (+) | 07-17-68 | 8.97 | 334 | | | Pine Creek<br>tributary No. 2<br>at Winthrop, Ia.<br>(05421300) | Lat 42°28'06", long 91°44'33",<br>at N1/4 corner sec.2, T.88 N.,<br>R.8 W., Buchanan County,<br>Hydrologic Unit 07080102, at<br>culvert on State Highway 939,<br>near west city limits of<br>Winthrop. Drainage area<br>is 0.70 mi <sup>2</sup> . | 1953- | 1994 | (a) | (+) | 07-17-68 | 7.26 | 570 | | | Silver Creek at<br>Welton, Ia.<br>(05421890) | Lat 41°54'54", long 90°36'00",<br>in NW1/4, sec.15, T.82 N.,<br>R.3 E., Clinton County,<br>Hydrologic Unit 07080103, at<br>bridge on U.S. Highway 61,<br>at north edge of Welton.<br>Drainage area is 9.03 mi <sup>2</sup> . | 1966- | 02-20-94 | 87.22 | 605 | 05-17-74 | 89.77 | d4,820 | | | | | IOWA R | RIVER BASIN | N | | | | | | | Westmain drain-<br>age ditch 1 & 2<br>at Britt, Ia.<br>(05448400) | Lat 43°06'09", long 93°47'04", in SW1/4, sec.27, T.96 N., R.25 W., Hancock County, Hydrologic Unit 07080207, at bridge on U.S. Highway 18, near east city limits of Britt. Drainage area is 21.2 mi <sup>2</sup> . | 1966- | 1994 | (a) | (+) | 04-28-75 | 83.59 | 372 | | | East Branch<br>Iowa River<br>above<br>Hayfield, Ia.<br>(05448600) | Lat 43°09'21", long 93°41'21",<br>at S1/4 corner sec.4,<br>T.96 N., R.24 W., Hancock<br>County, Hydrologic Unit<br>07080207, at bridge on county<br>highway, 1.5 mi southeast<br>of Hayfield. Drainage area<br>is 2.23 mi <sup>2</sup> . | 1953- | 1994 | (a) | (+) | 04-06-65 | 7.31 | 250 | | | Honey Creek<br>tributary near<br>Radcliffe, Ia.<br>(0545129280) | Lat 42°19'44", long 93°25'28", in SW1/4, sec.21, T.87 N., R.22 W., Hardin County, Hydrologic Unit 07080207, at culvert on county road highway S27, 1.1 mi northeast of Radcliffe. Drainage area is 3.29 mi <sup>2</sup> . | 1991- | | | | 08-17-93 | 97.61 | (+) | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Watery | ear 1994 ma | ximum | m Period of record maximum | | | |---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|----------------------------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | IOW | A RIVER | BASINCo | ntinued | | | | | | Stein Creek<br>near Clutier,<br>Ia.<br>(05451955) | Lat 42°04'46", long 92°18'00",<br>in NE1/4, sec.24, T.84 N.,<br>R.13 W., Tama County,<br>Hydrologic Unit 07'08'0208, at<br>bridge on county highway R36,<br>5 mi east of Clutier. Drainage<br>area is 23.4 mi <sup>2</sup> . | 1971- | 07-13-94 | 76.90 | 5,580 | 06-15-82 | 77.92 | 11,400 | | Price Creek<br>at Amana, Ia.<br>(05453200) | Lat 41°48'18", long 91°52'23",<br>in SE1/4, sec.22, T.81 N.,<br>R.9 W., Iowa County, Hydrologic<br>Unit 07080208, at bridge on<br>State Highway 151, near north<br>edge of Amana. Drainage area<br>is 29.1 mi <sup>2</sup> . | 1966- | 06-07-94 | 85.18 | 1,880 | 06-17-90 | 88.80 | (+) | | North Fork<br>tributary to<br>Mill Creek near<br>Solon, Ia.<br>(05453430) | Lat 41°50'24", long 91°30'04"<br>in NW1/4, sec.12, T.81 N.,<br>R.9 W., Johnson County,<br>Hydrologic Unit 07080208,<br>at culvert on State Highway 1,<br>2 mi north of Solon. Drainage<br>area is 0.78 mi <sup>2</sup> . | | Destroyed i | n 1993 | | 07-16-92 | (+) | (+) | | Clear Creek<br>tributary near<br>Williamsburg, Ia.<br>(05454180) | Lat 41°41'16", long 91°57'02", in SE1/4, sec. 36, T.80 N., R.10 W., Iowa County, Hydrologic Unit 07080209, at culvert on county road, 4 mi northeast of Williamsburg, 1 mi south of county highway F35. Drainage area is 0.37 mi <sup>2</sup> . | 1990- | 02-18-94<br>09-23-93 <sup>1</sup><br>07-25-92 <sup>1</sup><br>03-02-91 <sup>1</sup> | 43.36<br>48.47<br>46.97<br>44.82 | 29.6<br>265<br>131<br>(+) | 06-17-90 | 48.76 | 291 | | North English<br>River near<br>Montezuma, Ia.<br>(05455140) | Lat 41°38'45", long 92°34'20",<br>in SW1/4, sec.14, T.79 N.,<br>R.15 W., Poweshiek County,<br>Hydrologic Unit 07080209, at<br>bridge on county highway,<br>5.0 mi northwest of Montezuma.<br>Drainage area is 31.0 mi <sup>2</sup> . | 1972- | 02-18-94 | 20.74 | 665 | 07-20-78 | 28.18 | 4,640 | | North English<br>River at<br>Guernsey, Ia.<br>(05455210) | Lat 41°38'42", long 92°21'28",<br>at NW corner sec.22,<br>T.79 N., R.13 W., Poweshiek<br>County, Hydrologic Unit<br>07080209, at bridge on State<br>Highway 21, 1 mi southwest of<br>Guernsey, Drainage area is<br>81.5 mi <sup>2</sup> . | 1960,<br>1966- | 06-19-94 | 81.05 | 1,690 | 06-15-82 | 87.43 | 7,460 | | Deep River at<br>Deep River, Ia.<br>(05455230) | Lat 41°35'29", long 92°21'18",<br>in SW1/4, sec.3, T.78 N.,<br>R.13 W., Poweshiek County,<br>Hydrologic Unit 07080209, at<br>bridge on State Highway<br>21, 1 mi northeast of<br>Deep River. Drainage area<br>is 30.5 mi <sup>2</sup> . | 1960,<br>1966- | 1994 | (a) | (+) | c05-14-70 | 83.85 | 6,200 | | Bulgers Run<br>near Riverside,<br>Ia.<br>(05455550) | Lat 41°29'02", long 91°37'36",<br>in SE1/4, sec. 11, T.77 N.,<br>R.7 W., Washington County,<br>Hydrologic Unit 07080209, at<br>bridge on State Highway 22,<br>2.5 mi west of Riverside,<br>Drainage area is 6.31 mi <sup>2</sup> . | 1965- | 02-19-94 | b90.76 | (+) | 09-21-65 | 89.04 | 3,080 | | Deer Creek near<br>Carpenter, Ia.<br>(05457440) | Lat 43°24'54", long 92°59'05",<br>in NW1/4 sec.9, T.99 N.,<br>R.18 W., Mitchell County,<br>Hydrologic Unit 07080201, at<br>bridge on State Highway 105,<br>1.5 mi east of Carpenter.<br>Drainage area is 91.6 mi <sup>2</sup> . | 1966- | 1994 | (a) | (+) | 07-18-93 | 84.65 | 3,460 | | | | | Water y | ear 1994 ma | ximum | Period of record maximum | | | |-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--------------------------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | IO | WA RIVE | R BASINCo | ntinued | | | | | | Gizzard Creek<br>tributary near<br>Bassett, Ia.<br>(0545776680) | Lat 43°04'01",long 92°34'31",<br>in SE1/4, sec.2, T.95 N.,<br>R.15 W., Floyd County,<br>Hydrologic Unit 07080201, at<br>culvert on U.S. Highway 18,<br>3.3 mi west of Bassett.<br>Drainage area is 3.42 mi <sup>2</sup> . | 1990- | 07-20-94 | <b>95.97</b> | (+) | 08-10-91 | 100.59 | (+) | | Spring Creek<br>near Mason<br>City, Ia.<br>(05459490) | Lat 43°12'48", long 93°12'38",<br>in SE1/4, sec.16, T.97 N.,<br>R.20 W., Cerro Gordo County,<br>Hydrologic Unit 07080203, at<br>bridge on U.S. Highway 65,<br>4 mi north of Mason City.<br>Drainage area is 29.3 mi <sup>2</sup> . | 1966- | 1994 | (+) | (+) | 05-30-80 | 90.32 | (+) | | Willow Creek<br>near Mason<br>City, Ia.<br>(05460100) | Lat 43°08'55", long 93°16'07",<br>near center sec.12, T.96 N.,<br>R.21 W., Cerro Gordo County,<br>Hydrologic Unit 07080203, at<br>bridge on U.S. Highway 18,<br>3.5 mi west of Mason City.<br>Drainage area is 78.6 mi <sup>2</sup> . | 1966- | 04-12-94 | 90.85 | (+) | 07-08-69<br>04-01-93 | 91.30<br>91.75 | d1,100<br>1,090 | | Miller Creek<br>near Eagle<br>Center, Ia.<br>(05464075) | Lat 42°19'22", long 92°20'52",<br>in NW1/4, sec. 27, T.87 N.,<br>R.13 W., Black Hawk County,<br>Hydrologic Unit 07080205,<br>at culvert on State Highway<br>21, 1.3 mi southeast of<br>Eagle Center. Drainage area<br>is 9.14 mi <sup>2</sup> . | 1991- | 03-04-94 | 41.03 | (+) | 07-08-93 | (+) | (+) | | East Blue<br>Creek at<br>Center Point, Ia.<br>(05464318) | Lat 42°12'44", long 91°47'21",<br>in SW1/4, sec.33, T.86 N.,<br>R.8 W., Linn County,<br>Hydrologic Unit 07080205, at<br>bridge on State Highway 150,<br>1.5 mi north of Center Point.<br>Drainage area is 17.6 mi <sup>2</sup> . | 1966- | 1994 | (a) | (+) | 07-05-93 | 84.27 | (+) | | Prairie Creek<br>tributary near<br>Van Home, Ia.<br>(05464535) | Lat 41°59'33",long 92°05'06",<br>in NW1/4, sec.24, T.83 N.,<br>R.11 W., Benton County,<br>Hydrologic Unit 07080205,<br>at culvert on county<br>highway V64, 1.1 mi south<br>of Van Horne. Drainage<br>area is 0.94 mi <sup>2</sup> . | 1991- | 06-07-94 | 11.64 | (+) | 08-16-93 | (+) | (+) | | Thunder Creek<br>at Blairstown,<br>Ia.<br>(05464562) | Lat 41°54'12", long 92°05'03",<br>in NE1/4, sec.23, T.82 N.,<br>R.11 W., Benton County,<br>Hydrologic unit 07080205,<br>at culvert on county highway<br>V56, near city limits of<br>Blairstown. Drainage area<br>is 0.96 mi <sup>2</sup> . | 1991- | 06-07-94<br>08-16-93 <sup>1</sup><br>07-07-92 <sup>1</sup><br>04-29-91 <sup>1</sup> | 13.49<br>15.33<br>15.06<br>15.21 | (+)<br>540<br>440<br>452 | 08-16-93 | (+) | (+) | | North Fork<br>Long Creek at<br>Ainsworth, Ia.<br>(05465150) | Lat 41°16'51", long 91°32'16",<br>in SW1/4, sec.22, T.75 N.,<br>R.6 W., Washington County,<br>Hydrologic Unit 07080209, at<br>bridge on U.S. Highway 218,<br>1 mi southeast of Ainsworth.<br>Drainage area is 30.2 mi <sup>2</sup> . | 1951,<br>1965- | 03-03-94 | 87.66 | 535 | 06-08-93 | 90.20 | 3,650 | | Haight Creek<br>at Kingston,<br>Ia.<br>(05469350) | Lat 40°58'14", long 91°02'30",<br>in NW1/4, sec.12, T.71 N.,<br>R.2 W., Des Moines County,<br>Hydrologic Unit 07080104, at<br>culvert on State Highway 99,<br>0.5 mi south of Kingston.<br>Drainage area is 2.67 mi <sup>2</sup> . | 1990- | 1994 | (a) | (+) | 06-20-90 | (+) | (+) | | | | | Water ye | ear 1994 ma | ximum | Period o | of record ma | ximum | |-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|------------------------|----------------------------------------|----------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | SKUNK | RIVER BAS | IN | | | | | | Mud Lake<br>drainage ditch<br>71, at<br>Jewell, Ia.<br>(05469860) | Lat 42°18'52", long 93°38'23",<br>in SW1/4, sec.27, T.87 N.,<br>R.24 W., Hamilton County,<br>Hydrologic Unit 07080105, at<br>bridge on U.S. Highway 69,<br>in Jewell. Drainage area<br>is 65.4 mi <sup>2</sup> . | 1966- | 03-04-94 | 87.59 | 1,090 | 07-09-93 | 91.32 | 3,700 | | Long Dick<br>Creek near<br>Ellsworth, Ia.<br>(05469970) | Lat 42°18'38", long 93°32'06",<br>in NW1/4, sec.33, T.27 N.,<br>R.23 W., Hamilton County,<br>Hydrologic Unit 07080105,<br>at culvert on State Highway<br>175, 2.2 mi east of Ellsworth.<br>Drainage area is 6.08 mi <sup>2</sup> . | 1991- | 03-04-943 | 91.88 | (+) | 08-17-93 | 94.73 | (+) | | Keigley Branch<br>near Story<br>City, Ia.<br>(05469990) | Lat 42°09'01", long 93°37'13",<br>in NW1/4, sec.26, T.85 N.,<br>R.24 W., Story County,<br>Hydrologic Unit 07080105, at<br>bridge on U.S. Highway 69,<br>3 mi south of Story City.<br>Drainage area is 31.0 mi <sup>2</sup> . | 1966- | 03-04-94 | 90.07 | 1,080 | 07-09-93 | 91.89 | 3,200 | | Snipe Creek<br>tributary at<br>Melboume, Ia.<br>(0547209280) | Lat 41°56'08", long 93°05'08",<br>in SE1/4, sec.5, T.82 N.,<br>R.19 W., Marshall County,<br>Hydrologic Unit 07080106, at<br>culvert on county highway E63,<br>0.5 mi east of Melbourne.<br>Drainage area is 1.61 mi <sup>2</sup> . | 1990- | 03-03-94 | 12.32 | (+) | 06-17-90 | (+) | (+) | | Middle Creek<br>near Lacey, Ia.<br>(05472390) | Lat 42°43'55", long 93°42'26",<br>at N1/4 comer sec. 1,<br>T.76 N., R.16 W., Mahaska<br>County, Hydrologic Unit<br>07080106, at bridge on U.S.<br>Highway 63, 1.5 mi northwest<br>of Lacey, Drainage area is<br>23.0 mi <sup>2</sup> . | 1966- | 03-03-94 | 85.82 | 813 | 04-24-76 | 90.06 | 9,650 | | Skunk River<br>tributary near<br>Richland, Ia.<br>(05472555) | Lat 41°15'50", long 91°57'52",<br>in NE1/4, sec.35, T.75 N.,<br>R.10 W., Keokuk County,<br>Hydrologic Unit 07080107, at<br>culvert on county highway W15,<br>4.9 mi north of Richland, 5.1<br>mi south of State Highway 92.<br>Drainage area is 0.19 mi². | 1990- | 03-03-94 | 0.76 | (+) | 06-20-90 | (+) | (+) | | | DI | ES MOIN | ES RIVER BA | SIN | | | | | | Drainage Ditch<br>97 tributary<br>near Britt, Ia.<br>(0548065350) | Lat 43°06' 42", long 93°54'22",<br>in SW1/4, sec.22, T.96 N.,<br>R.26 W., Hancock County,<br>Hydrologic Unit 07100005,<br>at culvert on county road,<br>5.4 mi northwest of Britt.<br>Drainage area is 0.98 mi <sup>2</sup> . | 1991- | 1994 | (a) | (+) | 07-09-93 | 94.53 | (+) | | White Fox<br>Creek at<br>Clarion, Ia.<br>(05480930) | Lat 42°43'55", long 93°42'26",<br>in NW1/4, sec.5, T.91 N.,<br>R.24 W., Wright County,<br>Hydrologic Unit 07100005, at<br>bridge on State Highway 3,<br>1.5 mi east of Clarion.<br>Drainage area is 13.3 mi <sup>2</sup> . | 1966- | 06-23-94 | 91.52 | (+) | 07-09-93 | 93.59 | 1,400 | | Brewers Creek<br>tributary near<br>Webster City,<br>Ia.<br>(05480993) | Lat 42°26'57", long 93°51'59",<br>in NW1/4, sec. 10, T.88 N.,<br>R.26, W., Hamilton County,<br>Hydrologic Unit 07100005, at<br>culvert on U.S. Highway 20,<br>2.5 mi southwest of Webster<br>City. Drainage area is 1.58 mi <sup>2</sup> . | 1990- | 02-18-94 | 95.81 | (+) | 06-04-91 | 99.25 | (+) | | | | | Water year 1994 maximum | | | Period of record maximum | | | |-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|------------------------|----------------------------------------|--------------------------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | DES MO | INES RI | VER BASIN | Continued | <u> </u> | | | | | Bluff Creek<br>at Pilot<br>Mound, Ia.<br>(05481510) | Lat 42°09'59", long 94°01'15",<br>in NW1/4, sec.20 T.85 N.,<br>R.27 W., Boone County,<br>Hydrologic Unit 07100004, at<br>bridge on State Highway 329,<br>at northwest edge of Pilot<br>Mound. Drainage area is 23.5 mi <sup>2</sup> . | 1966- | 02-18-94 | 85.77 | 612 | 07-09-93 | 89.25 | 1,450 | | Peas Creek<br>tributary at<br>Boone, Ia.<br>(05481528) | Lat 42°02'06", long 93°51'13", in SW1/4, sec.35, T.84 N., R.26 W., Boone County, Hydrologic Unit 07100004, at culvert on Corporal Rodger Snedden Drive, at intersection with U.S. Highway 30, at the south edge of Boone city limits. Drainage area is 0.30 mi <sup>2</sup> . | 1990- | 1994 | (+) | (+) | 06-19-93 | 92.95 | (+) | | Peas Creek<br>at Boone, Ia.<br>(05481530) | Lat 42°02'04", long 93°51'25", in SE1/4, sec.34, T.84 N., R.26 W., Boone County, Hydrologic Unit 07100004, at culvert on U.S. Highway 30, at the southwest side of Boone city limits. Drainage area is 1.69 mi <sup>2</sup> . | 1990- | 1994 | 97.13 | (+) | 07-09-93 | 97.78 | (+) | | Hardin Creek<br>near Farlin,<br>Ia.<br>(05482900) | Lat 42°05'34, long 94°25'39",<br>in N1/4 sec. 14,<br>T.84 N., R.31 W., Greene<br>County, Hydrologic Unit<br>07100006, at bridge on county<br>highway, 1.5 mi northeast<br>of Farlin. Drainage area<br>is 101 mi <sup>2</sup> . | 1951- | 1994 | (+) | (+) | 07-09-93 | 13.97 | 3,010 | | Brushy Fork<br>Creek near<br>Templeton, Ia.<br>(05483318) | Lat 41°56'45", long 94°25'39",<br>in NW1/4, sec.1, T.82 N.,<br>R.35 W., Carroll County,<br>Hydrologic Unit 07100007, at<br>bridge on U.S. Highway 71, 4 mi<br>northeast of Templeton.<br>Drainage area is 45.0 mi <sup>2</sup> . | 1966- | Destroyed in | ı 1993 | | 07-09-93 | 93.48 | 19,000 | | Middle Raccoon<br>River tributary<br>near Carroll, Ia.<br>(05483349) | Lat 42°02'30", long 94°52'43",<br>in NW1/4, sec.36, T.84 N.,<br>R.35 W., Carroll County,<br>Hydrologic Unit 07100007, at<br>bridge on U.S. Highway 71,<br>1.5 mi south of Carroll.<br>Drainage area is 6.58 mi <sup>2</sup> . | 1966- | 1994 | (a) | (+) | 07-09-93 | 25.79 | 7,000 | | Cedar Creek<br>tributary No.2<br>near Winterset,<br>Ia.<br>(05485940) | Lat 41°19'49", long 94°03'05",<br>in SW1/4, sec.35, T.76 N.,<br>R.28 W., Madison County,<br>Hydrologic Unit 07100008, at<br>culvert on State Highway 92,<br>0.5 mi west of U.S. Highway<br>169, 1 mi west of Winterset.<br>Drainage area is 0.78 mi <sup>2</sup> . | 1990- | 07-12-94 | 93.57 | (+) | 06-17-90 | 96.39 | (+) | | Bush Branch<br>Creek near<br>Stanzel, Ia.<br>(05486230) | Lat 41°18'57", long 94°16'42",<br>in SW1/4, sec.2, T.75 N.,<br>R.30 W., Adair County,<br>Hydrologic Unit 07100008, at<br>culvert on State Highway 92,<br>1 mi west of Stanzel. Drainage<br>area is 3.02 mi <sup>2</sup> . | 1990- | 08-30-94 | 88.90 | (+) | 09-15-92 | 97.06 | (+) | | | | | Water y | rear 1994 m | aximum | Period of record maximum | | | |-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | DEST | MOINES DI | IVER BASIN | Continue | | | | | | Little White<br>Breast Creek<br>tributary near<br>Chariton, Ia.<br>(05487825) | Lat 41°03'36", long 93°18'12",<br>in SW1/4, sec. 5, T.72 N.,<br>R.21 W., Lucas County,<br>Hydrologic Unit 07100008, at<br>culvert on State Highway 14,<br>2.0 mi north of Chariton.<br>Drainage area is 0.05 mi <sup>2</sup> . | 1990- | 06-02-94 | (a) | (+) | 08-19-93 | (+) | (+) | | South Avery<br>Creek near<br>Blakesburg, Ia.<br>(05489350) | Lat 41°00'59", long 92°50'46",<br>in SE1/4, sec. 19, T.72 N.,<br>R.15 W., Wapello County,<br>Hydrologic Umt 07100009, at<br>bridge on U.S. Highway 34,<br>3.5 mi north of Blakesburg.<br>Drainage area is 33.1 mi <sup>2</sup> . | 1965- | 06-23-94 | 81.01 | 2,170 | 07-03-82 | 90.20 | (+) | | Bear Creek at<br>Ottumwa, Ia.<br>(05489490) | Lat 41°00'43", long 92°27'54", in NW1/4, sec.27, T.72 N., R.14 W., Wapello County, Hydrologic Unit 07100009, at bridge on U.S. Highway 34, near west edge of Ottumwa. Drainage area is 22.9 mi <sup>2</sup> . | 1965- | 06-23-94<br>05-07-93 <sup>1</sup><br>09-15-92 <sup>1</sup><br>04-18-91 <sup>1</sup><br>05-25-90 <sup>1</sup><br>09-09-89 <sup>1</sup><br>02-20-88 <sup>1</sup><br>05-31-87 <sup>1</sup><br>09-19-861<br>03-04-851<br>07-03-82 <sup>1</sup><br>07-03-82 <sup>1</sup><br>07-04-81 <sup>1</sup><br>08-17-80 <sup>1</sup><br>08-29-79 <sup>1</sup><br>07-21-78 <sup>1</sup><br>08-07-77 <sup>1</sup><br>04-24-76 <sup>1</sup><br>1975 <sup>1</sup><br>05-19-74 <sup>1</sup><br>01-19-73 <sup>1</sup><br>05-08-72 <sup>1</sup><br>1971 <sup>1</sup><br>06-24-70 <sup>1</sup><br>07-05-69 <sup>1</sup><br>10-15-68 <sup>1</sup><br>06-09-67 <sup>1</sup><br>1966 <sup>1</sup><br>09-21-65 <sup>1</sup> | 85.63<br>88.51<br>86.81<br>86.86<br>87.12<br>90.76<br>86.77<br>b84.43<br>84.63<br>87.13<br>86.20<br>86.67<br>87.79<br>93.91<br>89.39<br>87.98<br>86.80<br>87.30<br>92.13<br>91.50<br>(a)<br>87.46<br>86.08<br>86.21<br>(a)<br>90.81<br>85.70<br>85.42<br>89.98<br>(a)<br>93.80 | 1,400 2,410 1,840 1,850 (+) 3,120 1,820 (+) 990 1,910 1,610 1,780 2,180 4,030 2,770 2,240 1,830 2,010 3,530 3,340 e705 2,060 1,570 1,620 e1,180 3,130 1,420 1,310 2,880 e1,180 4,000 | 09-21-65 | 92.80 | 4,000 | | | | | IVER BASIN | Ī | | 07.40.00 | | | | South Fox<br>Creek near<br>West Grove, Ia.<br>(05494110) | Lat 40°43'31", long 92°36'16",<br>in SE1/4, sec.32, T.69 N.,<br>R.15 W., Davis County,<br>Hydrologic Unit 07110001, at<br>bridge on State Highway 2,<br>2.4 mi west of West Grove.<br>Drainage area is 12.2 mi <sup>2</sup> . | 1965- | | | | 07-19-82 | 90.40 | (+) | | D C .: | T . 400001000 1 050 0150" | | X RIVER BA | | 4.5 | 06 00 00 | 0.04 | 7.3 | | Dawson Creek<br>near Sibley,<br>Ia.<br>(06483440) | Lat 43°23'23", long 95°42'53",<br>near NW corner sec.20,<br>T.99 N., R.41 W., Osceola<br>County, Hydrologic Unit<br>10170204, at culvert on<br>county highway A30, 2 mi<br>southeast of Sibley.<br>Drainage area is 4.35 mi <sup>2</sup> . | 1952- | 06-13-94 | 6.82 | (+) | 06-29-93 | 8.84 | (+) | | Burr Oak<br>Creek near<br>Perkins, Ia.<br>(06483495) | Lat 43°14'43", long 96°10'38",<br>in SE1/4, sec. 5, T.97 N.,<br>R.45 W., Sioux County,<br>Hydrologic Unit 10170204, at<br>bridge on U.S. Highway 75,<br>4 mi north of Perkins.<br>Drainage area is 30.9 mi <sup>2</sup> . | 1966- | 06-05-94 | 86.99 | (+) | 06-20-83 | 88.37 | (+) | | | | | Water | year 1994 | maxir | num | m Period of record maximum | | | |---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|------------------------|-------|----------------------------------------|----------------------------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | t ( | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | PERRY ( | CREEK BA | SIN | | | | | | | Perry Creek<br>near Merrill,<br>Ia.<br>(06599800) | Lat 42°43'16", long 96°10'38",<br>in NW1/4, sec.12, T.91, N.,<br>R.47 W., Plymouth County,<br>Hydrologic Unit 10230001, at<br>bridge on county highway<br>C44, 5 mi west of Merrill.<br>Drainage area is 8.17 mi <sup>2</sup> . | 1953- | 02-18-94 | 6.4 | 6 | (+) | 03-27-62 | 12.22 | (+) | | Perry Creek<br>near Hinton,<br>Ia.<br>(06599950) | Lat 42°37'57", long 96°22'13",<br>in NE1/4, sec.15, T.90 N.,<br>R.47 W., Plymouth County,<br>Hydrologic Unit 10230001, at<br>bridge on county highway,<br>4 mi west of Hinton. Drainage<br>area is 30.8 mi <sup>2</sup> . | 1953- | 1994 | (+) | | (+) | 06-14-81 | 38.68 | (+) | | | | FLOYD | RIVER BA | SIN | | | | | | | Little Floyd<br>River near<br>Sanborn, Ia.<br>(06600030) | Lat 43°11'10", long 95°43'30",<br>in NE1/4, sec.31, T.97 N.,<br>R.41 W., O'Brien County,<br>Hydrologic Unit 10230002, at<br>bridge on U.S. Highway 18,<br>3.5 mi west of Sanborn.<br>Drainage area is 8.44 mi <sup>2</sup> . | 1966- | 06-12-94 | 89.38 | 3 | (+) | 03-02-70 | 89.04 | (+) | | Sweeney Creek<br>tributary near<br>Sheldon, Ia.<br>(06600036) | Lat 43°11'10", long 95°45'25",<br>in SW1/4, sec.25, T.97 N.,<br>R.42 W., O'Brien County,<br>Hydrologic Unit 10230002, at<br>culvert on U.S. Highway 18,<br>4.8 mi east of Sheldon.<br>Drainage area is 0.62 mi <sup>2</sup> . | 1991- | 1994 | (a) | | (+) | 07-14-93 | 99.27 | (+) | | Sand Hill Lake<br>Ditch near<br>Sloan, Ia.<br>(06600880) | Lat 42°13'44", long 96°17'39",<br>in SE1/4, sec.27, T.86 N.,<br>R.47 W., Woodbury County,<br>Hydrologic Unit 10230001,<br>at culvert on county road,<br>3.5 mi west of Sloan. Drain-<br>age area is indeterminate. | 1991- | 1994 | (+) | | (+) | 07-13-92 | 7.92 | (+) | | | MON | ONA-HARI | RISON DIT | CH BASI | N | | | | | | Big Whiskey<br>Slough near<br>Remsen, Ia.<br>(06601480) | Lat 42°48'28", long 95°53'21",<br>in NW1/4, sec.11, T.92 N.,<br>R.43 W., Plymouth County,<br>Hydrologic Unit 10230004, at<br>bridge on State Highway 3,<br>4.2 mi east of Remsen.<br>Drainage area is 12.9 mi2. | 1966- | 06-2 | 2-94 | 91.95 | 405 | 03-22- | 79 9 | 4.87 (+) | | Elliott Creek<br>at Lawton, Ia.<br>(06602190) | Lat 42°28'30", long 96°11'22",<br>in NW1/4, sec.3, T.88 N.,<br>R.46 W. Woodbury County,<br>Hydrologic Unit 10230004, at<br>bridge on U.S. Highway 20,<br>at west edge of Lawton.<br>Drainage area is 34.8 mi2. | 1966- | 1 | 994 | (+) | (+) | 06-12-1 | 34 86 | 5.14 350 | | | Lr | TTLE SIOU | X RIVER | BASIN | | | | | | | Ocheyedan<br>River near<br>Ocheyedan, Ia.<br>(06604510) | Lat 43°25'58", long 95°36'41",<br>in NE1/4, sec.6, T.99 N.,<br>R.40 W., Osceola County,<br>Hydrologic Unit 10230003, at<br>bridge on State Highway 9,<br>4 mi northwest of Ocheyedan.<br>Drainage area is 73.5 mi <sup>2</sup> . | 1966- | 02-19-94 | 84.28 | | (+) | 06-29-93 | 86.79 | 2,200 | | | | | Water y | ear 1994 ma | ximum | Period of record maximum | | | |------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|------------------------|----------------------------------------|--------------------------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | LITTLE | SIOUX R | IVER BASI | NContinue | d | | | | | Dry Run Creek<br>near Harris,<br>Ia.<br>(06604584) | Lat 43°26'42", long 95°27'41",<br>in NE1/4, sec.33, T.100 N.,<br>R.39 W., Osceola County,<br>Hydrologic Unit 10230003, at<br>culvert on county highway M12,<br>1 mi west of Harris. Drainage<br>area is 4.30 mi <sup>2</sup> . | 1990- | 04-12-94 | 11.83 | (+) | 06-29-93 | 16.44 | 419 | | Prairie Creek<br>near Spencer,<br>Ia.<br>(06605340) | Lat 43°05'16", long 95°09'40",<br>in SE1/4, sec.36, T.96 N.,<br>R.37 W., Clay County,<br>Hydrologic Unit 10230003, at<br>bridge on U.S. Highway 71,<br>4 mi south of Spencer.<br>Drainage area is 22.3 mi <sup>2</sup> . | 1966- | 06-13-94 | 91.05 | (+) | 07-04-71 | 90.77 | 2,200 | | Willow Creek<br>near Cornell,<br>Ia.<br>(06605750) | Lat 42°58'21", long 95°09'40",<br>in SE1/4, sec. 12, T.94 N.,<br>R.37 W., Clay County,<br>Hydrologic Unit 10230003, at<br>bridge on U.S. Highway 71,<br>2 mi northwest of Cornell. | 1966- | 1994 | (a) | (+) | 03-22-79 | 91.49 | 4,200 | | Little Sioux<br>River tributary<br>near Peterson,<br>Ia.<br>(06605868) | Drainage area is 78.6 mi <sup>2</sup> . Lat 42°55'25", long 95°21'55", in NW1/4, sec.32, T.94 N., R.38 W., Clay County, Hydrologic Unit, 10230003, at culvert on State Highway 10, 1.2 mi northwest of Peterson. Drainage area is 0.29 mi <sup>2</sup> . | 1991- | 1994 | (a) | (+) | 05-31-93 | 91.81 | (+) | | Halfway Creek<br>at Schaller,<br>Ia.<br>(0660683710) | Lat 42°30'18", long 95°17'19",<br>in SW1/4, sec.24, T.85 N.,<br>R.38 W., Sac County,<br>Hydrologic Unit 10230005, at<br>culvert on State Highway 110,<br>0.1 mi north of Schaller.<br>Drainage area is 1.75 mi <sup>2</sup> . | 1990- | 1994 | (a) | (+) | 07-14-92 | 94.11 | (+) | | | | BOYER | RIVER BAS | IN | | | | | | Boyer River<br>tributary at<br>Woodbine, Ia.<br>(06609482) | Lat 41°43'58", long 95°43'19",<br>in SE1/4, sec. 15, T.80 N.,<br>R.43 W., Harrison County,<br>Hydrologic Unit 10230007, at<br>culvert on county highway F32,<br>0.5 mi west of Woodbine.<br>Drainage area is 0.67 mi <sup>2</sup> . | 1990- | 1994 | (a) | (+) | 05-18-91 | 90.84 | (+) | | Willow Creek<br>near Soldier,<br>Ia.<br>(06609560) | Lat 41°55'17", long 95°42'05",<br>near S1/4 comer sec.11,<br>T.82 N., R.42 W., Monona<br>County, Hydrologic Unit<br>10230001, at bridge on State<br>Highway 37, 6 mi southeast<br>of Soldier. Drainage area<br>is 29.1 mi <sup>2</sup> . | 1966- | 06-12-94 | 79.46 | 3,490 | 07-09-93 | 84.66 | 6,840 | | | M | OSQUIT | O CREEK BA | ASIN | | | | | | Moser Creek<br>near Earling,<br>Ia.<br>(06610510) | Lat 41°46'35", long 95°26'55",<br>in NE1/4, sec.1, T.80 N.,<br>R.40 W., Shelby County,<br>Hydrologic Unit 10230006, at<br>bridge on State Highway 37,<br>1.5 mi west of Earling.<br>Drainage area is 21.6 mi <sup>2</sup> . | 1966- | 06-18-94 | 79.59 | 1,590 | 06-15-84 | 87.89 | (+) | | | Location | | Water y | ear 1994 m | aximum | Period o | f record ma | ximum | |-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|----------------------------------------| | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | MOSO | QUITO CR | EEK BASIN- | -Continue | đ | | | | | Mosquito CreekLat<br>tributary near<br>Neola, Ia.<br>(06610581) | t 41°30'06", long 95°35'44",1991-<br>in NE1/4, sec.6, T.77 N.,<br>R.41 W., Pottawattamie County,<br>Hydrologic Unit 10230006, at<br>culvert on State Highway 191,<br>3.8 mi north of Neola. Drainage<br>area is 3.22 mi <sup>2</sup> . | | 77.56 | (+) | 07-09-93 | 81.06 | (+) | | | Mosquito Creek<br>at Neola, Ia.<br>(06610600) | Lat 41°26'36", long 95°36'42", in NE1/4, sec.25, T.77 N., R.42 W., Pottawattamie County, Hydrologic Unit 10230006, at bridge on county highway, 0.5 mi south of Neola. Prior to 04-19-63, gage located 0.9 mi upstream. Drainage area is 131 mi <sup>2</sup> . | 1952- | 07-01-94<br>07-01-93<br>1992 <sup>1</sup><br>06-14-91<br>09-08-89 <sup>1</sup><br>1988 <sup>1</sup><br>05-26-87 <sup>1</sup><br>06-14-86 <sup>1</sup><br>04-05-85 <sup>1</sup><br>06-15-84 <sup>1</sup><br>06-16-81<br>06-06-80 <sup>1</sup><br>03-29-79 <sup>1</sup><br>09-13-78 <sup>1</sup><br>06-06-80 <sup>1</sup><br>03-29-79 <sup>1</sup><br>09-13-78 <sup>1</sup><br>05-16-74 <sup>1</sup><br>09-26-73 <sup>1</sup><br>05-16-74 <sup>1</sup><br>09-26-73 <sup>1</sup><br>05-16-64 <sup>1</sup><br>07-09-69 <sup>1</sup><br>06-23-68 <sup>1</sup><br>06-15-67 <sup>1</sup><br>05-24-64 <sup>1</sup><br>06-05-63 <sup>1</sup><br>05-26-62 <sup>1</sup><br>07-07-7-61 <sup>1</sup><br>08-05-60 <sup>1</sup><br>06-16-57 <sup>1</sup><br>05-13-56 <sup>1</sup><br>07-09-55 <sup>1</sup><br>08-22-54 <sup>1</sup><br>1953 <sup>1</sup><br>08-29-52 <sup>1</sup> | 18.25<br>30.39<br>(a)<br>17.88<br>30.26<br>(a)<br>22.00<br>20.48<br>18.13<br>18.45<br>19.74<br>23.74<br>22.77<br>27.56<br>23.51<br>31.28<br>16.58<br>16.89<br>28.45<br>31.23<br>(a)<br>(a)<br>19.36<br>16.34<br>12.62<br>10.38<br>12.62<br>10.38<br>12.11<br>23.26<br>17.07<br>10.56<br>12.30<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9.28<br>(a)<br>9. | 2,020 10,400 <1,230 2,130 10,800 7,520 <1,440 4,440 3,560 2,430 2,570 3,170 5,470 4,880 8,270 5,330 11,900 3,010 2,570 2,380 2,670 11,100 13,700 <2,040 <2,040 4,180 2,440 3,430 6,030 10,900 9,930 2,590 6,320 4,240 2,900 3,900 17,300 8,070 2,990 4,030 2,370 <1,600 13,600 | 07-02-58 | c23.26 | 17,300 | | Keg Creek<br>tributary near<br>Mineola, Ia.<br>(06805849) | Lat 41°07'53", long 95°43'31",<br>in SW1/4, sec.7, T.73 N.,<br>R.42 W., Mills County,<br>Hydrologic Unit 10240001,<br>at culvert on county<br>highway H12, 2.4 mi southwest<br>of Mineola. Drainage area<br>is 2.01 mi <sup>2</sup> . | 1991- | 1994 | (a) | (+) | 08-29-93 | 81.53 | (+) | | Township Ditch<br>tributary near<br>Thurman, Ia.<br>(06806200) | Lat 40°50'23", long 95°48'30",<br>in NE1/4, sec.29, T.70 N.,<br>R.43 W., Fremont County,<br>Hydrologic Unit 10240001, at<br>culvert on county highway L31,<br>3.2 mi northwest of Thurman.<br>Drainage area is indeterminate. | 1991- | 1994 | (a) | (+) | 07-23-93 | 87.23 | (+) | | | | | Water | ear 1994 ma | ximum | Period of record maximum | | | |--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|------------------------|----------------------------------------|--------------------------|------------------------|----------------------------------------| | Station name<br>and number | Location<br>and<br>drainage area | Period<br>of<br>record | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | NIS | HNABO | TNA RIVER | BASIN | | | - | | | Elm Creek near<br>Jacksonville,<br>Ia.<br>(0680737930) | Lat 41°38'44", long 95°12'18",<br>in SW 1/4, sec.18, T.79 N.,<br>R.37 W., Shelby County,<br>Hydrologic Unit 10240002, at<br>culvert on State Highway 44,<br>2.8 mi west of Jacksonville.<br>Drainage area is 9.43 mi <sup>2</sup> . | 1990- | 1994 | (a) | (+) | 06-17-90 | 95.01 | (+) | | Indian Creek<br>near Emerson,<br>Ia.<br>(06807470) | Lat 41°01'50", long 95°22'51",<br>in NW1/4, sec.19, T.72 N.,<br>R.39 W., Montgomery County,<br>Hydrologic Umit 10240002, at<br>bridge on U.S. State Highway 34,<br>1 mi east of Emerson.<br>Drainage area is 37.3 mi <sup>2</sup> . | 1966- | 1994 | (a) | (+) | 06-15-82 | 92.63 | 15,800 | | Middle Silver<br>Creek near<br>Oakland, Ia<br>(06807760) | Lat 41°19'28", long 95°33'19",<br>in E1/4 comer, sec. 4, T.75 N.,<br>R.41 W., Pottawattamie County,<br>Hydrologic Unit 10240002, at<br>bridge on county highway,<br>8.5 mi northwest of Oakland.<br>Drainage area is 25.7 mi <sup>2</sup> . | 1953- | 06-22-94 | 10.34 | 638 | 07-04-73 | 14.73 | 2,110 | | Bluegrass Creek<br>at Audubon,<br>Ia.<br>(06808880) | Lat 41°42'46", long 94°55'43",<br>in NW1/4, sec.28, T.73 N.,<br>R.35 W., Audubon County,<br>Hydrologic Unit 10240003, at<br>bridge on U.S. Highway 71,<br>near south edge of Audubon.<br>Drainage area is 15.4 mi <sup>2</sup> . | 1966- | 1994 | (a) | (+) | 07-09-93 | 88.5 <b>5</b> | (+) | | | | TARKIO | RIVER BAS | SIN | | | | | | Tarkio River<br>near Elliott,<br>Ia.<br>(06811760) | Lat 41°06'06", long, 95°06'09",<br>near NE corner sec.28,<br>T.73 N., R.37 W., Montgomery<br>County, Hydrologic Unit 10240003<br>at bridge on county highway,<br>4.5 mi southeast of Elliott.<br>Drainage area is 10.7 mi <sup>2</sup> . | 1952-<br>5, | 1994 | (a) | (+) | 08-29-93 | 12.98 | 4,640 | | East Tarkio<br>Creek near<br>Stanton, Ia.<br>(06811800) | Lat 41°04'48", long 95°05'34",<br>in W1/2 sec.34, T.73 N.,<br>R.37 W., Montgomery County,<br>Hydrologic Unit 10240005, at<br>bridge on county highway H24,<br>7 mi north of Stanton.<br>Drainage area is 4.66 mi <sup>2</sup> . | 1952- | 06-22-94 | 8.88 | 712 | 06-09-67 | 13.74 | 4,790 | | Tarkio River<br>tributary near<br>Stanton, Ia.<br>(06811820) | Lat 41°02'38", long 95°05'55",<br>in NE1/4 sec.16,<br>T.72 N., R.37 W., Montgomery<br>County, Hydrologic Unit 10240005<br>at box culvert on county highway<br>H63, 4 mi north of Stanton.<br>Drainage area is 0.67 mi <sup>2</sup> . | 1952-<br>5, | 06-22-94 | (a) | (+) | 06-09-67 | 5.18 | 835 | | | NO | ODAWAY | RIVER BA | SIN | | | | | | West Nodaway<br>River at<br>Massena, Ia.<br>(06816290) | Lat 41°14'44", long 94°45'27", in SE1/4, sec.27, T.70 N., R.34 W., Cass County, Hydrologic Unit 10240009, at bridge on State Highway 148, at southeast comer of Massena. Drainage area is 23.4 mi <sup>2</sup> . | 1966- | 1994 | (a) | (+) | 02-01-73 | 82.39 | (+) | | Station name and number | Location<br>and<br>drainage area | Period<br>of<br>record | Water year 1994 maximum | | | Period of record maximum | | | |---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|------------------------|----------------------------------------|--------------------------|------------------------|----------------------------------------| | | | | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | Date | Gage<br>height<br>(ft) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | PLATTE | RIVER BAS | SIN | | | | | | Middle Branch<br>102 River near<br>Gravity, Ia.<br>(06819110) | Lat 40°49'40", long 94°44'18",<br>in SE1/4, sec.27, T.70 N.,<br>R.34 W., Taylor County,<br>Hydrologic Unit 10240013, at<br>bridge on State Highway 148,<br>4.8 mi north of Gravity.<br>Drainage area is 33.5 mi <sup>2</sup> . | 1966- | 06-18-94 | 64.50 | (+) | 02-01-73 | 83.65 | (+) | | Sevenmile<br>Creek near<br>Thayer, Ia.<br>(06897858) | Lat 41°01'37", long 94°00'03",<br>in SE1/4, sec. 18, T.72 N.,<br>R.27 W., Clarke County,<br>Hydrologic Unit 10280102,<br>at culvert on U.S. Highway 34,<br>2.6 mi east of Thayer. Drain-<br>age area is 6.61 mi <sup>2</sup> . | 1991- | 03-01-94 | 15.57 | (+) | 09-15-92 | 24.92 | (+) | | | , | CHARITO | N RIVER BA | ASIN | | | | | | Chariton River<br>near Udell, Ia.<br>(06903980) | Lat 40°46'53", long 92°50'12",<br>in NE1/4, sec.17, T.69 N.,<br>R.17 W., Appanoose County,<br>Hydrologic Unit 10280201, at<br>bridge on county highway, 5<br>west of Udell. Drainage area<br>is 47.8 mi <sup>2</sup> . | 1972- | 1994 | (a) | <1,920 | 07-16-82 | 860.22 | (+) | <sup>&</sup>lt;sup>1</sup>Previously unpublished. | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 0538 | 8250 Upper | Iowa River | near Dorche | ester, IA (LAT 43 25 1 | 6N LON | IG 091 30 31 | W) | | | OCT 1993<br>12 | 1736 | 766 | 10.0 | 5 63 | APR 1994<br>19 | 1026 | 867 | 13.0 | 502 | | DEC<br>03 | 1425 | 430 | 3.0 | 590 | JUN<br>07 | 0900 | 347 | 22.0 | 529 | | MAR 1994<br>08 | 1045 | 2520 | 1.0 | 269 | JUL<br>26 | 1105 | 790 | 21.0 | 506 | | ( | 05389200 | Bloody Run | Trib at Spo | ok Cave nea | r Froelich, IA (LAT 43 | 3 02 00N | LONG 091 | 18 27W) | | | MAY 1993<br>28 | 1045 | 8,6 | 13.0 | 625 | MAR 1994<br>10 | 1530 | 6.6 | 4.0 | 686 | | JUN<br>30 | 1150 | 20 | 18.5 | 425 | APR 20 | 1008 | 4.9 | 10.0 | 684 | | SEP 27 | 1450 | 9.1 | 12.0 | 693 | MAY<br>03 | 1005 | 5.0 | 10.0 | 690 | | OCT<br>18 | 1357 | 7.2 | 11.0 | 700 | JUN<br>22 | 1755 | 4.6 | 21.0 | 693 | | NOV<br>16 | 0803 | 6.8 | 6.0 | 679 | JUL<br>2 <b>8</b> | 1454 | 4.9 | 18.0 | 711 | | DEC<br>10 | 0920 | 6.3 | 6.0 | 675 | AUG<br>09 | 1500 | 4.2 | 14.0 | 725 | | JAN 1994 | 1605 | 5.3 | 1.0 | 736 | SEP<br>20 | 0756 | 4.5 | 12.0 | 734 | | FEB<br>22 | 1300 | 7.9 | 2.0 | 646 | | | | | | | | 05389 | 9250 Bloody | Run Site ! | No. 2 near G | iard, IA (LAT 43 02 0 | BN LON | G 091 16 00 | W) | | | MAY 1993<br>28 | 1005 | 20 | 13.0 | 620 | MAR 1994<br>10 | 1644 | 16 | 4.0 | 631 | | JUN<br>30 | 1105 | 58 | 16.0 | 400 | APR 20 | 1118 | 11 | 9.0 | 666 | | SEP 27 | 1615 | 19 | 13.0 | 512 | MAY<br>03 | 1115 | 11 | 11.0 | 659 | | OCT | 1514 | 16 | 12.0 | 668 | JUN 22 | 1640 | 10 | 22.0 | 655 | | NOV<br>16 | 0919 | 14 | 5.0 | 672 | JUL 28 | 1600 | 9.4 | 18.0 | 693 | | DEC<br>10 | 1005 | 16 | 6.0 | 660 | AUG<br>09 | 1602 | 7.8 | 15.5 | 678 | | FEB 1994<br>22 | 1405 | 18 | 2.0 | 559 | SEP 20 | 0907 | 11 | 14.0 | 718 | | | 05389 | 400 Bloody | Run Creek | near Marqu | ette, IA (LAT 43 02 2 | 7N LON | G 091 12 23 | W) | | | OCT 1993 | | | | | APR 1994 | | | | | | DEC DEC | 0850 | 33 | 10.0 | 609 | 20<br>Jun | 1410 | 23 | 11.0 | 612 | | 09<br>JAN 1994 | 1630 | 25 | 6.0 | 630 | 08<br>23 | 0830<br>2015 | 24<br>93 | 14.0<br>17.0 | 603<br>570 | | 12<br>26 | 0923<br>1045 | 24<br>21 | 2.0<br>2.0 | 611<br>637 | 24 | 0856 | 41 | 16.0 | 562 | | MAR<br>09 | 1130 | 30 | 5.0 | 509 | | | | | | | | 053 | 89500 Missis | ssippi Rive | at McGrego | or, IA (LAT 43 01 29N | LONG | 091 10 21 W | ) | | | OCT 1993<br>20 | 1400 | 38200 | 13.0 | 578 | JUN 1994<br>23 | 1430 | 43100 | 21.5 | 476 | | APR 1994<br>22 | 1740 | 71700 | 11.0 | 399 | AUG 09 | | 31300 | 23.5 | 480 | | | | | | | layton, IA (LAT 42 58 | | | | | | MAY 1993 | | , <del></del> | | | MAR 1994 | | | , | | | 28<br>Jun | 1325 | 6.4 | 12.0 | 600 | 10<br>APR | 1011 | 6.1 | 2.0 | 661 | | 30<br>SEP | 1455 | 13 | 17.0 | 578 | 22<br>MAY | 1100 | 3.9 | 9.0 | 649 | | 28<br>OCT | 0950 | 7.5 | 9.0 | 654 | 03<br>JUN | 1512 | 4.1 | 12.0 | 659 | | 19<br>NOV | 1100 | 6.1 | 11.0 | 662 | 21<br>JUL | 1700 | 3.4 | 24.0 | 629 | | 16<br>DEC | 1325 | 6.3 | 6.0 | 647 | 28<br>AUG | 1036 | 2.9 | 16.0 | 664 | | 09<br>JAN 1994 | 1330 | 6.3 | 5.5 | 600 | 10<br>SEP | 1208 | 8.2 | 14.5 | 550 | | 11<br>FEB | 1105 | 5.4 | 1.0 | 667 | 19 | 1320 | 3.3 | 18.0 | 667 | | 24 | 1022 | 6.0 | 1.0 | 707 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------|-----------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 05411230 | West Fork | Sny Magill | Creek near | Clayton, IA (LAT 42 | 58 35N LC | NG 091 14 | 12W) | | | MAY 1993<br>28 | 1245 | 3.5 | 12.0 | 600 | APR 1994<br>22 | 1005 | 2.8 | 8.0 | 639 | | SEP<br>28 | 0905 | 5.6 | 9.0 | 625 | MAY<br>03 | 1354 | 3.0 | 12.0 | 642 | | NOV<br>16 | 1223 | 4.0 | 5.0 | 638 | JUN<br>21 | 1510 | 2.8 | 21.0 | 650 | | DEC<br>09 | 1255 | 2.5 | 6.0 | 600 | JUL<br>28 | 0940 | 2.2 | 15.0 | 645 | | JAN 1994 | 1000 | 3.0 | 1.0 | 574 | AUG<br>10 | 1124 | 4.8 | 13.5 | 570 | | FEB<br>24<br>MAR | 0910 | 3.3 | 1.0 | 667 | SEP<br>19 | 1225 | 2.6 | 17.0 | 65 6 | | 10 | 0925 | 3.3 | 2.0 | 635 | | | | | | | | 05411 | 260 North | Cedar Cree | k near Clay | ton, IA (LAT 42 57 4 | 6N LONG | 091 13 45W | 'n | | | MAY 1993<br>28 | 1135 | 4.5 | 12.0 | 575 | MAR 1994<br>10 | 0835 | 3.6 | 1.0 | 664 | | JUN<br>30 | 1347 | 17 | 17.0 | 500 | APR<br>22 | 0910 | 2.9 | 6.0 | 594 | | SEP<br>28 | 0753 | 6.1 | 9.0 | 592 | MAY<br>03 | 1245 | 2.5 | 11.0 | 607 | | OCT<br>19 | 0838 | 5.0 | 10.0 | 617 | JUN 22 | 1600 | 2.9 | 20.5 | 610 | | NOV<br>16 | 1105 | 3.8 | 5.5 | 579 | JUL<br>28 | 0839 | 2.4 | 14.0 | 615 | | DEC<br>09 | 1140 | 4.4 | 5.0 | 550 | AUG<br>_10 | 1307 | 5.7 | 15.0 | 552 | | JAN 1994 | 0750 | 3.1 | 1.0 | 595 | SEP<br>19 | 1022 | 2.1 | 16.5 | 629 | | FEB<br>24 | 0801 | 3.0 | 0.5 | 575 | | | | | | | | 054112 | 90 Sny Ma | gill Tributa | ry near Cla | yton, IA (LAT 42 58 ( | 77N LONG | 091 13 27V | V) | | | MAY 1993<br>28 | 1405 | 2,2 | 11.0 | 580 | FEB 1994<br>24 | 1054 | 1.8 | 1.0 | 696 | | JUN<br>30 | 1600 | 4.1 | 17.0 | 600 | MAR<br>10 | 1100 | 2.3 | 3.0 | 595 | | SEP 28 | 1133 | 2.6 | 12.0 | 601 | APR 22 | 1147 | 1.6 | 10.0 | 580 | | OCT<br>19 | 1200 | 2.0 | 12.0 | 635 | JUN 21 | 1855 | 1.8 | 19.0 | 611 | | NOV<br>16 | 1420 | 1.9 | 6.0 | 618 | JUL<br>28 | 1135 | 1.3 | 15.0 | 599 | | DEC<br>09 | 1420 | 1.5 | 5.0 | 600 | AUG<br>10 | 1130 | 1.9 | 13.0 | 575 | | JAN 1994<br>11 | 1200 | 1.2 | 1.0 | 611 | SEP<br>19 | 1520 | 1.0 | 15.5 | 617 | | | 0544400 | | a | | | | 70 001 16 | | | | | 0541130 3 | ony Magui | Lifeek No. 2 | Sile near ( | Clayton, IA (LAT 43 ( | 12 USN LUI | י סו ופט טאי | JUW) | | | MAY 1993<br>28 | 1210 | 24 | 11.5 | 600 | MAR 1994 | 1155 | 17 | 3.0 | 630 | | JUN<br>30<br>SEP | 1525 | 58 | 17.0 | 550 | APR 22 | 1250 | 15 | 12.0 | 630 | | 28<br>OCT | 1233 | 24 | 12.0 | 605 | MAY<br>03<br>JUN | 1655 | 15 | 12.0 | 616 | | 19<br>NOV | 1310 | 21 | 13.0 | 638 | 22<br>JUL | 1405 | 14 | 20.0 | 627 | | 16<br>DEC | 1515 | 19 | 6.0 | 618 | 28<br>AUG | 1246 | 12 | 22.5 | 540 | | 09<br>JAN 1994 | 1220 | 20 | 6.0 | 625 | 10<br>SEP | 1140 | 25 | 13.5 | 59 <b>9</b> | | 11<br>FEB | 1200 | 14 | 1.0 | 628 | 19 | 1433 | 11 | 18.0 | 641 | | 24 | 1147 | 21 | 3.0 | 622 | | | | | | | | 05411 | 400 Sny M | agill Creek | near Clayto | on, IA (LAT 42 56 55) | N LONG 0 | 91 11 10W) | | | | OCT 1993<br>13<br>NOV | 1500 | 27 | 10.0 | 635 | JUN 1994<br>06<br>24 | 1636<br>1009 | 17<br>90 | 19.0<br>14.0 | 609<br>546 | | 16<br>DEC | 1540 | 27 | 6.0 | 587 | JUL 25 | 1715 | 19 | 18.5 | 653 | | 09<br>FEB 1994 | 1045 | 22 | 4.0 | 600 | AUG<br>10 | 1335 | 34 | 15.0 | 577 | | 01<br>MAR | 1715 | 19 | 1.0 | 637 | SEP<br>09 | 1315 | 16 | 17.5 | 605 | | 10 | 1353 | 25 | 3.0 | 609 | 23.00 | | - | | | | 20 | 1703 | 21 | 9.0 | 610 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 054119 | 50 Big Sprir | ng Fish Hat | chery near E | lkader, IA (LAT 42 54 | 33N LC | NG 091 28 | 01 <b>W</b> ) | | | DEC 1993<br>08 | 1130 | 21 | 9.0 | 600 | JUN 1994<br>07 | 1420 | 27 | 11.0 | 728 | | MAR 1994<br>09 | 1415 | | 7.0 | 485 | JUL 29 | 1236 | 27 | 10.0 | 822 | | | | | | | | | | | - | | | 0541 | 12060 Silver | Creek near | Luana, IA ( | L-23S) (LAT 43 01 19 | N LONG | 3 091 29 21 <b>V</b> | V) | | | OCT 1993<br>14 | 0640 | 3.4 | 9.0 | 708 | APR 1994<br>19 | 1345 | 1.8 | 16.0 | 640 | | FEB 1994<br>01 | 0331 | 1.3 | 1.0 | 740 | JUN<br>02 | 1130 | 2.0 | 19.0 | 632 | | MAR<br>08 | 1330 | 4.0 | 3.0 | 529 | JUL<br>27 | 1245 | 1.7 | 21.0 | 733 | | | 05 | 412100 Rob | erts Creek a | bove St. Ola | ıf, IA (LAT 42 55 49N | LONG | 091 <b>23</b> 03W | ) | | | OCT 1993<br>14 | 1050 | 27 | 10.0 | 664 | APR 1994<br>20 | 0840 | 16 | 11.0 | 602 | | DEC 08 | 1415 | 18 | 2.0 | 600 | JUN<br>07 | 1607 | 6.3 | 24.0 | 631 | | MAR 1994<br>09 | 1610 | 73 | 3.0 | 419 | JUL<br>27 | 1030 | 13 | 22.0 | 655 | | | | 0541 <b>0</b> 500 M | 1 D: | | | NTG 001 | 1 <i>E</i> 4000 | | | | | ( | 05412500 11 | irkey River | at Garber, L | A (LAT 42 44 24N LC | )NG 091 | 13 42W) | | | | OCT 1993 | 0729 | 1310 | 6.0 | 619 | JUN 1994<br>06 | 1346 | 460 | 25.0 | 530 | | NOV<br>30 | 1545 | 720 | 3.0 | 578 | AUG<br>08 | 1620 | 679 | 25.5 | 505 | | MAR 1994<br>07 | 1726 | 5380 | 2.0 | 272 | | | | | | | | 05418 | 8500 Maquo | keta River 1 | near Maquok | eta, IA (LAT 42 05 05 | N LON | G 090 38 041 | W) | | | DEC 1993 | | | | | MAY 1994 | | ••• | | 550 | | 08<br>MAR 1994 | 1135 | 977 | 2.0 | 622 | 04<br>AUG | 1600 | 812 | 14.5 | 550 | | 24 | 1730 | 1310 | 9.5 | 550 | 22 | 1802 | 1250 | 24.0 | 325 | | | 054 | 420500 Miss | issippi Riv | er at Clinton | , IA (LAT 41 46 50N I | LONG 0 | 90 15 07W) | | | | OCT 1993<br>29 | 1525 | 50200 | 2.5 | 451 | SEP 1994<br>26 | 1300 | 99300 | 19.5 | 333 | | JUL 1994<br>28 | 1530 | 57400 | 24.5 | 442 | | | | | | | | | | | | | | | | | | | 054210 | 000 Wapsipir | nicon River | at Independe | ence, IA (LAT 42 27 4 | 9N LON | IG 091 53 42 | 2W) | | | OCT 1993<br>12 | 0846 | 1350 | 11.0 | 462 | APR 1994 | 1250 | 1020 | 14.0 | 437 | | NOV 30 | 1040 | 290 | 2.0 | 471 | JUN<br>06 | 1015 | 213 | 25.0 | 404 | | JAN 1994<br>26 | 1421 | 158 | 1.0 | 505 | AUG<br>08 | 1240 | 391 | 24.5 | 309 | | MAR<br>07 | 1250 | 2280 | 2.0 | 247 | | | | | | | | | 05422000 V | Wapsipinico | n River near | De Witt, IA (LAT 41 | 46 01N | LONG 090 3 | 2 05W) | | | DEC 1993 | 1220 | 1160 | 2.0 | 527 | JUL 1994 | 1210 | 2530 | 26.5 | 410 | | 08<br>FEB 1994 | 1330<br>1140 | 1160<br>609 | 2.0<br>0.0 | 527<br>625 | 11<br>AUG<br>22 | 1210<br>1126 | 2530<br>1170 | 25.0 | 418<br>320 | | 11<br>MAR<br>24 | 1130 | 2300 | 16.0 | 560 | 22 | 1120 | 11,0 | 23.0 | 326 | | | | | | | | | | | | | | 0.5 | 5422470 Cro | w Creek at | Bettendorf, | IA (LAT 41 33 03N L | ONG 09 | 0 27 15W) | | | | OCT 1993<br>26 | 1600 | 9.2 | 9.0 | 550 | MAY 1994<br>17 | 1230 | 7.5 | 0.0 | 577 | | DEC<br>09 | 1215 | 6.5 | 3.5 | 760 | AUG<br>30 | 1220 | 5.3 | 18.5 | 430 | | MAR 1994<br>31 | 1015 | 11 | 6.0 | 700 | | | | | | | | | | | | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------|---------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 054490 | 00 East Bra | nch Iowa R | iver near Kle | emme, IA (LAT 43 00 | 31N LO | NG 093 37 4 | 2 <b>W</b> ) | | | OCT 1993<br>01<br>NOV | 1205 | 66 | 13.0 | 600 | JUN 1994<br>07<br>JUL | 1220 | 54 | 21.0 | 750 | | 16<br>MAR 1994 | 1355 | 40 | 2.0 | 670 | 08<br>AUG | 1405 | 557 | 18.0 | 550 | | 16 | 1455 | 64 | 3.0 | 5 <b>58</b> | 15 | 1450 | 137 | 21.0 | 800 | | | ( | 0544 <b>9500</b> Io | wa River n | ear Rowan, l | IA (LAT 42 45 36N LO | ONG 093 | 37 23W) | | | | OCT 1993<br>01 | 13 <b>3</b> 5 | 242 | 12.0 | 610 | JUN 1994<br>07 | 0940 | 192 | 19.0 | 525 | | 17 | 1030 | 145 | 2.0 | 630 | JUL<br>08 | 1100 | 937 | 19.0 | 525 | | MAR 1994<br>16 | 1315 | 276 | 3.0 | 600 | | | | | | | | 054 | 151500 Iowa | River at M | larshalltown | , IA (LAT 42 03 57N I | LONG 09 | 92 54 27W) | | | | OCT 1993<br>26 | 1105 | 1220 | 10.5 | 684 | MAY 1994<br>20 | 1235 | 662 | 22.0 | 500 | | DEC 11 | 0945 | 507 | 0.0 | 688 | JUN<br>23 | 0945 | 2220 | 23.0 | 525 | | | 05451 | 1700 Timber | r Creek nea | r Marshallto | wn, IA (LAT 42 00 25 | N LONG | 092 51 15V | Ŋ | | | OCT 1993 | | | | | APR 1994 | | | _ | | | 25<br>DEC | 1420 | 112<br>41 | 12.0 | 597 | 06<br>MAY | 1750 | 43 | 7.5 | 540<br>586 | | 11 | 1220 | 41 | 0.5 | 600 | 20 | 1050 | 47 | 16.0 | 300 | | | 0 | 5451790 De | er Creek n | ear Toledo, I | A (LAT 42 00 52N LC | NG 092 | 35 24W) | | | | JUN 1994<br>24 | 1305 | 104 | 20.0 | 510 | AUG 1994<br>10 | 1245 | 22 | 17.5 | 540 | | JUL<br>05 | 1310 | 73 | 26.0 | 480 | | | | | | | | 054 | 451900 Rich | land Creek | near Haven, | , IA (LAT 41 53 58N L | ONG 09 | 2 28 27W) | | | | OCT 1993 | | | | | JUN 1994 | | | | | | 22<br>DEC<br>10 | 1205<br>1230 | 54<br>21 | 10.0 | 388 | AUG | 1240<br>1535 | 40<br>9.0 | 21.0<br>23.0 | 530<br>460 | | MAY 1994<br>13 | 1100 | 18 | 4.0<br>17.0 | 500<br>465 | 09 | 1000 | 9.0 | 23.0 | 300 | | 10111 | | | | | A (LAT 41 57 51N LO | NG 002 | 1 <i>8 47</i> 7W/\ | | | | DEC 1993 | U. | 7-7-2-000 Ga | ii Cicca nei | n Emeron, D | AUG 1994 | 110 072 | 10 47 117) | | | | 10<br>MAY 1994 | 1000 | 82 | 4.0 | 5.80 | 11 | 1504 | 64 | 18.5 | 550 | | 11 | 1840 | 87 | 22.0 | 413 | | | | | | | | 054 | 52200 Waln | ut Creek ne | ar Hartwick, | , IA (LAT 41 50 06N L | ONG 09 | 2 23 10W) | | | | OCT 1993<br>22 | 1010 | 5.5 | 7.0 | 496 | JUN 1994<br>20 | 1530 | 34 | 29.0 | 340 | | DEC<br>10 | 1400 | 21 | 3.0 | 470 | AUG<br>09 | 1310 | 11 | 23.0 | 460 | | MAY 1994<br>25 | 1635 | 19 | 24.0 | 525 | | | | | | | | 05 | 453000 Big | Bear Creek | at Ladora, 1 | IA (LAT 41 44 58N LC | ONG 092 | 10 55W) | | | | OCT 1993 | 1450 | 140 | 10.0 | 525 | MAY 1994 | 2030 | 50 | 19.0 | 450 | | 22<br>DEC<br>10 | 1345 | 53 | 2.5 | 525<br>521 | 10<br>JUN<br>20 | 1210 | 153 | 25.0 | 430 | | MAR 1994<br>31 | 1350 | 57 | 9.0 | 475 | AUG<br>09 | 1040 | 24 | 20.0 | 490 | | • | | | | | A (LAT 41 48 48N LO | | | | | | OCT 1993 | | | | | JUN 1994 | | - | | | | 22<br>DEC | 1030 | 2510 | 10.0 | 640 | AUG | 1315 | 2280 | 27.0 | 425 | | 10<br>MAY 1994 | 1200 | 1240 | 2.0 | 634 | 11 | 1138 | 1080 | 20.5 | 610 | | 11 | 1420 | 1650 | 23.0 | 425 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|------------------------|------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 05453520 | Iowa River I | oelow Cora | lville Dam | nr Coralville, I(LAT 4 | 1 43 23N I | LONG 091 3 | 31 47 <b>W</b> ) | | | DEC 1993<br>07 | 1330 | 1060 | 1.5 | 600 | JUL 1994<br>08 | 1730 | 4870 | 26.0 | 480 | | MAR 1994<br>23 | 1415 | 2140 | 10.0 | 620 | AUG<br>18 | 1210 | 1290 | 23.0 | 489 | | | 05 | 454000 Ran | oid Creek no | ear Iowa Cir | ty, IA (LAT 41 41 19N | I LONG 0 | 91 29 15W) | | | | MAR 1994<br>22 | 1630 | 16 | 14.0 | 550 | JUN 1994 | 1600 | 14 | 22.0 | 540 | | 22 | | | | | 29 | | | 22.0 | 540 | | NOV. 1002 | U | 5454220 CI | ear Creek n | ear Oxford, | , IA (LAT 41 43 06N I | LONG 091 | . 44 24W) | | | | NOV 1993<br>04<br>DEC | 1305 | 31 | 6.0 | 536 | MAY 1994<br>16<br>AUG | 1320 | 14 | 19.0 | . 489 | | 07<br>MAR 1994 | 1000 | 20 | 6.0 | 532 | 18 | 1720 | 11 | 25.0 | 675 | | 04<br>21 | 1710<br>1220 | 500<br>45 | 2.0<br>9.0 | 206<br>400 | | | | | | | | 05 | 454300 Cle | ar Creek ne | ar Coralvill | e, IA (LAT 41 40 36N | LONG 09 | 91 35 55W) | | | | OCT 1993 | 03 | 15 1500 015 | ar Oroug no | 00 | MAR 1994 | 20110 0 | | | | | 26<br>DEC | 1440 | 78 | 0.0 | 520 | 21<br>JUN | 1620 | 80 | 11.0 | 425 | | 23<br>JAN 1994 | 1208 | 17 | 0.0 | 620 | 29 | 1605 | 41 | 25.0 | 599 | | 18 | 1600 | 23 | 0.0 | 500 | | | | | | | | 0 | 5454500 Io | wa River at | lowa City, | IA (LAT 41 39 24N I | ONG 091 | 32 27W) | | | | DEC 1993<br>07 | 1535 | 1110 | 2.0 | 626 | JUL 1994<br>01 | 1720 | 4990 | 27.0 | 484 | | MAR 1994<br>22 | 1415 | 2480 | 9.5 | 620 | 08<br>AUG | 1110 | 4390 | 26.0 | 420 | | | | | | | 18 | 1433 | 1300 | 25.0 | 560 | | | 05455010 | South Bran | ch Ralston | Creek at Io | wa City, IA (LAT 41 3 | 9 05N LO | NG 091 30 | 27W) | | | MAR 1994<br>23 | 1620 | 1.7 | 13.0 | 5 63 | JUN 1994<br>29 | 1110 | 0.80 | 21.0 | 704 | | MAY<br>16 | 1605 | 0.48 | 19.5 | 636 | | | | | | | | 0545 | 5100 Old M | lans Creek | near Iowa C | Sity, IA (LAT 41 36 23 | N LONG | 091 36 56W | n | | | MAR 1994 | 33.13. | | | | JUN 1994 | 201.0 | ., | , | | | 22<br>MAY | 1030 | 103 | 16.0 | 490 | 29<br>SEP | 1210 | 138 | 22.0 | 450 | | 24 | 1435 | 45 | 23.5 | 474 | 15 | 0820 | 15 | 22.0 | 518 | | | 0545527 | 0 North For | k English F | River near P | arnell, IA (LAT 41 31 | 36N LON | G 091 59 1: | 5W) | | | JUN 1994<br>30 | 1440 | 119 | 25.0 | 450 | AUG 1994<br>10 | 1525 | 20 | 21.5 | 440 | | ••••• | | | | | | | | | | | | 05 | 5455500 En | glish River | at Kalona, | IA (LAT 41 27 59N L | ONG 091 | 42 56W) | | | | OCT 1993 | 1245 | 371 | 11.5 | 399 | JUN 1994<br>22 | 1530 | 378 | 25.5 | 326 | | 30 | 1540 | 138 | 0.0 | 488 | AUG<br>02 | 1400 | 41 | 26.0 | 446 | | | 054 | \$55700 Iow | a River nea | r Lone Tree | , IA (LAT 41 25 15N | LONG 09 | 1 28 25W) | | | | OCT 1993 | | | | | JUN 1994 | | | | | | 15<br>NOV | 1015 | 2080 | 13.0 | 543 | AUG 22 | 1305 | 3950 | 27.0 | 360 | | 30<br>MAY 1994<br>04 | 1330<br>1525 | 1780<br>1010 | 1.0<br>14.5 | 603<br>554 | 03 | 1410 | 1370 | 25.5 | 589 | | ***** | 1323 | | . 7 . 3 | JJ7 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------------------|--------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 05 | 457700 Ced | ar River at | Charles Ci | ıy, IA (LAT 43 03 45N | LONG 09 | 92 40 23W) | | | | OCT 1993<br>19<br>MAR 1994 | 1344 | 562 | 11.0 | 600 | JUN 1994<br>09<br>AUG | 1745 | 2230 | 20.0 | 350 | | 09<br>APR | 1040 | 1650 | 0.0 | 240 | 02 | 0948 | 1630 | 21.5 | 354 | | 21 | 0930 | 841 | 10.0 | 500 | | | | | | | | 054 | 458000 Littl | e Cedar Riv | ver near Ior | nia, IA (LAT 43 02 05) | N LONG | 92 30 05W) | 1 | | | OCT 1993<br>15 | 1127 | 120 | 10.0 | 470 | APR 1994<br>21 | 1144 | 176 | 11.0 | 460 | | DEC<br>08<br>MAR 1994 | 1415 | 78 | 2.0 | 470 | AUG<br>02 | 1357 | 954 | 23.0 | 214 | | 16 | 0906 | 38 | 1.0 | 320 | | | | | | | | 0: | 5458500 Ce | dar River a | Janesville | , IA (LAT 42 38 54N I | LONG 092 | 27 54W) | | | | OCT 1993<br>18 | 1835 | 1160 | 10.5 | 550 | JUN 1994<br>16 | 1634 | 1740 | 35.0 | 450 | | 08 | 1730 | 631 | 2.0 | 550 | AUG<br>03 | 1419 | 2590 | 24.0 | 444 | | | 054589 | 000 West Fo | rk Cedar R | iver at Finc | hford, IA (LAT 42 37 | 50N LON | G 092 32 24 | W) | | | OCT 1993<br>13 | 1057 | 728 | 11.0 | 600 | APR 1994<br>21 | 1552 | 760 | 15.5 | 550 | | DEC 09 | 0945 | 362 | 3.0 | 560 | JUN<br>NUC | 1505 | 398 | 23.0 | 480 | | MAR 1994<br>08 | 1415 | 4770 | 0.0 | 250 | AUG<br>03 | 1146 | 613 | 24.5 | 520 | | 17 | 1030 | 1060 | 3.0 | 500 | | | | | | | | 0545 | 9500 Winne | bago River | at Mason ( | City, IA (LAT 43 09 54 | IN LONG | 093 11 33W | ) | | | NOV 1993<br>16 | 1035 | 190 | 2.0 | 550 | JUL 1994<br>13 | 0705 | 524 | 19.0 | 675 | | MAR 1994<br>16 | 0935 | 548 | 1.0 | 580 | AUG<br>15 | 1830 | 494 | 22.0 | 700 | | APR<br>20<br>JUN | 1147 | 300 | 10.5 | 691 | SEP<br>28 | 0740 | 238 | 14.0 | 700 | | 08 | 0745 | 296 | 18.0 | 650 | | | | | | | | 0546 | 2000 Shell F | Rock River | at Shell Ro | ck, IA (LAT 42 42 43) | N LONG ( | 92 34 58W) | ) | | | OCT 1993<br>19 | 1040 | 1130 | 10.0 | 600 | JUN 1994<br>08 | 1100 | 1060 | 21.0 | 500 | | DEC 08 | 1000 | 605 | 15.0 | 570 | 25<br>AUG | 1117 | 6200 | 22.5 | 430 | | APR 1994<br>19 | 1922 | 1130 | 4.0 | 620 | 03 | 0916 | 1870 | 23.0 | 501 | | | 0546 | 3000 Reave | r Creek at 1 | Vew Hartfo | rd, IA (LAT 42 34 22) | I I ONG 0 | 92 37 04W) | | | | OCT 1993 | 30 .0 | Jobb Box V | . 0.0011 41. | 1011 1111110 | APR 1994 | . 201.0 | ,_,, | | | | 14<br>DEC | 1650 | 432 | 12.0 | 600 | 21<br>JUN | 1646 | 205 | 14.0 | 510 | | 09<br>MAR 1994 | 1100 | 149 | 2.5 | 590 | AUG | 1410<br>1549 | 104 | 28.0 | 545 | | 22 | 1349 | 227 | 11.0 | 593 | 03 | | 158 | 24.0 | 560 | | OCT 1993 | 054 | 163050 Ceda | ar River at ( | Cedar Falls | , IA (LAT 42 32 20N I<br>MAY 1994 | LONG 092 | 26 58W) | | | | 22<br>DEC | 1215 | 3790 | 9.0 | 55 <b>6</b> | 05<br>JUN | 1125 | 3760 | 13.0 | 498 | | 03<br>MAR 1994 | 1230 | 2410 | 1.5 | 619 | 24<br>AUG | 1115 | 8980 | 19.5 | 385 | | 15 | 1245 | 6090 | 4.0 | 486 | 16 | 1135 | 8290 | 19.5 | 480 | | | 0546 | 3500 Black | Hawk Cree | k at Hudso | n, IA (LAT 42 24 28N | LONG 09 | 92 27 47W) | | | | OCT 1993 | 1305 | 480 | 12.0 | 570 | JUN 1994<br>10 | 1040 | 100 | 24.0 | 430 | | DEC<br>07<br>MAR 1994 | 1445 | 136 | 2.0 | 600 | AUG<br>01 | 1451 | 188 | 23.0 | 580 | | 15 | 1615 | 320 | 5.0 | 510 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | ( | 05464000 Ca | edar River a | t Waterloo, | IA (LAT 42 29 44N L | ONG 09 | 2 20 03W) | | | | JUN 1994<br>09 | 1000 | 3080 | 22.0 | 400 | AUG 1994<br>01 | 1206 | 3910 | 24.0 | 543 | | | 05 | 464500 Ced | ar River at ( | Cedar Rapid | s, IA (LAT 41 58 14N | LONG | 091 40 01W) | | | | OCT 1993 | 1341 | 7550 | 10.5 | 515 | AUG 1994<br>01 | 1032 | 5280 | 25.0 | 525 | | DEC 07 | 1000 | 3350 | 2.0 | 590 | VI | 1032 | 3260 | 23.0 | 323 | | | 0546458 | 0 Prairie Cre | eek downstr | ream of Blai | rstown, IA (LAT 41 5 | 4 21N LC | ONG 092 02 | 42W) | | | JUN 1994<br>24 | 1705 | 270 | 21.0 | 535 | AUG 1994<br>10 | 0950 | 23 | 17.0 | 560 | | | 054 | 465000 Ced | ar River nes | ar Conesville | e, IA (LAT 41 24 36N | LONG ( | 91 17 06W) | | | | OCT 1993 | | | | | JUN 1994 | DOI: | ,,,,, | | | | 04<br>NOV | 1250 | 9470 | 15.0 | 548 | 22<br>AUG | 1015 | 6240 | 27.5 | 522 | | 30 | 1030 | 4030 | 0.0 | 616 | 03 | 1145 | 5260 | 25.0 | 492 | | | 05465 | 5100 Iowa R | iver at Colu | ımbus Juncti | on, IA (LAT 41 16 42 | N LONG | 6 091 20 48W | 7) | | | AUG 1994<br>30 | 1554 | 6500 | 22.5 | 543 | | | | | | | | | 05465500 Ic | wa River a | t Wapello, L | A (LAT 41 10 48N LC | NG 091 | 10 57W) | | | | OCT 1993 | | | | • | MAY 1994 | | • | | | | 19<br>DEC | 1330 | 13600 | 13.5 | 524 | 10<br>JUL | 1445 | 7200 | 17.5 | 434 | | 01<br>MAR 1994 | 1330 | 6480 | 1.0 | 612<br>303 | 26<br>AUG | 1345 | 15500 | 24.5 | 500<br>524 | | 10 | 1315 | 25100 | 1.5 | 303 | 17 | 1410 | 10600 | 24.0 | 324 | | | 0547 | 70000 South | Skunk Rive | er near Ame | s, IA (LAT 42 04 06N | LONG | 93 37 09W) | | | | NOV 1993<br>17 | 0740 | 125 | 3.5 | 759 | JUN 1994<br>01 | 0820 | 65 | 20.0 | 700 | | JAN 1994<br>27 | 1615 | 36 | 0.0 | 767 | 24<br>JUL | 1710 | 1280 | 19.0 | 640 | | MAR<br>21 | 1325 | 145 | 9.0 | 725 | O5<br>AUG | 1650 | 548 | 25.0 | 625 | | APR<br>15 | 1150 | 120 | 12.0 | 618 | SEP | 1415 | 36<br>464 | 24.0<br>15.0 | 600<br>475 | | | | | | | 22 | 1505 | 101 | 13.0 | 4/3 | | | ( | 05470 <b>5</b> 00 <b>S</b> q | juaw Creek | at Ames, IA | (LAT 42 01 21N LO | NG 093 : | 37 45W) | | | | NOV 1993<br>16 | 1545 | 78 | 4.0 | 735 | JUL 1994<br>05 | 1505 | 268 | 26.0 | 650 | | APR 1994<br>15 | 1005 | 69 | 11.5 | 596 | AUG<br>10 | 1235 | 28 | 23.0 | 475 | | MAY<br>31 | 1400 | 36 | 17.0 | 625 | SEP<br>22 | 1310 | 12 | 18.0 | 475 | | JUN<br>24 | 1525 | 1660 | 19.5 | 482 | | | | | | | 0547 | 1000 Sou | th Skunk Riv | er below Se | quaw Creek | near Ames, IA (LAT | 42 00 311 | N LONG 093 | 35 57W) | | | NOV 1993 | 1350 | 20.0 | 2.5 | 221 | JUN 1994 | 0015 | 405 | 25.0 | 225 | | 16<br>MAR 1994 | 1350 | 209<br>270 | 3.5 | 731 | 17<br>24 | 0915<br>1210 | 405<br>4290 | 25.0<br>18.5 | 725<br>601 | | 18<br>APR | 0950 | | 5.5 | 708 | JUL<br>05 | 1220 | 891 | 25.0 | 560 | | 15<br>MAY<br>31 | 0830<br>1045 | 187<br>187 | 8.0<br>21.0 | 556<br>650 | AUG<br>10<br>SEP | 1045 | 114 | 22.0 | 450 | | J1 | 1043 | 101 | 21.0 | 930 | 22<br>29 | 1100<br>0930 | 470<br>846 | 17.0<br>12.0 | 375<br>575 | | | 0547 | 71050 South | Skunk Riv | er at Colfax, | IA (LAT 41 40 55N I | LONG 09 | 3 14 47W) | | | | DEC 1993 | | | | | JUN 1994 | | | | | | 10<br>APR 1994 | 0931 | 320 | 3.5 | 725 | AUG | 0956 | 1190 | 22.0 | 600 | | 05<br>MAY | 1030 | 265 | 7.0 | 616 | 12 | 1032 | 116 | 20.0 | 575 | | 12 | 1055 | 382 | 22.0 | 625 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------|---------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 0. | 5471200 Inc | tian Creek | near Mingo, l | A (LAT 41 48 17N L | ONG 09 | 3 1 <b>8 36W</b> ) | | | | DEC 1993<br>10 | 1205 | 119 | 2.5 | 706 | MAY 1994<br>13 | 1530 | 130 | 22.0 | 615 | | APR 1994<br>05 | 1351 | 79 | 6.0 | 588 | AUG<br>12 | 1348 | 37 | 19.0 | 500 | | 05 | 1331 | ,, | 6.0 | 386 | 12 | 1240 | 31 | 19.0 | 500 | | | 05471 | 500 South S | Skunk Rive | rnear Oskalo | osa, IA (LAT 41 21 1 | 9N LON | G 092 39 31 | W) | | | OCT 1993<br>18 | 1355 | 1890 | 13.0 | 660 | JUN 1994<br>14 | 1245 | 720 | 26.0 | 556 | | DEC 08 | 1150 | 650 | 1.0 | 667 | AUG<br>03 | 1345 | 442 | 28.0 | 420 | | | 1100 | | 1.0 | 007 | •••• | 10.10 | ••• | 2010 | 120 | | | 05472 | 2500 North S | Skunk Rive | r near Sigouri | ney, IA (LAT 41 18 0 | 3N LON | G 092 12 16 | ₩) | | | OCT 1993<br>14 | 1410 | 699 | 10.5 | 480 | JUN 1994<br>20 | 0930 | 253 | 27.0 | 499 | | NOV<br>29 | 1020 | 213 | 0.0 | 510 | AUG<br>02 | 1035 | 69 | 25.0 | 472 | | MAY 1994<br>04 | 1115 | 169 | 13.0 | 51 <b>8</b> | | | | | | | 25 | 1030 | 0.0 | 22.5 | 540 | | | | | | | | 05473 | 3400 Cedar | Creek near | Oakland Mili | ls, IA (LAT 40 55 20 | N LONG | 091 40 10W | " | | | OCT 1993 | 2025 | 0.4 | | | MAY 1994 | | | | | | NOV | 1015 | 84 | 9.5 | 494 | 12<br>JUN | 1500 | 81 | 21.0 | 593 | | 29<br>MAR 1994 | 1700 | 61 | 1.0 | 590 | 20<br>JUL | 1540 | 72 | 31.5 | 491 | | 04 | 1420 | 252 | 2.0 | 469 | 27 | 1445 | 19 | 25.5 | 382 | | | 0 | 5474000 Sk | unk River a | it Augusta, IA | (LAT 40 45 13N LO | ONG 091 | 16 40W) | ~ | | | OCT 1993 | | | | <b></b> | MAY 1994 | | | | | | 20<br>DEC | 1215 | 3370 | 13.5 | 569 | 11<br>JUL | 1145 | 1450 | 18.0 | 523 | | 02 | 1245 | 1420 | 2.5 | 625 | 26 | 1645 | 737 | 25.5 | 461 | | MAR 1994<br>09 | 1415 | 9560 | 3.0 | 320 | AUG<br>18 | 1045 | 463 | 25.0 | 507 | | | 054 | 74500 Miss | issippi Rive | er at Keokuk, | IA (LAT 40 23 37N | LONG 0 | 91 22 27W) | | | | APR 1994 | | | | | AUG 1994 | | | | | | 07 | 0916 | 98800 | 7.0 | 412 | 29 | 1117 | 47900 | 24.5 | 434 | | | 05476 | 6500 Des M | oines Rive | at Esthervill | e, IA (LAT 43 23 51) | N LONG | 094 50 38W | ) | | | NOV 1993 | 00 | 0000 1000 171 | onios ravo | wi Estioi viii | • | LOITO | 0,10000 | , | | | 09 | 1200 | 461 | 4.0 | 490 | AUG 1994<br>16 | 1135 | 2140 | 20.0 | 650 | | JUN 1994<br>08 | 1345 | 1290 | 20.0 | 750 | SEP<br>20 | 1340 | 243 | 15.0 | 750 | | 23<br>JUL | 1400 | 2930 | 21.5 | 675 | | | | | | | 13 | 1405 | 1370 | 22.0 | 675 | | | | | | | | 054765 | 590 Des Mo | ines River a | it Emmetsbu | rg, IA (LAT 43 07 34 | N LONG | i 094 42 21 W | 7) | | | JUN 1994 | | | | | AUG 1994 | | | | | | 09<br>13 | 1600<br>1115 | 1620<br>2 <b>4</b> 20 | 19.0<br>21.0 | 750<br>650 | 16<br>SEP | 0910 | 2300 | 20.0 | 625 | | 20 | 1200<br>1205 | 3250<br>4150 | 23.0<br>20.5 | 564<br>607 | 28 | 1150 | 371 | 14.0 | 700 | | JUL<br>13 | 1145 | 1850 | 18.0 | 625 | | | | | | | T3 | 1143 | 1000 | 10.0 | uzu | | | | | | | | 05 | 476735 Pilo | t Creek nea | r Bradgate, I | A (LAT 42 48 20N L | ONG 09 | 4 27 44 <b>W</b> ) | | | | JUN 1994 | 0220 | 20 | 12.0 | 700 | JUL 1994 | 1000 | 25.0 | 10.0 | 700 | | 10 | 0730<br>0915 | 3 <b>8</b><br>55 | 17.0<br>16.0 | 725<br>400 | AUG | 1020 | 259 | 18.0 | 700 | | 16<br>20 | 1210<br>0855 | 200<br>166 | 20.0<br>19.0 | 650<br>690 | 18 | 1235 | 21 | 25.0 | 750 | | 23 | 0935 | 746 | 17.0 | 798 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 0547 | 76750 Des N | Moines Rive | er at Humbo | oldt, IA (LAT 42 43 12 | N LONG | 094 13 06W | ") | | | NOV 1993<br>17 | 1305 | 941 | 2.0 | 540 | JUL 1994<br>09 | 0830 | 3060 | 23.0 | 650 | | APR 1994<br>19 | 0900 | 2070 | 13.0 | 753 | AUG<br>18 | 0815 | 2330 | 22.0 | 625 | | JUN<br>16 | 0920 | 3420 | 24.0 | 700 | SEP<br>26 | 1300 | 651 | 16.0 | 600 | | | 05479000 | East Fork I | Des Moines | River at Da | akota City, IA (LAT 42 | 2 43 26N | LONG 094 1 | 1 30W) | | | NOV 1993<br>17 | 1435 | 353 | 2.0 | 585 | JUL 1994<br>15 | 0815 | 2030 | 20.0 | 650 | | APR 1994<br>19 | 1100 | 1130 | 13.0 | 681 | AUG<br>18 | 1030 | 754 | 22.0 | 700 | | JUN<br>06 | 1345 | 624 | 24.0 | 675 | SEP 26 | 1430 | 684 | 14.0 | 625 | | | 05480 | 0500 Des M | oines River | at Fort Do | dge, IA (LAT 42 30 22 | N LONG | 094 12 04W | 'n | | | NOV 1993 | | | | | JUN 1994 | | | | | | 17<br>MAR 1994 | 1450 | 1350 | 4.0 | 712 | 02<br>27 | 1200<br>1400 | 1490<br>14700 | 19.0<br>23.0 | 575<br>600 | | 22<br>23<br>APR | 1550<br>1515 | 4090<br>3860 | 10.5<br>10.0 | 519<br>625 | AUG<br>11<br>SEP | 1700 | 1280 | 20.0 | 625 | | 19 | 1345 | 3690 | 15.5 | 677 | 26 | 0915 | 1590 | 16.0 | 575 | | | 054 | 180820 Boo | ne River ne | ar Goldfield | i, IA (LAT 42 43 27N | LONG 09 | 93 <b>5</b> 6 46W) | | | | MAY 1994<br>24 | 1615 | 135 | 22.0 | 703 | AUG 1994<br>15 | 1035 | 169 | 19.0 | 725 | | JUN<br>13 | 1600 | 688 | 20.0 | 600 | SEP<br>27 | 0910 | 120 | 15.0 | 725 | | 24<br>JUL<br>08 | 0900<br>0830 | 2300<br>70 <b>9</b> | 17.0<br>20.0 | 439<br>600 | | | | | | | **** | | | - | | ity, IA (LAT 42 26 01) | NI ONG | 003 AR 12W | | | | NOV 1993 | 0340 | IOOO BOOM | KIVEI IICAI | Webster C | JUN 1994 | LONG | U93 40 12W) | , | | | 17<br>JAN 1994 | 1220 | 186 | 4.5 | 718 | 02<br>27 | 0830<br>1100 | 247<br>3980 | 18.0<br>19.0 | 700<br>750 | | 28<br>MAR | 1040 | 51 | 0.0 | 654 | AUG . | 1400 | 141 | 21.0 | 575 | | 21<br>APR | 1115 | 352 | 8.5 | 652 | SEP 23 | 1130 | 221 | 17.0 | 625 | | 18 | 0915 | 765 | 11.5 | 718 | | | | | | | | 05481 | 300 Des Mo | oines River | near Stratfo | ord, IA (LAT 42 15 04 | N LONG | 093 59 52W | ) | | | NOV 1993 | 0950 | 1930 | 3.0 | 810 | JUN 1994<br>01 | 1230 | 2010 | 20.0 | 700 | | FEB 1994<br>17<br>MAR | 1520 | 591 | 0.0 | 932 | 28<br>AUG<br>11 | 0910<br>1110 | 17700<br>1340 | 21.5<br>21.0 | 675<br>600 | | 03 | 0940<br>1255 | 1860<br>4840 | 1.5<br>10.0 | 671<br>638 | SEP 23 | 1410 | 1160 | 19.0 | 650 | | APR<br>18 | 1220 | 4900 | 14.0 | 699 | | | | | | | | 054816 | 50 Des Moi | ines River r | near Saylorv | rille, IA (LAT 41 40 50 | N LONG | 3 093 40 05V | V) | | | NOV 1993 | | | | | JUL 1994 | | | | | | 16<br>JAN 1994 | 0940 | 1900 | 4.5 | 721 | 06<br>08 | 1010<br>0805 | 11300<br>358 | 25.0<br>22.0 | 625<br>652 | | 27<br>MAR<br>14 | 0940<br>1315 | 0.0<br>6960 | 1.5<br>5.5 | 917<br>420 | AUG<br>05<br>SEP | 0910 | 2330 | 24.0 | 600 | | APR 14 | 1250 | 2910 | 11.0 | 637 | 21 | 1100 | 1080 | 24.0 | 525 | | JUN 14 | 1030 | 4720 | 24.0 | 626 | | | | | | | | | | | | d, IA (LAT 41 48 00N | LONG 0 | 93 56 20W) | | | | APR 1994<br>14 | 0745 | 71 | 10.0 | 641 | AUG 1994 | 0845 | 6,2 | 22.0 | 450 | | MAY 26 | 1155 | 71 | 20.0 | 705 | SEP 21 | 1600 | 0.0 | 23.0 | 625 | | 31<br>JUN | 1025 | 69 | 6.5 | 722 | | | | | | | 24 | 1055 | 75 | 21.0 | 590 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------|-----------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------------------|----------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 05 | 481950 Bea | ver Creek | near Grimes, I | A (LAT 41 41 18N I | LONG 09 | 3 44 08W) | | | | NOV 1993<br>16 | 0740 | 163 | 3.5 | 739 | JUL 1994<br>06 | 0915 | 112 | 27.0 | 660 | | JAN 1994<br>27 | 0825 | 47 | 0.0 | 785 | AUG<br>03 | 1140 | 11 | 27.0 | 600 | | MAR<br>08 | 1410 | 444 | 3.0 | 285 | SEP<br>13 | 1050 | 4.3 | 25.0 | 729 | | APR | 1015 | 96 | 12.0 | 627 | 21 | 0845 | 1.2 | 20.0 | 450 | | 14<br>MAY | | 104 | 20.5 | 691 | | | | | | | 26 | 1315 | | | | | | | -n | | | 7777 1004 | 05482 | 2000 Des M | loines Rive | r at Des Moine | es, IA (LAT 41 36 45<br>SEP 1994 | IN LONG | 6 0 <del>9</del> 3 37 151 | N) | | | JUN 1994<br>22 | 1300 | 8770 | 27.0 | 625 | 14 | 1450 | 1000 | 27.0 | 615 | | JUL<br>11<br>28 | 1 <b>6</b> 10<br>1235 | 7940<br>6990 | 26.0<br>23.0 | 650<br>625 | | | | | | | | | | | | | 211 0210 | | ·n | | | | 05482 | 135 North F | Raccoon Ri | ver near Newe | II, IA (LAT 42 36 16 | ON LONG | 093 02 421 | <b>v</b> ) | | | JUL 1994<br>14 | 1440 | 601 | 20.0 | 650 | AUG 1994<br>17 | 1055 | 124 | 20.0 | 650 | | | 054823 | IOO North P | accoon Riv | er near Sac Ci | ty, IA (LAT 42 21 10 | N I ONG | 3 004 50 26 | W) | | | | 004023 | OU NOIDI N | accom rav | Ci iicai Sac Ci | JUN 1994 | W DOIN | 3 074 37 20 | ••• | | | NOV 1993 | 1120 | 223 | 3.0 | 5 90 | 03 | 1215 | 193 | 21.0 | 750 | | JAN 1994<br>04 | 1030 | 185 | 0.0 | 775 | JUL<br>14 | 1730 | 329 | 22.0 | 650 | | 10<br>FEB | 1025 | 144 | 0.0 | 825 | AUG<br>17 | 1300 | 329 | 23.0 | 700 | | 02<br>MAR | 1325 | 105 | 0.0 | 791 | | | | | | | 15 | 0925 | 419 | 4.0 | 5 90 | | | | | | | | 0548 | 2430 North | Raccoon n | ear Lanesboro | , IA (LAT 42 10 09N | LONG | 094 43 31W | ) | | | JUN 1994<br>10 | 1015 | 776 | 19.0 | 775 | AUG 1994<br>08 | 1435 | 138 | 27.0 | 575 | | JUL<br>01 | 0940 | 898 | 19.0 | 700 | SEP<br>19 | 1600 | 104 | 24.0 | 650 | | | 054825 | 00 North Ra | accoon Riv | er near Jefferso | on, IA (LAT 41 59 1 | 7N LONG | G 094 22 36 | W) | | | NOV 1993 | | | | | JUN 1994 | | | • | | | 10<br>MAR 1994 | 1520 | 522 | 3.0 | 610 | 29<br>AUG | 0800 | 1750 | 22.0 | 610 | | 18<br>APR | 1320 | 916 | 4.0 | 580 | 08<br>SEP | 1000 | 184 | 25.0 | 450 | | 21 | 1105 | 719 | 12.5 | 731 | 19 | 1035 | 158 | 22.0 | 525 | | | 0548 | 3210 Buttri | ick Creek n | ear Jefferson, | IA (LAT 41 59 35N | LONG 0 | 94 17 25W) | | | | MAY 1994 | 1605 | 40 | 27.0 | 668 | AUG 1994<br>08 | 1235 | 6.0 | 27.0 | 550 | | 31<br>JUN | 0955 | 140 | 22.0 | 700 | SEP 19 | 1335 | 0.82 | 23.0 | 550 | | 29 | 0933 | 140 | 22.0 | - | 19 | 1333 | 0.52 | 23.0 | 330 | | | 05483 | 300 North | Raccoon Ri | ver near Perry | , IA (LAT 41 50 07N | LONG | 094 07 54W | ) | | | JUN 1994 | 1200 | 3220 | 27.0 | 650 | SEP 1994<br>22 | 0845 | 155 | 18.0 | 575 | | 30 | 0830 | 1910 | 23.0 | 660 | 22 | 0045 | 155 | 10.0 | 3,3 | | AUG<br>09 | 1420 | 220 | 25.0 | 475 | | | | | | | | 0548334 | 13 Hazelbru | sh Creek n | ear Maple Riv | er, IA (LAT 42 07 36 | SN LONC | G 094 58 32 | ₩) | | | JUN 1994 | | | | • | AUG 1994 | | | | | | 14<br>JUL | 0955 | 2.0 | 24.0 | 700 | 08<br>SEP | 1635 | 0.95 | 27.0 | 675 | | 01 | 1145 | 3.5 | 23.0 | 660 | 19 | 0805 | 0.34 | 17.0 | 700 | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER -<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------------|---------------|-----------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 05483 | 450 Middle | Raccoon R | iver near Ba | yard, IA (LAT 41 46 | 43N LON | G 094 29 33 | W) | | | NOV_1993 | 1000 | 163 | 3.0 | 606 | MAY 1994 | 0055 | o.c | 20 5 | | | 15<br>JAN 1994<br>26 | 1105 | 162<br>102 | 3.0<br>3.0 | 696<br>709 | 25<br>Jun<br>20 | 0955<br>1150 | <b>8</b> 5<br>1 <b>2</b> 5 | 20.5<br>23.0 | 698<br>725 | | MAR<br>07 | 1155 | 367 | 5.5 | 524 | 29<br>AUG<br>09 | 0755 | 44 | 19.0 | 650 | | APR<br>13 | 1025 | 141 | 8.5 | 628 | SEP<br>20 | 1100 | 31 | 20.0 | 625 | | 20 | 1023 | 111 | 0.5 | 020 | 20 | 1100 | 31 | 20.0 | 023 | | | 0548 | 3600 Middle | e Raccoon I | River at Pano | ora, IA (LAT 41 41 14 | IN LONG | 094 22 15W | N) | | | NOV 1993<br>15 | 1225 | 190 | 5.0 | 664 | MAY 1994<br>25 | 1400 | 143 | 21.5 | 530 | | JAN 1994<br>26 | 1320 | 94 | 1.0 | 706 | JUN<br>30 | 1135 | 147 | 23.0 | 600 | | MAR<br>08 | 0915 | 312 | 1.5 | 381 | AUG<br>09 | 1020 | 53 | 24.0 | 5 <b>2</b> 5 | | APR<br>13 | 1325 | 159 | 9.0 | 521 | SEP<br>20 | 1300 | 37 | 22.0 | 55 <b>0</b> | | | 0548 | 4000 South | Paccoon Pi | ver at Redfie | eld, IA (LAT 41 35 22 | N I ONG | : 104 10 147 | Λ | | | NOV 1993 | 35 10 | TOOC DOME | tarououi 10 | .vor us recuire | MAY 1994 | | | , | | | 15<br>JAN 1994 | 1550 | 437 | 4.5 | 589 | 26<br>JUN | 0745 | 282 | 18.0 | 5 <b>2</b> 5 | | 26<br>MAR | 1600 | 189 | 0.0 | 676 | 30<br>AUG | 1340 | 357 | 25.0 | 575 | | 08<br>APR | 1 <b>25</b> 5 | 582 | 3.0 | 409 | 09<br>SEP | 1220 | 139 | 25.0 | 500 | | 13 | 1530 | 337 | 13.5 | 475 | 20 | 1535 | 92 | 24.0 | 450 | | | 054 | 484500 Racc | oon River | at Van Meter | , IA (LAT 41 32 02N | LONG 0 | 93 56 59W) | | | | OCT 1993 | | | | | MAY 1994 | | | | | | 26<br>DEC | 1045 | 2040 | 11.0 | 682 | 10<br>26 | 0930<br>1030 | 2380<br>1330 | 15.0<br>20.0 | 720<br>572 | | 06<br>FEB 1994 | 1130 | 1030 | 1.5 | 710 | JUN<br>15 | 1000 | 2060 | 27.0 | 617 | | 02<br>MAR | 1135 | 753 | 0.0 | 860 | JUL 25 | 1230 | 4130 | 26.0<br>25.0 | 590<br>510 | | 08<br>23<br>APR | 1225<br>1000 | 6340<br>1410 | 2.0<br>12.5 | 340<br>653 | 25<br>AUG | 1240<br>0830 | 801<br>372 | 22.0 | 461 | | 11 | 1205 | 897 | 10.0 | 660 | 10<br>SEP<br>12 | 1445 | 515 | 27.0 | 538 | | | | | | | | | | | 336 | | | 05484650 | Raccoon Riv | er at 63rd S | Street at Des | Moines, IA (LAT 41) | 33 49N L | ONG 093 42 | 2 13W) | | | JUL 1994<br>11 | 1210 | 3340 | 27.0 | 650 | SEP 1994<br>13 | 1615 | 735 | 29.0 | 480 | | 28 | 1230 | 1250 | 24.0 | 450 | | | | | | | | | 05484800 | ) Walnut C | reek at Des l | Moines, IA (LAT 41 3 | 35 14N L | ONG 093 42 | 11 <b>W</b> ) | | | NOV 1993 | | 9.5 | | | JUN 1994 | | 0.5 | 20.0 | | | 16<br>FEB 1994 | 1720 | 35 | 4.0 | 753 | JUL | 1650 | 26 | 29.0 | 725 | | 02<br>MAR | 1625 | 11 | 0.0 | 457 | 27 | 1400<br>1400 | 6.3<br>2.4 | 29.0<br>23.0 | 650<br>750 | | APR | 1600 | 40 | 4.0 | 750 | SEP<br>12 | 1830 | 4.1 | 27.0 | 704 | | 13<br>MAY | 1300 | 26 | 11.0 | 700 | | | | | | | 09 | 1700 | 25 | 22.0 | 680 | | | | | | | 05485 | 500 Des M | loines River | below Race | coon River at | Des Moines, IA (LA | T 41 34 3 | ON LONG | 93 35 48W | ) | | MAR 1994<br>08 | 1420 | 20200 | 1.5 | 398 | JUL 1994<br>08 | 1010 | 3160 | 25.0 | 645 | | APR 11 | 1535 | 3620 | 10.0 | 640 | 25<br>SEP | 1520 | 13400 | 25.0 | 575 | | MAY 10 | 1515 | 89000 | 17.0 | 700 | 14 | 1730 | 1570 | 28.0 | 519 | | JUN 20 | 1520 | 13600 | 25.0 | 550 | | | | | | | 20 | 1320 | 2000 | 23.0 | 330 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 0548 | 35640 Four | nile Creek : | at Des Moin | nes, IA (LAT 41 36 50 | N LONG | 093 32 43W | ) | | | NOV 1993<br>17<br>FEB 1994 | 1105 | 46 | 5.0 | 796 | MAY 1994<br>10<br>JUN | 1630 | 33 | 19.0 | 740 | | 03<br>MAR | 1640 | 11 | 0.0 | 1020 | 22<br>JUL | 1400 | 33 | 24.0 | 750 | | 08<br>APR | 1830 | 82 | 1.0 | 800 | 27<br>SEP | 1545 | 5.7 | 23.0 | 750 | | 13 | 1430 | 30 | 9.0 | 840 | 13 | 1745 | 4.3 | 28.0 | 745 | | | 05 | 486000 No | nth River ne | ar Norwalk | , IA (LAT 41 27 25N | LONG 09 | 3 39 10W) | | | | FEB 1994<br>03 | 1425 | 59 | 0.0 | 1070 | JUN 1994<br>22 | 0955 | 155 | 25.0 | 290 | | MAR<br>10 | 1330 | 158 | 2.0 | 430 | JUL<br>27 | 1220 | 79 | 23.0 | 360 | | APR<br>13 | 1055 | 78 | 9.0 | 480 | SEP<br>13 | 1330 | 7.3 | 26.0 | 452 | | MAY<br>12 | 1020 | 144 | 17.0 | 4 90 | | | | | | | | 054 | 86490 Mid | dle River no | ar Indianol | a, IA (LAT 41 <b>25</b> 27N | LONG 0 | 93 35 09W) | | | | FEB 1994<br>03 | 1130 | 56 | 0.0 | 610 | JUN 1994<br>21 | 1430 | 121 | 29.0 | 490 | | MAR<br>10 | 1010 | 250 | 1.0 | 420 | JUL<br>26 | 1520 | 87 | 27.0 | 420 | | APR<br>12 | 1450 | 107 | 8.0 | 525 | SEP<br>13 | 1125 | 21 | 26.0 | 528 | | MAY<br>11 | 1510 | 252 | 21.0 | 490 | | | | | | | | 054 | 187470 Sout | h River nea | r Ackworth | ı, IA (LAT 41 20 14N | LONG 09 | 93 29 10W) | | | | NOV 1993<br>16 | 0830 | 136 | 3.5 | 252 | MAY 1994<br>11 | 1125 | 130 | 20.0 | 500 | | FEB 1994<br>03 | 0920 | 51 | 0.0 | 391 | JUN 21 | 1040 | 940 | 25.0 | 280 | | MAR<br>09 | 1350 | 306 | 4.0 | 385 | JUL<br>26 | 1105 | 28 | 27.0 | 450 | | APR<br>12 | 1145 | 91 | 8.0 | 550 | SEP<br>13 | 0845 | 4.5 | 27.0 | 536 | | | 05487 | 500 Des M | oines River | near Runne | ells, IA (LAT 41 29 19 | N LONG | 093 20 17W | ) | | | FEB 1994 | | | | | JUL 1994 | | **** | | | | 02<br>APR | 1330 | 1820 | 0.0 | 390 | 04<br>26 | 1450<br>0950 | 6190<br>12100 | 27.0<br>24.0 | 640<br>590 | | 12<br>MAY | 1020 | 4080 | 8.0 | 650 | SEP<br>14 | 1040 | 1920 | 26.0 | 600 | | 11<br>JUN<br>21 | 0830<br>0945 | 9480 | 17.0<br>26.0 | 700 <sub>-</sub><br>645 | | | | | | | 21 | | | | | | | | | | | | 05487 | 7980 White | Breast Cree | k near Dall | as, IA (LAT 41 14 41) | N LONG | 093 16 08W) | ) | | | OCT 1993<br>14 | 1510 | 62 | 13.0 | 530 | MAY 1994<br>04 | 0900 | 59 | 13.0 | 554 | | DEC<br>08 | 1545 | 43 | 4.5 | 558 | JUN<br>15 | 1437 | 59 | 28.5 | 422 | | MAR 1994<br>17 | 1420 | 94 | 7.5 | 544 | AUG<br>05 | 1055 | 5.5 | 22.0 | 474 | | | 0548 | 88110 Des N | Moines Rive | r near Pella | ı, IA (LAT 41 21 38N | LONG 09 | 92 58 23 <b>W</b> ) | | | | OCT 1993<br>15 | 1025 | 8050 | 13.0 | 670 | MAY 1994<br>05 | 0930 | 7560 | 13.5 | 590 | | DEC 09 | 1015 | 3260 | 2.0 | 686 | JUN<br>15 | 1110 | 8460 | 26.5 | 575 | | FEB 1994<br>16 | 0955 | 1460 | 3.0 | 800 | JUL<br>08 | 1300 | 5670 | 25.0 | 546 | | MAR<br>17 | 0945 | 8900 | 2.0 | 420 | AUG<br>04 | 1730 | 4100 | 24.5 | 605 | | | | | | | e, IA (LAT 41 16 00N | | | | | | OCT_1993 | 0577 | • • | | | MAY 1994 | | | | | | 15<br>DEC | 0910 | 19 | 12.5 | 620 | 04<br>JUN | 1100 | 9.2 | 13.5 | 649 | | 08<br>MAR 1994 | 1325 | <b>8.</b> 7 | 3.0 | 658 | AUG | 1245 | 4.3 | 29.5 | 610 | | 17 | 1125 | 22 | 5.0 | 604 | 05 | 1635 | 0.91 | 25.0 | 886 | | | | | | | • | | | | | |-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------|---------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | | | 054 | 188500 Des | Moines Riv | er near Tracy, | IA (LAT 41 16 53N | LONG | )92 51 34W) | | | | OCT 1993 | | | | | JUN 1994 | | | | | | 19 | 1145 | 106000 | 14.0 | 650 | 14 | 1520 | 8700 | 25.5 | 560 | | DEC<br>08<br>MAR 1994 | 1450 | 3770 | 2.0 | 686 | JUL<br>08<br>AUG | 1355 | 6080 | 25.5 | 554 | | 16 | 1455 | 9420 | 3.0 | 423 | 04 | 1220 | 4190 | 27.0 | <b>59</b> 5 | | MAY<br>04 | 1335 | 7020 | 13.5 | 594 | | | | | | | | 0 | 5489000 Ce | dar Creek r | ear Bussey, IA | (LAT 41 13 09N L | ONG 09: | 2 54 38W) | | | | OCT 1993 | | | | | MAY 1994 | | | • | | | 18 | 1610 | 66 | 12.5 | 645 | 04 | 1505 | 71 | 15.5 | 616 | | DEC<br>08 | 1600 | 34 | 1.5 | 677 | JUN<br>14 | 1730 | 65 | 30.5 | 466 | | MAR 1994<br>16 | 1220 | 118 | 5.5 | 597 | AUG<br>03 | 1745 | 9.6 | 25.0 | 644 | | | 054 | 89200 Des N | Moines Rive | r at Eddyville, | IA (LAT 41 09 21N | LONG | 092 38 19W) | ) | | | AUG 1994<br>30 | 1047 | 2980 | 22.0 | 586 | · | | | | | | | 054 | 89 <b>500</b> Des N | Aoines Rive | er at Ottumwa, | IA (LAT 41 00 39N | LONG | 092 24 40W) | ı | | | OCT 1993 | | | | | MAY 1994 | | | | | | 12<br>DEC | 0945 | 12700 | 13.5 | 560 | 02<br>JUN | 1325 | 6810 | 14.0 | 610 | | 16 | 0750 | 5370 | 2.5 | 710 | 20 | 1630 | 14300 | 26.0 | 508 | | MAR 1994<br>11 | 1300 | 22100 | 0.5 | 406 | AUG<br>09 | 1430 | 2610 | 27.0 | 645 | | | 0549 | 0500 Des M | oines Rive | at Keosauqua | , IA (LAT 40 43 40) | LONG | 091 57 34W | ) | | | NOV 1993<br>29 | 1420 | 3900 | 0.0 | 691 | JUN 1994<br>20 | 1320 | 14500 | 28.0 | <b>5</b> 51 | | MAR 1994 | 1610 | 21800 | 1.5 | 414 | JUL<br>27 | 1220 | 12700 | 25.5 | 632 | | 11<br>MAY | | | | | 21 | 1220 | 12.00 | 25.5 | 032 | | 12 | 1300 | 9770 | 18.0 | 605 | | | | | | | | 064 | 83500 Rock | River near | Rock Valley, I | A (LAT 43 12 52N | LONG 0 | 96 17 39W) | | | | NOV 1993<br>16 | 1250 | 1150 | 2.0 | 800 | JUL 1994 | 1400 | 978 | 24.0 | 850 | | JAN 1994<br>11 | 1215 | 294 | 0.0 | 400 | AUG<br>16 | 1235 | 1240 | 23.0 | 800 | | APR<br>05 | 1140 | 709 | 3.0 | 860 | SEP<br>26 | 1410 | 245 | 16.0 | 745 | | JUN<br>13<br>14 | 1530<br>0845 | 10700<br>23900 | 21.0<br>23.0 | 280<br>275 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>COM-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------------|-----------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 06 | 486000 Mis | souri River | at Sioux C | ity, IA (LAT 42 29 09 | N LONG ( | 096 24 49W) | 1 | | | OCT 1993 | | | | | JUN 1994 | | | | | | 01<br>03 | 0620<br>1000 | 25100<br>20500 | 15.0 | 690 | 03<br>06 | 1110<br>1215 | 35800<br>34700 | 22.0<br>23.0 | 770<br>820 | | 04 | 1010 | 24400 | 0.0<br>13.0 | 550<br>860 | 10 | 1135 | 38900 | 23.0 | 870 | | 08 | 0935 | 25400 | 16.0 | 820 | 13 | 0915 | 37400 | 23.0 | 780 | | 12<br>15 | 1550<br>1000 | 26000<br>25400 | 12.0<br>14.0 | 800<br>782 | 17<br>20 | 1230<br>1905 | 50300<br>37500 | 23.0<br>25.0 | 750<br>750 | | 18 | 1015 | 23100 | 12.0 | 800 | 24 | 0840 | 38300 | 23.5 | 698 | | 23<br>25 | 0815<br>0950 | 25600<br>25600 | 11.0<br>13.0 | 830<br>772 | 27<br>JUL | 0845 | 41600 | 24.0 | 750 | | 28 | 1000 | 26100 | 8.0 | 770 | 01 | 1000 | 36600 | 24.0 | 720 | | NOV | 1035 | 26700 | ٤ ٨ | 900 | 05 | 0930 | 35600 | 24.0<br>21.0 | 800 | | 01<br>12 | 0800 | 26200 | 6.0<br>3.0 | 800<br>860 | 08<br>11 | 0950<br>1340 | 35100<br>34100 | 25.0 | 720<br>800 | | 15 | 1530 | 27200 | 1.5 | 850 | 15 | 1040 | 35400 | 23.0 | 750 | | 18<br>DEC | 1145 | 26100 | 3.0 | 800 | 18<br>22 | 1145<br>1130 | 34600<br>31600 | 26.0<br>23.0 | 780<br>775 | | 07 | 1220 | 19300 | 0.0 | 800 | 25 | 1050 | 31300 | 25.0 | 760 | | 20<br>FEB 1994 | 1130 | 21100 | 0.0 | 885 | 29<br>AUG | 0930 | 30800 | 21.0 | 790 | | 15 | 1320 | 19300 | 1.0 | 815 | 02 | 1130 | 33300 | 26.0 | 774 | | MAR | 1250 | 31400 | 5 A | 650 | 05 | 1045 | 32600 | 23.5 | 772 | | 15<br>22 | 1250<br>1210 | 32300 | 5.0<br>5.0 | 650<br>670 | 09<br>12 | 1430<br>1050 | 30800<br>30600 | 22.0<br>23.0 | 760<br>800 | | 25 | 1300 | 31000 | 4.0 | 714 | 15 | 0945 | 31500 | 21.0 | 750 | | 29<br>APR | 1340 | 32400 | 6.0 | 720 | 19<br>23 | 0 <b>92</b> 0<br>0620 | 31100<br>31900 | 22.0<br>23.0 | 7 <b>3</b> 0<br>7 <b>6</b> 0 | | 01 | 1350 | 33200 | 9.0 | 800 | 26 | 1220 | 34000 | 23.0 | 790 | | 05<br>08 | 1250<br>1000 | 30600<br>34200 | 6.0 | 810 | 30<br>SEP | 1245 | 32700 | 24.0 | 775 | | 12 | 0950 | 34800 | 6.0<br>7.0 | 753<br>762 | 02 | 1150 | 32000 | 20.0 | 765 | | 15 | 1000 | 35400 | 9.0 | 750 | 06 | 1250 | 31600 | 22.0 | 750 | | 19<br>21 | 1030<br>1330 | 33300<br>30900 | 13.0<br>11.0 | 810<br>840 | 09<br>13 | 1300<br>1010 | 31200<br>32700 | 23.0<br>26.0 | 742<br>721 | | 26 | 1115 | 30400 | 12.0 | 800 | 23 | 1200 | 32900 | 15.5 | 754 | | MAY<br>02 | 1140 | 34600 | 11.0 | 820 | 24<br>26 | 0910<br>1125 | 31000<br>31200 | 21.0<br>17.0 | 743<br>747 | | 06 | 0930 | 42200 | 10.0 | 800 | 30 | 1230 | 32400 | 18.0 | 747 | | 12<br>17 | 1100<br>0630 | 40700<br>39200 | 15.0<br>18.0 | 790<br>880 | | | | | | | 23 | 1420 | 35900 | 21.0 | 1020 | | | | | | | 27 | 0935<br>1705 | 35600<br>37000 | 22.0 | 800<br>756 | | | | | | | 31 | 1703 | 37000 | 22.0 | 756 | | | | | | | | 0660000 | 00 Perry Cre | ek at 38th S | Street, Siou | x City, IA (LAT 42 32 | 2 08N LON | IG 096 24 39 | )W) | | | NOV 1993 | | | | | MAY 1994 | | | | | | 17 | 0810 | 19 | 0.0 | 830 | 27 | 1205 | 17 | 0.0 | 800 | | MAR 1994<br>02 | 1555 | 45 | 1.0 | 790 | JUL<br>11 | 1450 | 16 | 25.0 | 780 | | APR | | | | | AUG | | | | | | 04 | 1430 | 20 | 10.0 | 800 | 15 | 1125 | 13 | 17.0 | 830 | | | | 06600100 F | loyd River | at Alton, L | A (LAT 42 58 <b>55</b> N LC | NG 096 0 | 0 03W) | | | | NOV 1993 | | | | | JUN 1994 | | | | | | 16 | 1440 | 130 | 1.0 | 950 | 13 | 1330 | 1550 | 18.5 | 220 | | JAN 1994<br>26 | 1115 | 45 | 0.0 | 984 | 14<br>JUL | 1140 | 3710 | 25.0 | 280 | | MAR | | 120 | | | 13 | 0910 | 298 | 17.0 | 820 | | 02<br>APR | 1125 | 130 | 1.0 | 800 | AUG<br>16 | 1415 | 88 | 22.0 | 960 | | 05 | 1530 | 107 | 3.0 | 870 | | | | •• | | | MAY<br>24 | 1555 | 132 | 21.0 | 1060 | • | | | | | | | 0660030 | 0 West Bran | ach Floyd R | iver near S | truble, IA (LAT 42 55 | 26N I ON | TC: 006 10 36 | | | | | 0000000 | | .o 1 10 yu 10 | avor mour b | 11 12 11 12 11 12 30 | DOIN DOIN | 0,001050 | ,,, | | | NOV 1993<br>16 | 1610 | 84 | 1.0 | 1050 | MAY 1994<br>24 | 1450 | 98 | 20.0 | 1240 | | JAN 1994 | 1010 | 01 | 1.0 | 1030 | JUL | 1430 | 30 | 20.0 | 1240 | | 26<br>APR | 0935 | 50 | 0.0 | 1250 | 12<br>AUG | 1615 | 91 | 25.0 | 900 | | 05 | 1400 | 80 | 3.0 | 1080 | 15 | 1615 | 54 | 23.0 | 1200 | | | ( | 06600500 F | loyd River a | at James, L | A (LAT 42 34 36N LC | NG 096 1 | 8 43W) | | | | OCT 1993 | | | | | MAY 1994 | | · | | | | 01<br>NOV | 1000 | 417 | 13.0 | 1000 | 24<br>JUL | 0750 | 417 | 21.0 | 1000 | | 15 | 1640 | 391 | 2.0 | 840 | 13 | 1200 | 628 | 17.0 | 830 | | JAN 1994<br>26 | 1710 | 209 | 0.0 | 850 | AUG<br>15 | 1400 | 399 | 17.0 | 920 | | APR | | | | | | | | | | | 06 | 0825 | 366 | 3.0 | 890 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 00 | 5601200 Mis | ssouri Rive | r at Decatu | r, NE (LAT 42 00 26N | LONG 0 | 96 14 29W) | | | | OCT_1993 | 1025 | 25300 | 14.0 | 830 | MAY 1994 | 1215 | 40400 | 12.0 | 840 | | 06<br>13 | 1245 | 26400 | 12.0 | 820 | 04<br>10 | 1230 | 38800 | 13.0<br>25.0 | 840 | | 18<br>27 | 1430<br>1100 | 28600<br>27000 | 12.0<br>10.0 | 810<br>850 | 18<br>23 | 1000<br>1050 | 38800<br>36900 | 19.0<br>20.0 | 750<br>900 | | NOV | | | | | JUN | | | | | | 03<br>10 | 0915<br>0855 | 27600<br>25400 | 6.0<br>3.0 | 670<br>820 | 01<br>07 | 1020<br>1130 | 37400<br>36900 | 21.5<br>23.0 | 776<br>800 | | 15 | 1150 | 27700 | 3.0 | 840 | 15 | 1120 | 39100 | 24.0 | 680 | | 24<br>DEC | 1100 | 24000 | 0.0 | 830 | 20<br>27 | 1410<br>1300 | 37500<br>44800 | 25.0<br>24.0 | 820<br>700 | | 01<br>FEB 1994 | 1045 | 19600 | 2.0 | 940 | JUL<br>05 | 1420 | 34800 | 25.0 | 760 | | 01 | 1115 | 14800 | 1.0 | 700 | 18 | 1440 | 36100 | 26.0 | 800 | | 08<br>16 | 1200<br>1200 | 15100<br>21100 | 0.0<br>1.0 | 750<br>910 | 26<br>AUG | 1100 | 32000 | 24.0 | 760 | | 22<br>MAR | 1150 | 30700 | 0.0 | 760 | 03<br>10 | 0950<br>1150 | 33500<br>31500 | 26.0<br>24.0 | 784<br>790 | | 08 | 1220 | 3800 | 1.0 | 610 | 17 | 1150 | 32500 | 24.0 | 780 | | 16<br>23 | 1330<br>1140 | 34600<br>32200 | 4.0<br>8.0 | 710<br>710 | 24<br>31 | 1130<br>1200 | 32000<br>32800 | 24.5<br>23.0 | 810<br>785 | | 30 | 1150 | 33500 | 8.0 | 850 | SEP | | | | | | APR<br>06 | 1350 | 32300 | 8.0 | 800 | 07<br>14 | 1000<br>0930 | 32600<br>33500 | 22.0<br>23.0 | 768<br>753 | | 13<br>20 | 0930<br>1100 | 37800<br>31600 | 6.5<br>13.0 | 770<br>780 | 21<br>27 | 1000<br>1230 | 31600<br>32100 | 22.0<br>17.5 | 754<br>763 | | 26 | 1730 | 32300 | 14.0 | 840 | 21 | 1230 | 32100 | 11.3 | 103 | | | | | | | | | | | | | | 06 | 602020 Wes | t Fork Ditcl | h at Homic | k, IA (LAT 42 13 37N | LONG 0 | 96 04 40W) | | | | NOV 1993 | | | | | APR 1994 | | | | | | 12<br>JAN 19 <b>9</b> 4 | 1205 | 178 | 2.0 | 860 | 04<br>May | 1230 | 170 | 10.0 | 790 | | 04 | 1010 | 131 | 0.0 | 1140 | 23 | 1225 | 161 | 21.0 | 960 | | 20<br>25 | 1020<br>1250 | 89<br>133 | 0.0 | 660<br>800 | JUL<br>14 | 0850 | 361 | 19.5 | 725 | | FEB 01 | 1200 | 85 | 0.0 | 700 | AUG<br>17 | 1120 | 15 <b>3</b> | 22.0 | 810 | | 08 | 1040 | 130 | 0.0 | 800 | 11 | 1120 | 133 | 22.0 | 910 | | | | | | | | | | | | | | 066024 | 100 Monona | -Harrison I | Ditch near | Turin, IA (LAT 41 57 5 | 2N LONG | 3 093 39 301 | N) | | | NOV 1993<br>08 | 1020 | 328 | 2.0 | 725 | MAY 1994<br>17 | 1035 | 269 | 19.0 | 710 | | JAN 1994 | | | | | JUL | | | | | | 27<br>MAR | 0835 | 250 | 0.0 | 905 | 08<br>AUG | 1410 | 1500 | 22.5 | 505 | | 02<br>APR | 1140 | 469 | 15.0 | 760 | 23 | 1015 | 213 | 21.0 | 802 | | 04 | 1500 | 262 | 10.0 | 790 | | | | | | | | | | | | | | | | | | | 0660 | 5000 Ochey | edan River | near Spen | cer, IA (LAT 43 07 44) | N LONG | 095 12 3 <b>7W</b> ) | ) | | | NOV 1993 | | | | - 40 | JUL 1994 | 2025 | 721 | | 200 | | 10<br>MAR 1994 | 0820 | 134 | 2.0 | 540 | 14<br>AUG | 0825 | 731 | 18.0 | 700 | | 17<br>JUN | 1430 | 412 | 3.0 | 565 | 16<br>SEP | 1550 | 307 | 23.0 | 625 | | 09 | 0840 | 370 | 15.0 | 800 | 29 | 0820 | 92 | 14.0 | 750 | | | | | | | m .a -a -a | | 005440077 | _ | | | | 06605 | 850 Little S | ioux River | at Linn Gr | ove, IA (LAT 42 53 24 | N LONG | 095 14 30W | ) | | | NOV 1993 | 1210 | 500 | 3.0 | 400 | JUL 1994 | 1120 | 2070 | 20.0 | 575 | | 10<br>FEB 1994 | 1210 | 593 | 3.0 | 490 | 14<br>AUG | 1130 | | 20.0 | 575 | | 17<br>MAR | 1120 | 184 | 0.0 | 762 | 17<br>SEP | 0805 | 1200 | 22.0 | 600 | | 18 | 0855 | 2120 | 3.0 | 585 | 29 | 1045 | 376 | 15.0 | 725 | | JUN<br>09 | 1230 | 1310 | 19.0 | 725 | | | | | | | | | | | _ | | | ~~~ | | | | | U66066 | UU Little Sio | ux Kiver at | Correction | ville, IA (LAT 42 28 2 | UN LON | J 095 47 49 | W) | | | NOV 1993 | 1420 | 1130 | 2 0 | 050 | JUN 1994 | 0945 | 977 | E23.0 | 705 | | 15<br>MAR 1994 | 1420 | 1130 | 2.0 | 850 | 06<br>13 | 1325 | 4120 | 22.0 | 450 | | 03<br>24 | 0935<br>0930 | 1340<br>1810 | 1.0<br>7.0 | 640<br>680 | JUL<br>13 | 1605 | 2730 | 24.0 | 670 | | APR | | | | | AUG | 0940 | | | | | 06 | 1130 | 1360 | 6.0 | 690 | 17 | 0940 | 1550 | 21.0 | 615 | | DATE | TIME | SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------------|--------------|-------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | ( | 06607200 Ma | aple River | t Mapleton, | IA (LAT 42 09 25N I | ONG 09 | 95 48 35W) | | | | OCT 1993 | 0950 | 454 | 7.0 | 750 | JUN 1994<br>05 | 1335 | 291 | 23.0 | 648 | | MAR 1994<br>03<br>24 | 1145<br>1215 | 512<br>290 | 2.0<br>6.0 | 607<br>740 | JUL<br>14<br>AUG | 1050 | 774 | 20.0 | 660 | | APR<br>04 | 1040 | 268 | 9.0 | 700 | 17 | 1230 | 343 | 23.0 | 780 | | | 06 | 607500 Lind | e Sioux Riv | er near Turi | n, IA (LAT 41 57 52N | LONG | 095 58 21W) | | | | NOV 1993 | | | | | JUN 1994 | | | | | | 08<br>JAN 1994 | 1300 | 1610 | 2.0 | 630 | 17<br>JUL | 1445 | 2020 | 23.5 | 680 | | 27<br>MAR<br>10 | 1105 | 845<br>7580 | 0.0 | 700 | 08<br>AUG | 1120 | 4460 | 22.5 | 655 | | APR<br>05 | 1350<br>0855 | 1640 | 1.0<br>4.5 | 410<br>725 | 23 | 1645 | 1480 | 26.0 | 690 | | | | | | | | | ## # <b>#</b> | | | | | ı | 00008500 50 | oldier Kiver | at Pisgah, L | A (LAT 41 49 50N LC | JNG 095 | 55 52W) | | | | NOV 1993<br>09 | 1200 | 263 | 2.0 | 765 | MAY 1994<br>10 | 1330 | 142 | 21.0 | 700 | | JAN 1994<br>24 | 1250 | 200 | 1.0 | 750 | JUL<br>09 | 1000 | 238 | 18.5 | 692 | | MAR<br>10 | 1015 | 238 | 2.0 | 720 | AUG<br>22 | 1410 | 141 | 23.0 | 722 | | APR<br>04 | 1345 | 177 | 9.5 | 740 | | | | | | | | | 06609500 B | loyer River | at Logan, IA | (LAT 41 38 33N LO | NG 095 | 46 57W) | | | | MAR 1994 | | | | | JUN 1994 | | | | | | 24<br>APR | 1430 | 178 | 8.5 | 790 | 02<br>05 | 0945<br>1130 | 210<br>360 | 16.5<br>20.0 | 665<br>585 | | 04<br>MAY | 1015 | 311 | 8.0 | 730 | JUL<br>09 | 1250 | 379 | 22.0 | 682 | | 16 | 1055 | 261 | 19.0 | 710 | AUG<br>22 | 1125 | 171 | 22.0 | 718 | | | 06 | 5610000 Mis | souri River | at Omaha, I | NE (LAT 41 15 32N L | ONG 09 | 5 55 20W) | | | | OCT 1993 | | | | | MAY 1994 | | | | | | 05<br>12 | 1045<br>1115 | 31800<br>35200 | 12.0<br>11.0 | 870<br>800 | 03 | 1020<br>1050 | 3700<br>43 <b>9</b> 00 | 12.0<br>15.0 | 830<br>860 | | 19 | 0830 | 32300 | 13.0 | 815 | 10<br>17 | 0835 | 44300 | 20.0 | 780 | | 26<br>NOV | 0840 | 30500 | 12.0 | 830 | 24 | 0930 | 42200<br>41900 | 22.0 | 875 | | 02 | 0830 | 31200 | 5.0 | 820 | 31<br>Jun | 1155 | 41900 | 23.0 | 690 | | 09 | 0935 | 29700 | 0.0 | 800 | 07 | 1250 | 40800 | 23.0 | 770 | | 16<br>23 | 1415<br>1100 | 33200<br>30700 | 3.0<br>2.0 | 720<br>840 | 14<br>21 | | 45500<br>48000 | 23.0<br>25.0 | 790<br>700 | | 30 | 1135 | 24000 | 1.0 | 830 | JUL | | | | | | DEC<br>14 | 1150 | 23900 | 1.0 | 920 | 01<br>11 | 1415<br>1100 | 53000<br>43400 | 25.0 | 690<br>793 | | JAN 1994 | | | | | 19 | 1610 | 44000 | 23.0<br>26.0 | 800 | | 11<br>25 | 1350<br>1640 | 22300<br>25300 | 1.0 | 966<br>900 | 25<br>AUG | 1305 | 39000 | 26.0 | 765 | | MAR | | | | | 01 | 0810 | 35000 | 24.0 | 800 | | 01<br>18 | 0840 | 30100 | 2.0 | 550 | 08 | | 36500 | 24.0 | 780 | | 22 | 1540<br>1130 | 39100<br>36200 | 12.0<br>8.0 | 690<br>650 | 16<br>23 | | 37900<br>36500 | 23.0<br>24.0 | 775<br>775 | | 28 | 0955 | 33200 | 6.0 | 760 | 29 | | 36100 | 24.5 | 775 | | APR<br>04 | 1500 | 38600 | 9.0 | 750 | SEP<br>07 | 1225 | 3690 | 22.0 | 795 | | 13 | 1025 | 39200 | 9.0 | 740 | 12 | 1030 | 34900 | 23.0 | 753 | | 25 | 0915 | 35500 | 17.0 | 780 | 19 | 0910 | 35000 | 22.0 | 758 | | | | | | | 26 | 1245 | 38500 | 18.0 | 747 | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|-----------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 0680 | 7000 Misson | uri River at | Nebraska ( | City, NE (LAT 40 40 5 | 5N LONG | G 095 50 48V | V) | | | OCT 1993<br>05 | 1330 | 39500 | 14.0 | 860 | MAY 1994<br>02 | 1520 | 42400 | 9.0 | 778 | | 12<br>18 | 1440<br>1035 | 40400<br>39300 | 12.0<br>13.5 | 760<br>765 | 10<br>17 | 1440<br>1110 | 48900<br>48400 | 14.0<br>19.0 | 760<br>785 | | 25<br>NOV | 1140 | 38100 | 11.0 | 810 | 23<br>31 | 1015<br>1340 | 43600<br>43700 | 22.0<br>23.0 | 810<br>760 | | 01<br>08 | 1140<br>1215 | 37400<br>36300 | 5.0<br>5.0 | 850<br>800 | JUN 06 | 1005 | 51800 | 23.0 | 770 | | 22<br>DEC | 1125 | 37200 | 3.0 | 860 | 13<br>JUL | 1450 | 51500 | 24.0 | 800 | | 03 | 1230<br>0910 | 31900<br>33400 | 4.0<br>1.0 | 480<br>830 | 05<br>19 | 1020<br>1140 | 59200<br>53300 | 25.5<br>26.0 | 661<br>725 | | JAN 1994<br>11 | 1200 | 22400 | 0.0 | 747 | 25<br>AUG | 1510 | 43000 | 26.0 | 735 | | 24<br>FEB | 1645 | 28700 | 1.0 | 946 | 01<br>08 | 1040<br>0940 | 41200<br>41300 | 25.5<br>24.0 | 721<br>700 | | 14 | 1310<br>1300 | 26100<br>33200 | 1.0<br>1.0 | 850<br>720 | 15<br>22 | 1250<br>1230 | 40700<br>38800 | 23.0<br>25.0 | 750<br>750 | | MAR<br>07 | 1415 | 88400 | 1.0 | 530 | 29<br>SEP | 1520 | 38000 | 25.0 | 795 | | 14<br>21 | 0125<br>1155 | 150<br>45600 | 4.0<br>8.0 | 630<br>655 | 06<br>12 | 1240<br>1300 | 42200<br>37300 | 23.0<br>22.0 | 760<br>790 | | 28<br>APR | 1050 | 42200 | 6.0 | 740 | 19<br>27 | 1020<br>1155 | 36900<br>39400 | 22.0<br>18.0 | 753<br>721 | | 04<br>11 | 0955<br>1130 | 38400<br>43500 | 8.5<br>9.0 | 761<br>768 | *** | | | - | | | 18<br>25 | 1130<br>1715 | 48200<br>40600 | 17.0<br>17.0 | 825<br>700 | | | | | | | | | | | | | | | | | | | 068074 | 10 West Nis | shnabotna F | liver at Har | cock, IA (LAT 41 23 | 24N LON | G 095 22 17 | W) | | | MAR 1994<br>03 | 1200 | 382 | 2.0 | 570 | MAY 1994<br>19 | 0800 | 146 | 17.0 | 426 | | APR<br>06 | 1030 | 185 | 1.5 | 650 | AUG 24 | 1625 | 130 | 29.0 | 631 | | ••••• | 2000 | 200 | | - | | 2020 | | | 751 | | | 068085 | 00 West Nisi | hnabotna R | iver at Ran | dolph, IA (LAT 40 52 | 23N LON | G 095 34 48 | W) | | | OCT 1993<br>04 | 1145 | 1550 | 13.0 | 625 | JUN 1994<br>01 | 1430 | 443 | 21.0 | 660 | | NOV<br>08 | 1655 | 1100 | 5.0 | 661 | 13<br>JUL | 1000 | 5880 | 19.0 | 280 | | MAR 1994<br>07 | 1700 | 1110 | 4.0 | 410 | 22<br>SEP | 1330 | 655 | 24.0 | 619 | | APR<br>19 | 1040 | 459 | 16.0 | 600 | 02 | 1350 | 349 | 20.0 | 625 | | | | | | | | | | | | | | 0680921 | 0 East Nish | nabotna Ri | ver near At | lantic, IA (LAT 41 20 | 46N LON | G 095 04 36 | W) | | | FEB 1994<br>04 | 1120 | 105 | 0.0 | 900 | JUN 1994<br>18 | 1550 | 120 | 25.0 | 535 | | MAR<br>03 | 1450 | 270 | 6.0 | 420 | 23<br>JUL | 1200 | 1800 | 21.0 | 240 | | MAY<br>05 | 1700 | 104 | 5.0 | 555 | 06<br>AUG | 1235 | 230 | 25.5 | 504 | | v3 | 1700 | 104 | 3.0 | 333 | 24 | 1350 | 73 | 28.5 | 538 | | | 068095 | 00 East Nisl | hnabotna R | iver at Red | Oak, IA (LAT 41 00 3 | IN LONG | G 095 14 <b>29</b> V | W) | | | OCT 1993 | | 22.0 | 36.5 | 505 | MAY 1994 | 1150 | 262 | 10.0 | 71.0 | | 06<br>NOV | 1545 | 939 | 16.5 | 505 | 17<br>JUN | 1150 | 269 | 19.0 | 710 | | 08<br>JAN 1994 | 1345 | 593 | 5.0 | 547 | JUL 01 | 1205 | 220 | 21.0 | 550 | | 27<br>MAR | 0915 | 250 | 0.0 | 905 | 08<br>19 | 1530<br>1250 | 1500<br>356 | 22.5<br>27.0 | 505<br>500 | | 02<br>08 | 1345<br>10 <b>1</b> 5 | 469<br>479 | 1.5<br>3.0 | 760<br>350 | AUG<br>23 | 1115 | 213 | 21.0 | 802 | | APR<br>04 | 1640 | 262 | 10.0 | 790 | SEP<br>01 | 1230 | 180 | 20.0 | 474 | | 18 | 1245 | 261 | 18.0 | 506 | | | | • | | | | 068100 | 00 Nishnabo | otna River a | bove Haml | burg, IA (LAT 40 37 5 | 7N LONG | 9 095 37 32V | V) | | | OCT 1993 | 9560 | 22.62 | 45.0 | | JUL 1994 | 1150 | 1070 | 24.0 | 500 | | 04<br>NOV | 1500 | 3360 | 15.0 | 515 | 22<br>AUG | 1150 | 1270 | 24.0 | 509 | | 29<br>JAN 1994 | 1300 | 1600 | 1.5 | 583 | 30<br>SEP | 1150 | 627 | 23.0 | 483 | | 28<br>MAR | 1135 | 1350 | 0.0 | 660 | 30 | 1235 | 509 | 20.0 | 525 | | 07<br>31 | 1400<br>1100 | 2210<br>1040 | 3.0<br>6.0 | 300<br>540 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | ( | 06813500 M | issouri Riv | er at Rulo, l | NE (LAT 40 03 13N L | ONG 095 | 25 19W) | | | | OCT 1993 | 4455 | E | 16.0 | | MAY 1994 | 1200 | F1200 | 16.0 | 040 | | 09<br>13 | 1155<br>1325 | 55400<br>48400 | 16.0<br>13.0 | 980<br>735 | 05<br>09 | 1300<br>1330 | 51300<br>54800 | 16.0<br>13.0 | 840<br>740 | | 19<br>27 | 1225<br>1000 | 47400<br>44600 | 13.0<br>12.5 | 800<br>769 | 18<br>25 | 1055<br>1350 | 49100<br>47500 | 20.0<br>23.0 | 810<br>740 | | NOV | 1000 | | 12.5 | 709 | JUN | 1330 | | 23.0 | | | 17<br>DEC | 1030 | 45500 | 4.0 | 680 | 02<br>08 | 1010<br>1150 | 54200<br>50200 | 0.0<br>23.0 | 680<br>690 | | 01 | 1010 | 32200 | 7.0 | 600 | 15 | 1135 | 55600 | 25.0 | 750 | | 16<br>JAN 1994 | 1110 | 37600 | 2.0 | 825 | 22<br>29 | 1110<br>1800 | 57600<br>66000 | 25.0<br>26.0 | 700<br>625 | | 03 | 1125 | 33900 | 0.0 | 864 | JUL | | | | | | 12<br>24 | 1035<br>1220 | 26100<br>30600 | 1.0<br>1.5 | 972<br>927 | 05<br>15 | 1200<br>1210 | 70000<br>70400 | 26.0<br>25.0 | 660<br>710 | | FEB<br>14 | 1330 | 29900 | 1.0 | 735 | 20<br>27 | 1220<br>1215 | 57300<br>44000 | 25.0<br>25.0 | 725<br>760 | | 22 | 1045 | 70400 | 1.0 | 575 | AUG | | | | | | 28<br>MAR | 1340 | 37200 | 0.0 | 810 | 04<br>11 | 1240<br>1210 | 44300<br>43200 | 26.5<br>25.0 | 735<br>750 | | 07<br>17 | 1315<br>1300 | 91100<br>50800 | 3.0 | 535 | 18 | 1245<br>1300 | 42000<br>41000 | 25.0<br>26.0 | 775<br>780 | | 24 | 1025 | 48700 | 10.0<br>12.0 | 695<br>610 | 25<br>SEP | | | | | | 31<br>APR | 1330 | 45900 | 8.0 | 800 | 01<br>08 | 1245<br>1200 | 40000<br>43400 | 24.0<br>23.0 | 760<br><b>69</b> 4 | | 07 | 1205 | 45200 | 8.0 | 825 | 14 | 1050 | 37900 | 24.0 | 732 | | 14<br>21 | 1000<br>0945 | 48500<br>46100 | 10.0<br>15.0 | 770<br>760 | 22<br>28 | 1300<br>1010 | 38500<br>41200 | 21.0<br>17.0 | 745<br>725 | | | 06 | 817000 Nod | away Rive | at Clarinda | a, IA (LAT 40 44 19N | LONG 09 | 95 00 47W) | | | | NOV 1993<br>09 | 1110 | 246 | 4.0 | 466 | JUN 1994 | 1120 | E11 | 17.0 | 360 | | JAN 1994 | 1110 | 346 | 4.0 | 466 | 02<br>24 | 1130<br>1135 | 511<br>3210 | 17.0<br>21.0 | 360<br>220 | | 11<br>MAR | 1330 | 143 | 0.0 | 295 | JUL<br>21 | 1220 | 254 | 24.0 | 409 | | 08<br>APR | 1420 | 358 | 3.0 | 295 | AUG | | 105 | | 374 | | 19 | 1415 | 184 | 20.0 | 3 90 | 31 | 1300 | 103 | 21.0 | 3/4 | | | | | | | | | | | | | | 0681 | 9185 East F | onk 102 Riv | er at Bedfo | ord, IA (LAT 40 39 381 | LONG | 094 42 59W | ) | | | OCT_1993 | | | | | MAY 1994 | 1544 | | | | | 05<br>FEB 1 <b>9</b> 94 | 1115 | 11 | 4.0 | 479 | 02<br>JUL | 1500 | 311 | 15.0 | 290 | | 04<br>MAR | 0900 | 5.4 | 0.0 | 4 90 | 21<br>AUG | 1050 | 7.1 | 24.0 | 362 | | 08 | 1700 | 37 | 4.0 | 310 | 31 | 1535 | 1.5 | 22.5 | 329 | | APR<br>01 | 1635 | 6.1 | 19.0 | 424 | | | | | | | | 068 | 97950 Elk C | reek near l | Decatur City | y, IA (LAT 40 43 18N | LONG 09 | 3 56 12W) | | | | OCT 1993<br>05 | 1440 | 6.8 | 16.0 | 490 | JUN 1994<br>14 | 1250 | 29 | 29.5 | 432 | | NOV<br>09 | 1550 | 5.4 | 7.0 | 535 | JUL<br>20 | 1840 | 7.3 | 28.0 | 498 | | MAR 1994<br>09 | 1110 | 22 | 3.0 | 445 | 21<br>AUG | 0740 | 3.4 | 21.0 | 497 | | 22 | 1500 | 13 | 18.5 | 506 | 10 | 1430 | 0.06 | 29.5 | 556 | | APR<br>19<br>MAY | 1905 | 4.2 | 21.0 | 564 | 10<br>31<br>SEP | 1455<br>1800 | 0.14<br>1.8 | 0.0<br>22.0 | 556<br>407 | | 03 | 0840 | 75 | 14.0 | 445 | 15 | 0950 | 0.05 | 26.0 | 601 | | 09<br>14 | 1215<br>1250 | 9.5<br>29 | 23.0<br>29.5 | 548<br>432 | | | | | | | | 0689 | 8000 Thomp | son River | at Davis Cit | y, IA (LAT 40 38 25N | LONG 0 | 93 48 29W) | | | | NOV 1993 | | 145 | | | MAY 1994 | | | | | | 10<br>JAN 1994 | 0840 | 147 | 3.0 | 527 | 02<br>JUN | 1900 | 2350 | 15.0 | 240 | | 29<br>MAR | 1140 | 128 | 0.0 | 430 | 20<br>AUG | 2015 | 57 | 27.0 | 373 | | 09 | 0900 | 495 | 2.0 | 295 | 31 | 1950 | 36 | 21.0 | 274 | | APR<br>20 | 0730 | 85 | 16.0 | 506 | | | | | | | | | | | | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|--------------------|----------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 069 | 03400 Char | riton River | near Chariton, | IA (LAT 40 57 12N | LONG 0 | 93 15 37W) | | | | OCT 1993 | | | | | MAY 1994 | | | | | | 14 | 0900 | 0.0 | 14.5 | 190 | 03 | 1115 | 98 | 13.5 | 240 | | 14 | 1125 | 15 | 10.5 | 490 | 03 | 1545 | 30 | 14.0 | 484 | | DEC | 0000 | 2220 | 2 6 | 100 | JUN | | 005 | 27.0 | 400 | | 14<br>15 | 0900<br>1110 | 2230<br>31 | 2.5<br>15.0 | 196<br>538 | 16<br>AUG | 1300 | 825 | 37.0 | 409 | | FEB 1994 | 1110 | 31 | 15.0 | 338 | 10 | 1040 | 21 | 23.0 | 265 | | 18 | 1118 | 15 | 4.0 | 287 | 10 | 1640 | 0.44 | 25.5 | 456 | | MAR | | | | | | | | | | | 15<br>1 <b>6</b> | 1050<br>0935 | 48<br>117 | 5.5<br>5.5 | 415<br>225 | | | | | | | 10 | 0933 | 117 | 3.3 | 223 | | | | | | | 0 | 6903700 S | South Fork C | hariton Riv | er near Promis | e City, IA (LAT 40 | 48 02N L | ONG 093 1 | 1 32W) | | | OCT 1993 | | | | | MAY 1994 | | | | | | 13 | 1435 | 20 | 10.5 | 395 | 03 | 1312 | 34 | 14.5 | 505 | | DEC<br>15 | 0855 | 88 | 3.5 | 500 | JUN<br>16 | 1034 | 30 | 32.5 | 514 | | MAR 1994 | 0633 | 00 | 3.3 | 300 | AUG | 1034 | 30 | 32.3 | 214 | | 14 | 1650 | 43 | 7.5 | 495 | 11 | 1115 | 1.6 | 20.0 | 488 | | | | | | | | | | | | | | 069 | 03900 Char | iton River | near Rathbun, 1 | A (LAT 40 49 22N | LONG 09 | )2 53 22W) | | | | DEC 1993 | | | | | MAY 1994 | | | | | | 14 | 0900 | 2230 | 2.5 | 196 | 03 | 1115 | 98 | 13.5 | 240 | | FEB 1994 | | | | | JUN | | | 25.0 | 400 | | 18<br>MAR | 1120 | 15 | 4.0 | 287 | 16<br>AUG | 1300 | 825 | 37.0 | 409 | | 16 | 0935 | 117 | 5.5 | 225 | 10 | 1040 | 21 | 23.0 | 265 | | | | | | | | | | | | | | 0690 | 04010 Char | iton River 1 | near Moulton, l | A (LAT 40 41 30N | LONG 09 | 2 46 15W) | | | | OCT 1993 | | | | | MAY 1994 | | | | | | 12 | 1650 | 1890 | 15.5 | 200 | 03 | 0820 | 203 | 1.5 | 351 | | DEC | | | | | JUL | | | 20.0 | 490 | | 15<br>MAR 1994 | 1425 | 594 | 3.0 | 284 | 15<br>AUG | 1423 | 90 | 26.0 | 470 | | 15 | 1530 | 1270 | 5.0 | 247 | 09 | 1850 | 36 | 26.5 | 376 | # 0690367640 CORYDON LAKE, 2150 FT U/S FM DAM, AT CORYDON, IA WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | TIME | SAMPLE<br>LOCAT.<br>X-SECT.<br>LOOKING<br>UPSTRM.<br>(FT FM<br>R BANK)<br>(00001) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | TRANS-<br>PAR-<br>ENCY<br>(SECCHI<br>DISK)<br>(IN)<br>(00077) | |-----------|--------------|-----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------| | OCT 1993 | | | | | | | | | | | 13 | 0925 | 300 | 2.00 | 13.0 | 209 | 8.0 | 12.8 | 125<br>118 | 15.3 | | 13 | 0927 | 300 | 4.00<br>5.00 | 13.0 | 209<br>206 | 8.0<br>8.0 | 12.1<br>11.7 | 114 | 15.3<br>15.3 | | 13 | 0929<br>0935 | 300<br>300 | 1.00 | 13.0<br>13.0 | 208 | 8.0 | 13.2 | 128 | 15.3 | | 13<br>NOV | 0933 | 300 | 1.00 | 13.0 | 200 | 0.0 | 10.2 | | 10.0 | | 17 | 0908 | 300 | 2.00 | 4.5 | 229 | 7.4 | 9.4 | 75 | 25.2 | | 17 | 0909 | 300 | 4.00 | 4.5 | 230 | 7.4 | 9.4 | 75 | 25.2 | | 17 | 0910 | 300 | 5.00 | 4.5 | 229 | 7.4 | 9.4 | 75 | 25.2 | | 17 | 0915 | 300 | 1.00 | 4.5 | 229 | 7.3 | 9.5 | 76 | 25.2 | | DEC | 1223 | 300 | 2.00 | 2.0 | 238 | 7.8 | 13.0 | 99 | 35.1 | | 13<br>13 | 1224 | 300 | 4.00 | 2.0 | 232 | 7.8 | 13.1 | 100 | 35.1 | | 13 | 1225 | 300 | 5.00 | 2.0 | 235 | 7.8 | 13.0 | 99 | 35.1 | | 13 | 1230 | 300 | 1.00 | 2.5 | 237 | 7.7 | 12.9 | 99 | 35.1 | | JAN 1994 | | | | | | - 4 | 17.1 | 122 | 22.0 | | 21 | 1218 | 300 | 2.00 | 1.0 | 2 <b>82</b><br>277 | 7.4<br>7.4 | 17.1<br>16.1 | 123<br>122 | 21.9<br>21.9 | | 21<br>21 | 1219<br>1220 | 300<br>300 | 4.00<br>5.00 | 3.0<br>3.0 | 275 | 7.4 | 15.0 | 115 | 21.9 | | 21 | 1230 | 300 | 1.00 | 1.0 | 277 | 7.3 | 16.4 | 117 | 21.9 | | FEB | 1200 | | | | | | | | | | 17 | 1148 | 300 | 2.00 | 5.0 | 270 | 7.1 | 17.0 | 136 | 39.6 | | 17 | 1149 | 300 | 4.00 | 4.5 | 279 | 7.1 | 17.5 | 139 | 39.6 | | 17 | 1155 | 300 | 1.00 | 3.5 | 240 | 7.2 | 16.1 | 124 | 39.6 | | MAR<br>14 | 1254 | 300 | 2.00 | 6.5 | 252 | 8.7 | 16.6 | 141 | 22.2 | | 14 | 1255 | 300 | 4.00 | 6.5 | 250 | 8.7 | 16.9 | 143 | 22.2 | | 14 | 1256 | 300 | 5.00 | 6.5 | 252 | 8.7 | 16.8 | 143 | 22.2 | | 14 | 1300 | 300 | 1.00 | 6.5 | 254 | 8.6 | 15.5 | 133 | 22.2 | | APR | | 300 | 2 22 | 16.0 | 275 | 7.9 | 9.9 | 103 | 26.4 | | 19 | 1225<br>1226 | 300 | 2.00<br>4.00 | 16.0<br>15.0 | 275 | 7.8 | 9.9 | 102 | 26.4 | | 19<br>19 | 1227 | 300 | 5.00 | 15.0 | 275 | 7.8 | 9.7 | 100 | 26.4 | | 19 | 1240 | 300 | 1.00 | 16.5 | 277 | 7.9 | 9.9 | 105 | 26.4 | | MAY | | | | | | | | | | | 16 | 1156 | 300 | 2.00 | 20.5 | 307 | 8.3 | 9.9<br>10 | 113<br>114 | 28.5 | | 16 | 1157<br>1158 | 300<br>300 | 4.00<br>5.00 | 20.5<br>20.0 | 308<br>307 | 8.4<br>8.4 | 10 | 113 | 28.5<br>28.5 | | 16<br>16 | 1210 | 300 | 1.00 | 20.5 | 307 | 8.3 | 9.7 | 111 | 28.5 | | JUN | 1210 | 500 | | | | | | | | | 13 | 1326 | 300 | 2.00 | 23.0 | 293 | 8.4 | 9.1 | 111 | 24.9 | | 13 | 1329 | 300 | 5.00 | 22.0 | 300 | 7.9 | 5.6 | 68 | 24.9 | | 13 | 1335 | 300 | 1.00 | 26.0 | 296 | 8.4 | 9.2 | 118<br>81 | 24.9 | | 13<br>JUL | 1350 | 300 | 4.00 | 22.5 | 298 | 8.0 | 6.8 | 91 | 24.9 | | 11 | 1735 | 300 | 2.00 | 29.5 | 258 | 9.0 | 14.4 | 196 | 7.80 | | 11 | 1736 | 300 | 4.00 | 26.5 | 268 | 8.4 | 10.6 | 136 | 7.80 | | 11 | 1740 | 300 | 1.00 | 30.5 | 254 | 9.2 | >15.0 | | 7.80 | | 11 | 1750 | 300 | 5.00 | 25.5 | 278 | 8.0 | 6.6 | 84 | 7.80 | | AUG | | 200 | 2 00 | 24.0 | 262 | 0.3 | 13.6 | 168 | 30.0 | | 15 | 1404<br>1406 | 300<br>300 | 2.00<br>5.00 | 24.0<br>22.5 | 262<br>266 | 9.3<br>9.2 | 11.6 | 139 | 30.0 | | 15<br>15 | 1410 | 300 | 1.00 | 26.5 | 267 | 9.3 | 12.6 | 163 | 30.0 | | 15 | 1420 | 300 | 4.00 | 22.5 | 264 | 9.2 | 11.5 | 137 | 30.0 | | SEP | | | | | | | | | | | 12 | 1221 | 300 | 2.00 | 23.0 | 252 | 8.7 | 8.6 | 104 | 22.5 | | 12 | 1222 | 300 | 4.00 | 22.5 | 255<br>253 | 8.7<br>8.7 | 7.2<br>9.1 | 86<br>112 | 22.5<br>22.5 | | 12<br>12 | 1235<br>1240 | 300<br>300 | 1.00<br>5.00 | 24.5<br>22.5 | 253<br>256 | 8.7 | 6.8 | 81 | 22.5 | | 44.4. | TETU | | | | | ~ · | ~ | | | # 0690367640 CORYDON LAKE, 2150 FT U/S FM DAM, AT CORYDON, IA--Continued | DATE | TIME | SAMPLE<br>LOCAT.<br>X-SECT.<br>LOOKING<br>UPSTRM.<br>(FT FM<br>R BANK)<br>(00001) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>TOTAL<br>(MG/L)<br>(00500) | SOLIDS,<br>VOLA-<br>TILE ON<br>IGNI-<br>TION,<br>TOTAL<br>(MG/L)<br>(00505) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680) | ALA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(46342) | |-----------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------| | OCT 1993<br>13 | 0935 | 300 | 1.00 | 238 | 198 | <0.05 | 0.01 | 0.6 | 0.02 | 9.2 | | | NOV<br>17 | 0915 | 300 | 1.00 | 158 | 117 | 0.24 | 0.36 | 1.1 | 0.03 | | | | DEC<br>13 | 1230 | 300 | 1.00 | 160 | 2 | 0.36 | 0.31 | 0.9 | 0.02 | 6.9 | | | JAN 1994<br>_21 | 1230 | 300 | 1.00 | 196 | 145 | 0.49 | 0.10 | 0.6 | <0.01 | 7.6 | | | FEB<br>17 | 1155 | 300 | 1.00 | 188 | 111 | 0.24 | 0.05 | 0.5 | <0.01 | 8.5 | | | MAR<br>14 | 1300 | 300 | 1.00 | | | 0.68 | 0.04 | 0.7 | 0.01 | 9.4 | | | APR<br>19 | 1240 | 300 | 1.00 | 193 | 48 | <0.05 | 0.02 | 0.6 | <0.01 | 12 | | | MAY<br>16 | 1210 | 300 | 1.00 | 202 | 74 | 0.41 | 0.13 | 0.8 | 0.01 | 9.5 | <0.05 | | JUN<br>13 | 1335<br>1350 | 300<br>300 | 1.00 | 219<br>222 | 61<br><b>8</b> 1 | 1.00 | 0.15 | | 0.05 | 10<br>11 | | | 13<br>JUL<br>11 | 1740 | 300 | 4.00<br>1.00 | 179 | 125 | 1.20<br>0.08 | 0.18<br>0.02 | | 0.06<br>0.11 | | | | ii<br>AUG | 1750 | 300 | 5.00 | 186 | 128 | 0.21 | 0.18 | | 0.14 | | | | 15<br>15 | 1410<br>1420 | 300<br>300 | 1.00<br>4.00 | 191<br>188 | 119<br>130 | <0.05<br><0.05 | 0.03<br>0.04 | 0.9<br>0.8 | 0.14<br>0.14 | 12<br>14 | | | SEP<br>12<br>12 | 1235<br>1240 | 300<br>300 | 1.00<br>5.00 | 186<br>207 | 89<br>88 | <0.05<br><0.05 | 0.26<br>0.31 | 1.7 | 0.16<br>0.17 | 15<br>15 | | | | | | | | | | | | | | | | DATE | AMETRYN<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(38401) | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(39632) | METO-<br>LACHLOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(39415) | METRI-<br>BUZIN<br>SENCOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(82630) | PROP-<br>AZINE<br>WATER<br>DISS<br>REC<br>(UG/L)<br>(38535) | SI-<br>MAZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04035) | PRO-<br>METRYN,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04036) | PRO-<br>METON,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04037) | DEISO-<br>PROPYL<br>ATRAZIN<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04038) | DEETHYL<br>ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | CYANA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04041) | | OCT 1993 | | | | | | | | | | | | | NOV 17 | | | | | | | | | | | | | DEC<br>13 | | | | | | | | | | | | | JAN 1994<br>21 | | | | | | | | | | | | | FEB<br>17 | | | | | | | | | | | | | MAR<br>14 | | | | | | | | | | | | | APR<br>19 | | | | | | | | | | | | | MAY<br>16 | 0.05 | 1.7 | 0.46 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 0.12 | 0.28 | 2.0 | | JUN<br>13 | | | | | | | | | | | | | JUL<br>11 | | | | | | | | | | | | | AUG<br>15 | | | | | | | | | | | | | SEP | | | | | | | | | | | | # 0690367660 CORYDON LAKE, NORTH ARM, AT CORYDON, IA WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | TIME | SAMPLE<br>LOCAT.<br>X-SECT.<br>LOOKING<br>UPSTRM.<br>(FT FM<br>R BANK)<br>(00001) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE -<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | TRANS-<br>PAR-<br>ENCY<br>(SECCHI<br>DISK)<br>(IN)<br>(00077) | |-----------|--------------|-----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------| | OCT 1993 | | | | | | | | | | | 13 | 1001 | 200 | 2.00 | 13.0 | 206 | 8.0 | 13.0 | 127 | 18.6 | | 13 | 1002 | 200 | 4.00 | 13.0 | 208 | 8.0 | 12.7 | 124 | 18.6 | | 13 | 1003<br>1015 | 200<br>200 | 5.00<br>1.00 | 12.5 | 206 | 7.9 | 12.2 | 118<br>129 | 18.6 | | 13<br>NOV | 1012 | 200 | 1.00 | 13.0 | 208 | 8.0 | 13,1 | 129 | 18.6 | | 17 | 0950 | 200 | 2.00 | 4.5 | 228 | 7.5 | 9.7 | 77 | 26.7 | | 17 | 0951 | 200 | 4.00 | 4.5 | 228 | 7.5 | 9.6 | 77 | 26.7 | | 17 | 0952 | 200 | 6.00 | 4.5 | 229 | 7.5 | 9.6 | 76 | 26.7 | | 17 | 1000 | 200 | 1.00 | 4.5 | 228 | 7.5 | 9.7 | 77 | 26.7 | | DEC | 1150 | 200 | 2 00 | 2.0 | 225 | 2.4 | 12 0 | 98 | 34.0 | | 13<br>13 | 1150<br>1151 | 200 | 2.00<br>4.00 | 2.0<br>2.0 | 238<br>236 | 7.4<br>7.4 | 12.9<br>12.9 | 98 | 34.8<br>34.8 | | 13 | 1152 | 200 | 5.00 | 2.0 | 237 | 7.5 | 12.7 | 97 | 34.8 | | 13 | 1155 | 200 | 1.00 | 2.0 | 236 | 7.3 | 12.9 | 99 | 34.8 | | JAN 1994 | | | | | | | | | | | 21 | 1254 | 200 | 2.00 | 2.0 | 275 | 7.5 | 15.4 | 114 | 25.5 | | 21 | 1255<br>1256 | 200 | 4.00 | 3.0 | 276 | 7.5 | 14.4 | 109<br>107 | 25.5 | | 21<br>21 | 1300 | 200<br>200 | 5.00<br>1.00 | 3.0<br>2.0 | 275<br>275 | 7.5<br>7.5 | 14.1<br>14.6 | 107 | 25.5<br>25.5 | | FEB | 1300 | 200 | 1.00 | 2.0 | 215 | 7.3 | 14.0 | 100 | 23.3 | | 17 | 1238 | 200 | 2.00 | 4.5 | 274 | 7.4 | 15.8 | 125 | 57.3 | | 17 | 1239 | 200 | 4.00 | 4.5 | 283 | 7.4 | 16.2 | 129 | 57.3 | | 17 | 1240 | 200 | 6.00 | 4.5 | 285 | 7.4 | 16.3 | 130 | 57.3 | | 17 | 1245 | 200 | 1.00 | 3.0 | 243 | 7.4 | 15.2 | 116 | 57.3 | | MAR | 1223 | 200 | 2.00 | 6.5 | 256 | 8.7 | 16.8 | 142 | 21.9 | | 14<br>14 | 1223 | 200 | 4.00 | 6.5 | 252 | 8.7 | 16.8 | 142 | 21.9 | | 14 | 1225 | 200 | 5.00 | 6.0 | 252 | 8.6 | 16.7 | 141 | 21.9 | | 14 | 1230 | 200 | 1.00 | 6.5 | 255 | 8.5 | 16.3 | 138 | 21.9 | | APR | | | | | | | | | | | 19 | 1151 | 200 | 2.00 | 15.0 | 279 | 7.6 | 9.6 | 98 | 22.8 | | 19 | 1152 | 200 | 4.00 | 15.0 | 279 | 7.6 | 9.5 | 97 | 22.8 | | 19<br>19 | 1153<br>1205 | 200<br>200 | 5.50<br>1.00 | 15.0<br>15.0 | 281<br>279 | 7.6<br>7.6 | 9.4<br>9.6 | 96<br>99 | 22.8<br>22.8 | | MAY | 1205 | 200 | 1.00 | 15.0 | 219 | 7.0 | 9.0 | 99 | 22.0 | | 16 | 1127 | 200 | 2.00 | 20.5 | 306 | 8.3 | 9.9 | 113 | 32.1 | | 16 | 1128 | 200 | 4.00 | 20.5 | 307 | 8.4 | 10 | 114 | 32.1 | | 16 | 1129 | 200 | 5.00 | 20.0 | 306 | 8.4 | 10 | 114 | 32.1 | | 16 | 1135 | 200 | 1.00 | 20.5 | 307 | 8.1 | 9.6 | 110 | 32.1 | | JUN<br>11 | 1802 | 200 | 2.00 | 29.5 | 256 | 9.0 | 14.8 | 201 | 13.8 | | 11 | 1805 | 200 | 4.00 | 26.0 | 265 | 8.2 | 8.6 | 110 | 13.8 | | 11 | 1807 | 200 | 5.50 | 25.5 | 270 | 7.7 | 5.3 | 67 | 13.8 | | 11 | 1810 | 200 | 1.00 | 30.0 | 255 | 9.1 | >15.0 | | 13.8 | | JUL | | | | | | | | | | | 13 | 1248 | 200 | 2.00 | 23.5 | 295 | 8.3 | 8.6 | 106 | 24.3 | | 13 | 1250<br>1255 | 200<br>200 | 5.50<br>1.00 | 22.0 | 299<br>295 | 7.9<br>8.3 | 5.6 | 67<br>114 | 24.3 | | 13<br>13 | 1305 | 200 | 4.00 | 27.5<br>22.0 | 295<br>298 | 8.1 | 8.6<br>6.8 | 82 | 24.3<br>24.3 | | AUG | 1303 | 200 | 4.00 | 22.0 | 290 | 0.1 | 0.0 | 02 | 24.5 | | 15 | 1433 | 200 | 2.00 | 25.0 | 267 | 9.4 | 13.7 | 171 | 33.0 | | 15 | 1434 | 200 | 4.00 | 23.0 | 267 | 9.3 | 11.9 | 143 | 33.0 | | 15 | 1445 | 200 | 1.00 | 27.0 | 368 | 9.4 | 12.7 | 164 | 33.0 | | 15 | 1455 | 200 | 5.00 | 22.0 | 275 | 9.0 | 8.9 | 106 | 33.0 | | SEP | 4455 | | | | | | | | | | 12 | 1257 | 200 | 2.00 | 23.5 | 252 | 9.0 | 8.6 | 105 | 22.8 | | 12<br>12 | 1258<br>1259 | 200<br>200 | 4.00<br>5.00 | 23.5<br>23.5 | 256<br>256 | 9.0<br>9.0 | 8.6<br>8.5 | 104<br>103 | 22.8<br>22.8 | | 12 | 1315 | 200 | 1.00 | 23.5 | 250 | 9.0 | 8.6 | 103 | 22.8 | | | 1313 | 200 | 1.00 | 23.3 | 232 | 9.0 | 0.0 | 104 | 22.0 | # 0690367660 CORYDON LAKE, NORTH ARM, AT CORYDON, IA-Continued | DATE | TIME | SAMPLE<br>LOCAT.<br>X-SECT.<br>LOOKING<br>UPSTRM.<br>(FT FM<br>R BANK)<br>(00001) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>TOTAL<br>(MG/L)<br>(00500) | SOLIDS,<br>VOLA-<br>TILE ON<br>IGNI-<br>TION,<br>TOTAL<br>(MG/L)<br>(00505) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680) | ALA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(46342) | |----------------|------|-----------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------| | OCT 1993 | | | | | | | | | | | | | 13<br>NOV | 1015 | 200 | 1.00 | 238 | 192 | <0.05 | 0.03 | 0.8 | 0.03 | | | | 17<br>DEC | 1000 | 200 | 1.00 | 163 | 92 | 0.26 | 0.35 | 0.9 | 0.03 | | | | 13<br>JAN 1994 | 1155 | 200 | 1.00 | 161 | 53 | 0.36 | 0.31 | 0.9 | 0.02 | 7.1 | | | 21<br>FEB | 1300 | 200 | 1.00 | 197 | 133 | 0.51 | 0.11 | 0.6 | <0.01 | 9.6 | | | 17<br>MAR | 1245 | 200 | 1.00 | 183 | 116 | 0.35 | 0.04 | 0.5 | <0.01 | 10 | | | 14<br>APR | 1230 | 200 | 1.00 | | | 0.61 | 0.02 | 0.7 | <0.01 | 13 | | | 19<br>MAY | 1205 | 200 | 1.00 | 194 | 56 | <0.05 | 0.02 | 0.6 | <0.01 | 11 | | | 16<br>JUN | 1135 | 200 | 1.00 | 207 | 62 | 0.39 | 0.11 | 0.8 | <0.01 | 9.9 | | | 13 | 1255 | 200 | 1.00 | 214 | 81 | 1.00 | 0.10 | | 0.05 | 11 | | | 13<br>JUL | 1305 | 200 | 4.00 | 225 | 81 | 1.10 | 0.19 | | 0.06 | 11 | | | 11<br>AUG | 1810 | 200 | 1.00 | 177 | 128 | 0.21 | 0.24 | | 0.14 | | | | 15 | 1445 | 200 | 1.00 | 182 | 118 | <0.05 | 0.02 | 0.8 | 0.12 | 13 | | | 15<br>SEP | 1455 | 200 | 5.00 | 201 | 131 | <0.05 | 0.02 | 0.7 | 0.14 | 13 | | | 12 | 1315 | 200 | 1.00 | 188 | 99 | 0.05 | 0.24 | 1.1 | 0.17 | 14 | | # 0690367690 CORYDON LAKE 350 FT UPSTREAM OF DAM AT CORYDON, IA WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | TIME | SAMPLE<br>LOCAT.<br>X-SECT.<br>LOOKING<br>UPSTRM.<br>(FT FM<br>R BANK)<br>(00001) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>WATER<br>WHOLE<br>FIELD<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | TRANS-<br>PAR-<br>ENCY<br>(SECCHI<br>DISK)<br>(IN)<br>(00077) | |----------------|--------------|-----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------| | OCT 1993 | 1027 | 300 | 2 00 | 12 5 | 0.07 | | 11 2 | 112 | 15 0 | | 13<br>13 | 1037<br>1039 | 300 | 2.00<br>4.00 | 13.5<br>13.5 | 207<br>207 | 8.0<br>8.0 | 11.3<br>11.2 | 111 | 15.0<br>15.0 | | 13 | 1040 | 300 | 6.00 | 13.5 | 208 | 7.9 | 11.0 | 109 | 15.0 | | 13<br>13 | 1041<br>1043 | 300<br>300 | 8.00<br>10.0 | 13.5<br>13.5 | 208<br>208 | 7.9<br>7.9 | 11.0<br>11.2 | 109<br>111 | 15.0<br>15.0 | | 13 | 1050 | 300 | 1.00 | 13.5 | 206 | 7.9 | 11.8 | 117 | 15.0 | | NOV<br>17 | 1023 | 300 | 2.00 | 5.0 | 229 | 7.5 | 9.2 | 74 | 24.0 | | 17 | 1024 | 300 | 4.00 | 5.0 | 231 | 7.5 | 9.2 | 73 | 24.0 | | 17<br>17 | 1025<br>1026 | 300<br>300 | 6.00<br>8.00 | 5.0<br>5.0 | 230<br>227 | 7.5<br>7.5 | 9.2<br>9.1 | 73<br>73 | 24.0<br>24.0 | | 17 | 1028 | 300 | 10.0 | 5.0 | 228 | 7.5 | 9.1 | 73 | 24.0 | | 17<br>DEC | 1035 | 300 | 1.00 | 5.0 | 228 | 7.5 | 9.2 | 74 | 24.0 | | 13 | 1055 | 300 | 2.00 | 2.0 | 240 | 7.4 | 12.4 | 94 | 34.5 | | 13 | 1056 | 300 | 4.00 | 2.0 | 243 | 7.4 | 12.4 | 94 | 34.5 | | 13<br>13 | 1057<br>1058 | 300<br>300 | 6.00<br>8.00 | 2.0<br>2.0 | 239<br>237 | 7.5<br>7.6 | 12.4<br>12.3 | 95<br>94 | 34.5<br>34.5 | | 13 | 1059 | 300 | 10.0 | 2.0 | 239 | 7.6 | 12.4 | 95 | 34.5 | | 13<br>JAN 1994 | 1105 | 300 | 1.00 | 2.0 | 240 | 7.3 | 12.5 | 95 | 34.5 | | 21 | 1136 | 300 | 2.00 | 1.5 | 273 | 7.4 | 11.8 | 85 | 37.2 | | 21<br>21 | 1137<br>1138 | 300<br>300 | 4.00<br>6.00 | 3.5<br>3.5 | 268<br>268 | 7.3<br>7.2 | 11.1<br>10.7 | 85<br>82 | 37.2<br>37.2 | | 21 | 1139 | 300 | 8.00 | 3.5 | 268 | 7.2 | 10.2 | 79 | 37.2 | | 21 | 1140 | 300<br>300 | 10.0<br>1.00 | 4.0 | 275 | 7.2 | 8.8 | 69<br>85 | 37.2<br>37.2 | | 21<br>FEB | 1150 | 300 | 1.00 | 2.0 | 267 | 7.4 | 11.6 | 93 | 31.2 | | 17 | 1345 | 300 | 2.00 | 4.0 | 257 | 7.6 | 13.8 | 109 | 48.0 | | 17<br>17 | 1346<br>1350 | 300<br>300 | 4.00<br>1.00 | 4.5<br>3.0 | 278<br>241 | 7.6<br>7.7 | 14.0<br>13.6 | 111<br>104 | 48.0<br>48.0 | | MAR | | | | | | | | | | | 14<br>14 | 1145<br>1146 | 300<br>300 | 2.00<br>4.00 | 6.5<br>6.5 | 255<br>256 | 7.9<br>8.1 | 17.1<br>17.0 | 145<br>145 | 22.5<br>22.5 | | 14 | 1147 | 300 | 6.00 | 6.5 | 256 | 8.2 | 16.8 | 142 | 22.5 | | 14 | 1148<br>1149 | 300<br>300 | 8.00 | 6.0 | 253 | 8.3 | 16.6<br>16.4 | 140<br>138 | 22.5<br>22.5 | | 14<br>14 | 1149 | 300 | 10.0<br>1.00 | 6.0<br>6.5 | 256<br>254 | 8.3<br>7.4 | 16.6 | 141 | 22.5 | | APR | 1100 | 300 | | | | | 10 | 103 | 25.2 | | 19<br>19 | 1108<br>1109 | 300 | 2.00<br>4.00 | 15.5<br>15.5 | 279<br>282 | 6.7<br>7.1 | 9.9 | 102 | 25.2 | | 19 | 1110 | 300 | 6.00 | 15.0 | 276 | 7.2 | 9.6 | 98 | 25.2 | | 19<br>19 | 1111<br>1115 | 300<br>300 | 8.00<br>1.00 | 15.0<br>15.5 | 280<br>278 | 7.3<br>6.7 | 9.6<br>10 | 9 <b>8</b><br>103 | 25.2<br>25.2 | | 19 | 1130 | 300 | 10.0 | 14.0 | 275 | 7.2 | 7.4 | 73 | 25.2 | | MAY<br>16 | 1046 | 300 | 2.00 | 20.0 | 307 | 8.1 | 9.6 | 108 | 28.5 | | 16 | 1047 | 300 | 4.00 | 20.0 | 306 | 8.1 | 9.6 | 108 | 28.5 | | 16<br>16 | 1048<br>1050 | 300<br>300 | 6.00<br>10.0 | 19.5<br>17.5 | 305<br>310 | 8.1<br>7.8 | 9.5<br>4.0 | 107<br>43 | 28.5<br>28.5 | | 16 | 1100 | 300 | 1.00 | 20.0 | 308 | 8.1 | 9.6 | 108 | 28.5 | | 16<br>JUN | 1110 | 300 | 8.00 | 18.0 | 310 | 7.9 | 6.5 | 71 | 28.5 | | 13 | 1152 | 300 | 2.00 | 24.0 | 291 | 8.4 | 11.7 | 144 | 26.4 | | 13<br>13 | 1154<br>1157 | 300<br>300 | 4.00<br>8.00 | 23.0<br>22.0 | 291<br>300 | 8.4<br>8.0 | 9.5<br>5.6 | 116<br>68 | 26.4<br>26.4 | | 13 | 1158 | 300 | 10.0 | 21.0 | 315 | 7.7 | 1.6 | 18 | 26.4 | | 13 | 1205 | 300 | 1.00 | 25.0 | 298 | 8.0 | 9.5 | 120 | 26.4 | | 13<br>JUL | 1220 | 300 | 6.00 | 22.0 | 300 | 8.2 | 7.7 | 93 | 26.4 | | 11 | 1644 | 300 | 2.00 | 27.5 | 263 | 8.4 | 8.9 | 117 | 18.0 | | 11<br>11 | 1645<br>1647 | 300<br>300 | 4.00<br>8.00 | 25.0<br>24.5 | 272<br>272 | 7.7<br>7.3 | 4.3<br>2.2 | 54<br>28 | 18.0<br>18.0 | | 11 | 1648 | 300 | 10.0 | 24.5 | 272 | 7.2 | 1.2 | 15 | 18.0 | | 11<br>11 | 1700<br>1720 | 300<br>300 | 1.00<br>6.00 | 28.0<br>24.5 | 263<br>272 | 8.2<br>7.4 | 11.0<br>3.1 | 145<br>38 | 18.0<br>18.0 | | AUG | | | | | | | | | | | 15<br>15 | 1312<br>1313 | 300<br>300 | 2.00<br>4.00 | 23.5<br>23.0 | 267<br>267 | 9.1<br>9.0 | 10.3<br>9.6 | 125<br>117 | 20.0<br>20.0 | | 15 | 1314 | 300 | 6.00 | 23.0 | 268 | 9.0 | 9.9 | 120 | 20.0 | | 15 | 1315 | 300 | 8.00 | 22.5 | 265 | 9.0 | 10.1 | 120 | 20.0 | | 15<br>15 | 1330<br>1345 | 300<br>300 | 1.00<br>10.0 | 26.0<br>22.0 | 266<br>269 | 9.1<br>9.0 | 11.3<br>9.2 | 144<br>109 | 20.0<br>20.0 | | SEP | | | | | | | | | | | 12<br>12 | 1130<br>1131 | 300<br>300 | 2.00<br>4.00 | 23.0<br>23.0 | 261<br>262 | 8.8<br>8.8 | 7.4<br>7.3 | 88<br>87 | 27.9<br>27.9 | | 12 | 1132 | 300 | 6.00 | 22.5 | 261 | 8.8 | 4.4 | 53 | 27.9 | | 12<br>12 | 1134<br>1150 | 300<br>300 | 10.0 | 21.0<br>23.0 | 275<br>263 | 8.2<br>8.8 | 0.2<br>7.4 | 2<br>88 | 27.9<br>27.9 | | 12 | 1200 | 300 | 8.00 | 21.0 | 266 | 8.3 | 0.4 | 4 | 27.9 | | | | | | | | | | | | # 0690367690 CORYDON LAKE 350 FT UPSTREAM OF DAM AT CORYDON, IA--Continued | DATE | TIME | SAMPLE<br>LOCAT.<br>X-SECT.<br>LOOKING<br>UPSTRM.<br>(FT FM<br>R BANK)<br>(00001) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>TOTAL<br>(MG/L)<br>(00500) | SOLIDS,<br>VOLA-<br>TILE ON<br>IGNI-<br>TION,<br>TOTAL<br>(MG/L)<br>(00505) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680) | ALA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(46342) | |----------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------| | OCT 1993<br>13 | 1050 | 300 | 1.00 | | | | | | | 9.0 | | | Nov | | | | | | | | | | 3.0 | | | 17<br>DEC | 1035 | 300 | 1.00 | 139 | 95 | 0.24 | 0.37 | 0.9 | 0.04 | | | | 13<br>JAN 1994 | 1105 | 300 | 1.00 | | | 0.36 | 0.33 | 1.0 | 0.02 | | | | 21<br>FEB | 1150 | 300 | 1.00 | 183 | 139 | 0.48 | 0.24 | 0.8 | <0.01 | 8.3 | | | 17<br>MAR | 1350 | 300 | 1.00 | 176 | 114 | 0.46 | 0.08 | 0.6 | <0.01 | 7.8 | | | 14<br>APR | 1155 | 300 | 1.00 | | | 0.62 | 0.03 | 0.6 | <0.01 | 12 | | | 19 | 1115 | 300 | 1.00 | 184 | 47 | <0.05 | 0.03 | 0.5 | <0.01 | 11 | | | 19<br>MAY | 1130 | 300 | 10.0 | 198 | 51 | <0.05 | 0.03 | 0.7 | 0.03 | 11 | | | 16<br>16 | 1100<br>1110 | 300<br>300 | 1.00<br>8.00 | 197<br>215 | 52<br>51 | 0.40 | 0.12 | 0.8 | 0.01 | 9.4<br>9.9 | <0.05<br> | | JUN<br>13 | 1205 | 300 | 1.00 | 215 | 81 | 1.5 | 0.09 | | 0.04 | 10 | | | 13<br>JUL | 1220 | 300 | 6.00 | 224 | 82 | 1.2 | 0.20 | | 0.05 | 10 | | | 11 | 1700<br>1720 | 300<br>300 | 1.00 | 149<br>131 | 123<br>127 | 0.21<br>0.20 | 0.07<br>0.45 | | 0.13<br>0.16 | | <0.01 | | AUG | | | 6.00 | | | | | | | | | | 15<br>15 | 1330<br>1345 | 300<br>300 | 1.00<br>10.0 | 174<br>206 | 121<br>123 | <0.05<br><0.05 | 0.04<br>0.04 | 0.8<br>0.7 | 0.13<br>0.14 | 13<br>14 | | | SEP<br>12 | 1150 | 300 | 1.00 | 186 | 93 | <0.05 | 0.26 | 1.2 | 0.18 | 14 | | | 12 | 1200 | 300 | 8.00 | 207 | 156 | <0.05 | 0.58 | 1.8 | 0.22 | 15 | | | DATE | AMETRYN<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(38401) | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(39632) | METO-<br>LACHLOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(39415) | METRI-<br>BUZIN<br>SENCOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(82630) | PROP-<br>AZINE<br>WATER<br>DISS<br>REC<br>(UG/L)<br>(38535) | SI-<br>MAZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04035) | PRO-<br>METRYN,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04036) | PRO-<br>METON,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04037) | DEISO-<br>PROPYL<br>ATRAZIN<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04038) | DEETHYL<br>ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | CYANA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04041) | | OCT 1993<br>13 | | | | | | | | | | | | | NOV<br>17 | | | | | | | | | | | | | DEC<br>13 | | | | | | | | | | | | | JAN 1994<br>21 | | | | | | | | | | | | | FEB | | | | | | | | | | | | | 17. | | | | | | | | | | | | | 14<br>APR | | | | | | | | | | | | | 19<br>May | | | | | | <del>~~</del> | | | | | | | 16<br>JUN | 0.05 | 1.5 | 0.44 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 0.11 | 0.24 | 1.8 | | 13<br>JUL | | | | | | | | | | | | | 11<br>AUG | | 5.1 | 0.64 | <0.01 | | 0.04 | | 0.05 | | 0.33 | 4.8 | | 15<br>SEP | | | | | | | | | | | | | 12 | | | | | | | | | | | | # 06903677 CORYDON LAKE AT SPILLWAY, CORYDON, IA # WATE-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | DATE | TIME | SAMPLE<br>LOCAT.<br>X-SECT.<br>LOOKING<br>UPSTRM.<br>(FT FM<br>R BANK)<br>(00001) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | TRANS-<br>PAR-<br>ENCY<br>(SECCHI<br>DISK)<br>(IN)<br>(00077) | | |----------------|----------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------| | | JUN 1994<br>13 | 1410 | | 1.00 | 25.5 | 292 | 8.7 | 9.1 | 117 | | | | DATE | TIME | SAMPLE<br>LOCAT.<br>X-SECT.<br>LOOKING<br>UPSTRM.<br>(FT FM<br>R BANK)<br>(00001) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>TOTAL<br>(MG/L)<br>(00500) | SOLIDS,<br>VOLA-<br>TILE ON<br>IGNI-<br>TION,<br>TOTAL<br>(MG/L)<br>(00505) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680) | ALA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(46342) | | JUN 1994<br>13 | 1410 | | 1.00 | 225 | 79 | 1.1 | 0.08 | | 0.05 | 11 | | #### ADAMS COUNTY 405731094480801. Local number, 71-34-07 DCCD. LOCATION.--Lat 40°57'31", long 94°48'08", Hydrologic Unit 10240010, on the west side of county road, approximately .5 mi south of the Town of Brooks. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 2 in., depth 40 ft, cased to 35 ft, screened 35-40 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,094 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above landsurface datum. REMARKS.--Well SW-72 PERIOD OF RECORD.--October 1987 to November 1987, June 1990, and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.85 feet below land-surface datum, August 5, 1993; lowest measured, 22.95 ft below land-surface datum, February 4, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 19.22 | FEB 04 | 22.95 | MAY 05 | 22.65 | JUL 27 | 22.60 | WATER YEAR 1994 HIGHEST 19.22 OCT 29,1993 LOWEST 22.95 FEB 04, 1994 410247094324801. Local number, 72-32-09 CBCC. LOCATION.—Lat 41°02'48", long 94°32'48", Hydrologic Unit 10240010, on the east side of county road, approximately 4 mi northeast of the City of Prescott. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Glacial drift: in glacial material of Pleistocene age. WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 2 in., depth 276 ft, cased to 276 ft, slotted 266-276 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,220 ft above sea level, from topographic map. Measuring point: Top of casing, 1.40 ft above landsurface datum. REMARKS.--Well SW-78. PERIOD OF RECORD .-- October 1987 to November 1987, June 1990, and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.46 feet below land-surface datum, October 29, 1993; lowest measured, 2.40 ft below land-surface datum, July 27, 1994. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|-------------|----------------|-------------|----------------| | OCT 29 | 1.46 | FEB 03 | 2.18 | MAY 05 | 2.05 | JUL 27 | 2.40 | WATER YEAR 1994 HIGHEST 1.46 OCT 29, 1993 LOWEST 2.40 JULY 27, 1994 410248094324801. Local number, 72-32-09 CCBB. LOCATION.—Lat 41°02'48", long 94°32'48", Hydrologic Unit 10240010, on the east side of county road, approximately 4 mi northeast of the City of Prescott. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Glacial drift: in glacial material of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 136 ft, cased to 136 ft, slotted 130-136 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,220 ft above sea level, from topographic map. Measuring point: Top of casing, 2.65 ft above land- surface datum. REMARKS.--Well SW-83. PERIOD OF RECORD.--August 1988, June 1990, and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 3.72 feet below land-surface datum, February 3, 1994; lowest measured, 5.17 ft below land-surface datum, June 14, 1990. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------------|----------------| | OCT 29 | 4.82 | FEB 03 | 3.72 | MAY 05 | 4.80 | JUL 27 | 4.94 | WATER YEAR 1994 HIGHEST 3.72 FEB 03, 1994 LOWEST 4.94 JUL 27, 1994 ## **ADAMS COUNTY--Continued** 410317094324801. Local number, 72-32-09 BBCC. LOCATION. -Lat 41°03'17", long 94°32'48", Hydrologic Unit 10240010, on the east side of county road, approximately 4 mi northeast of the City of Prescott. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 40 ft, cased to 35 ft, screened 35-40 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,168 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above landsurface datum. REMARKS .-- Well SW-77. PERIOD OF RECORD.--October 1987 to November 1987, June 1990, and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.16 feet below land-surface datum, May 7, 1993; lowest measured, 3.60 ft below land-surface datum, February 3, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 1.59 | FEB 03 | 3.60 | MAY 05 | 2.05 | JUL 27 | 3.04 | WATER YEAR 1994 HIGHEST 1.59 OCT 29, 1993 LOWEST 3.60 FEB 03, 1994 410548094452101. Local number, 73-34-27 BCBB. LOCATION.--Lat 41°05'48", long 94°45'21", Hydrologic Unit 10240009, on the east side of State Highway 148, approximately 1.5 mi southwest of the Town of Mount Etna. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 30 ft, cased to 25 ft, screened 25-30 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,108 ft above sea level, from topographic map. Measuring point: Top of casing, 1.90 ft above landsurface datum. REMARKS.--Well SW-71. PERIOD OF RECORD.-October 1987 to November 1987, June 1990, and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 14.11 feet below land-surface datum, June 14, 1990; lowest measured, 18.27 ft below land-surface datum, August 9, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 16.77 | FEB 03 | 16.93 | MAY 05 | 17.27 | JUL 27 | 17.59 | WATER YEAR 1994 HIGHEST 16.77 OCT 29.1993 LOWEST 17.59 JUL 27, 1994 #### **AUDUBON COUNTY** 413044094565601. Local number, 78-36-35 ADCC1. LOCATION.—Lat 41°30'44", long 94°56'56", Hydrologic Unit 10240003, 2.5 mi south of the Town of Brayton on Highway 71, and 0.3 mi west on the north side of County Road F-67. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 115 ft, cased to 115 ft, slotted from 94-101 ft, gravelpacked. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,230 ft above sea level, from topographic map. Measuring point: Top of casing, 2.37 ft above landsurface datum. REMARKS.--Well WC-69. PERIOD OF RECORD .-- June 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.43 ft below land-surface datum, August 11, 1993; lowest measured, 53.55 ft below land-surface datum, April 12, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | _ | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|---|--------|-----------------------|--------|-----------------------| | NOV 04 | 33.75 | FEB 04 | 41.68 | | MAY 04 | 44.29 | JUL 27 | 45.08 | WATER YEAR 1994 HIGHEST 33.75 NOV 04, 1993 LOWEST 45.08 JUL 27, 1994 #### **AUDUBON COUNTY--Continued** 413843094541701. Local number, 79-35-15 DCDD. LOCATION .-- Lat 41°38'43", long 94°54'17", Hydrologic Unit 10240003, approximately 1.5 mi south of the Town of Hamlin and 0.5 mi west of Highway 71. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- East Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 32 ft, cased to 30 ft, slotted from 25-30 ft, open hole 30-32 ft, gravel-packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,245 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above landsurface datum. REMARKS.--Well WC-75. PERIOD OF RECORD .-- June 1982 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 11.28 ft below land-surface datum, May 3, 1983; lowest measured, 18.81 ft below land-surface datum, October 19, 1988. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 04 | 16.72 | FEB 04 | 17.69 | MAY 04 | 18.33 | ЛЛ. 27 | 18.16 | WATER YEAR 1994 HIGHEST 16.72 NOV 04, 1993 LOWEST 18.33 MAY 04, 1994 413958094544501. Local number, 79-35-10 CABB. LOCATION.--Lat 41°39'58", long 94°54'45", Hydrologic Unit 10240003, approximately 0.3 mi west of the Town of Hamlin, on the south side of Highway 44. Owner: Geological Survey Bureau/DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 221 ft, cased to 210 ft, slotted from 168-188 ft, open hole 210-221 ft, gravel-packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,280 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above landsurface datum. REMARKS.--Well WC-17. PERIOD OF RECORD.--August 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.60 ft below land-surface datum, April 15, 1987; lowest measured, 42.40 ft below land-surface datum, November 8, 1991. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|-------------|-----------------------|--------|----------------|--------|-----------------------| | NOV 04 | 38.09 | FEB 04 | 36.33 | MAY 04 | 36.45 | ЛЛ. 27 | 36.68 | WATER YEAR 1994 HIGHEST 36.33 FEB 04, 1994 LOWEST 38.09 NOV 04, 1993 ## **AUDUBON COUNTY--Continued** 415023094593801. Local number, 81-36-12 CBCA LOCATION.--Lat 41°50'23", long 94°59'38", Hydrologic Unit 10240002, approximately 0.5 mi west of the Town of Gray on the east side of County Road N-14, south of the Gray Cemetery. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER. -- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 315 ft, cased to 315 ft, slotted from 279-295 ft, gravelpacked. INSTRUMENTATION.—Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,393 ft above sea level, from topographic map. Measuring point: Top of casing, 1.40 ft above landsurface datum. REMARKS .-- Well WC-18. PERIOD OF RECORD.--August 1981 to current year. REVISION.—Measuring point revised February 13, 1990 to August 4, 1992. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 160.31 ft below land-surface datum, February 26, 1992; lowest measured, 168.52 ft below land-surface datum, October 6, 1987. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|-------------|----------------|-------------|-----------------------|-------------|----------------| | NOV 04 | 162.46 | FEB 04 | 160.37 | MAY 04 | 160.49 | JUL 27 | 160.65 | WATER YEAR 1994 HIGHEST 160.37 FEB 04, 1994 LOWEST 162.46 NOV 04, 1993 #### **BENTON COUNTY** 415211092164101. Local number, 82-12-31 DAAD1. LOCATION.--Lat 41°52'11", long 92°16'41", Hydrologic Unit 07080208, approximately 0.6 mi north of the Iowa River, west side of Iowa Highways 21 and 212, approximately 1.2 mi south of the Town of Belle Plaine. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 26 ft, cased to 23 ft, screen 23 to 26 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 770 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above landsurface datum. REMARKS.--Well IRA-16A. PERIOD OF RECORD.--October 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.18 ft below land-surface datum, May 28, 1991; lowest measured, 7.50 ft below land-surface datum, October 6, 1988. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 10 | 3.26 | FEB 03 | 4.89 | MAY 03 | 4.01 | AUG 02 | 4.20 | WATER YEAR 1994 HIGHEST 3.26 NOV 10, 1993 LOWEST 4.89 FEB 03, 1994 ## **BENTON COUNTY--Continued** 415211092164102. Local number, 82-12-31 DAAD2. LOCATION.--Lat 41°52'11", long 92°16'41", Hydrologic Unit 07080208, approximately 0.6 mi north of the Iowa River, west side of Iowa Highways 21 and 212, approximately 1.2 mi south of the Town of Belle Plaine. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS .- Drilled observation water-table well, diameter 2 in., depth 15 ft, cased to 12 ft, slotted 12 to 15 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 770 ft above sea level, from topographic map. Measuring point: Top of casing, 2.92 ft above landsurface datum. REMARKS.--Well IRA-16B. PERIOD OF RECORD.--October 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.26 ft below land-surface datum, May 28, 1991; lowest measured, 7.54 ft below land-surface datum, August 29, 1988. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------|----------------|--------|----------------|-------------|----------------|--------|----------------| | NOV 10 | 3.30 | FEB 03 | 4.90 | MAY 03 | 4.03 | AUG 02 | 4.01 | WATER YEAR 1994 HIGHEST 3.30 NOV 10, 1993 LOWEST 4.90 FEB 03, 1994 #### **BENTON COUNTY--Continued** 420319091540102. Local number, 84-09-28 DBCC2. LOCATION.--Lat 42°03'19", long 91°54'01", Hydrologic Unit 07080205, approximately 3 mi south and 1.5 mi west of the Town of Shellsburg. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: in dolomite of Silurian age and limestone of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 7 in. to 173 ft, 5 in. to 590 ft, depth 590 ft, cased to 260 ft, open hole 265-590 ft. Cement plug 260-265 ft. Well open to 59.7 ft of Devonian rock reported to yield little, if any, water. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 915 ft above sea level, from topographic map. Measuring point: Top of casing, 2.28 ft above landsurface datum. REMARKS .-- Parker's Grove Cemetery well. PERIOD OF RECORD .-- April 1975 to current year. EXTREMES FOR PERIOD OF RECORD. -Highest water level measured, 150.73 ft below land-surface datum, April 14, 1975; lowest measured, 169.18 ft below land-surface datum, March 26, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 12 | 155.22 | FEB 03 | 159.48 | MAY 03 | 160.15 | AUG 01 | 161.43 | WATER YEAR 1994 HIGHEST 155.22 NOV 12, 1993 LOWEST 161.43 AUG 01,1994 420731092083801. Local number, 85-11-33 CCBC1. LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER.--Devonian: in Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 0.75 in., depth 237 ft, cased to 170 ft, slotted below cement plug, open hole 170 to 237 ft. Cement plugs from 97-100 ft and 237- 240 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM .-- Elevation of land-surface datum is 905 ft above sea level, from topographic map. Measuring point: Top of 6 in. casing, 2.20 ft above land-surface datum. REMARKS .-- Garrison 170 well. PERIOD OF RECORD.--June 1977 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 60.18 ft below land-surface datum, April 19, 1983; lowest measured, 87.50 ft below land-surface datum, August 2, 1994. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |---------------|----------------|-------------|----------------|--------|----------------|-------------|----------------| | <b>NOV</b> 10 | 85.40 | FEB 03 | 82.98 | MAY 04 | 62.73 | AUG 02 | 87.50 | WATER YEAR 1994 HIGHEST 62.73 MAY 04, 1994 LOWEST 87.50 AUG 02, 1994 #### **BENTON COUNTY--Continued** 420731092083803. Local number, 85-11-33 CCBC3. LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Devonian: in Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 97 ft, cased to 90 ft, open hole 90 to 97 ft. Cement plug from 97-100 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 905 ft above sea level, from topographic map. Measuring point: Top of 6 in. casing, 2.20 ft above land-surface datum. REMARKS.--Garrison 109 well. PERIOD OF RECORD .-- June 1977 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.63 ft below land-surface datum, March 23, 1979; lowest measured, 65.36 ft below land-surface datum, February 3, 1994. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|-----------------------| | NOV 10 | 62.39 | FEB 03 | 65.36 | MAY 04 | 63.43 | AUG 02 | 62.80 | WATER YEAR 1994 HIGHEST 62.39 NOV 10, 1993 LOWEST 65.36 FEB 03, 1994 ## **BUENA VISTA COUNTY** 424023095571401. Local number, 91-35-26 BCCC. LOCATION.--Lat 42°40'23", long 94°57'14", Hydrologic Unit 07100006, approximately 2.7 mi west and 0.5 mi north of the Village of Varina. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 2 in., depth 357 ft, cased to 357 ft, perforated 338-347 ft. Paleozoic rock present at 347 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,291 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well D-24. PERIOD OF RECORD .-- December 1978 to current year. REVISION .-- Period of record December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 18.40 ft below land-surface datum, January 7, 1980; lowest measured, 95.30 ft below land-surface datum, December 12, 1978. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |------|-----------------------|-------|-----------------------|-------|-----------------------|-------|-----------------------| | | NOV 03 | 94.31 | MAY 03 | 94.13 | AUG 02 | 93.87 | | WATER YEAR 1994 HIGHEST 93.87 AUG 02, 1994 LOWEST 94.31 NOV 03, 1993 #### **BUENA VISTA COUNTY--Continued** 425233094545001. Local number, 93-35-13 ADAA. LOCATION.—Lat 42°52°33", long 94°54′50", Hydrologic Unit 07100006, south of the Chicago, Rock Island and Pacific Railroad track, approximately 3.5 mi east and 0.75 mi north of the Town of Marathon. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 1.50 in., depth 381 ft, cased to 381 ft, perforated 350-360 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM. --Elevation of land-surface datum is 1,330 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above landsurface datum. REMARKS .-- Well D-36. PERIOD OF RECORD.--February 1980 to current year. EXTREMES FOR PERIOD OF RECORD. -Highest water level measured, 115.06 ft below land-surface datum, January 31, 1994; lowest measured, 133.85 ft below land-surface datum, September 18, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 03 | 132.34 | JAN 31 | 115.06 | MAY 03 | 132.42 | AUG 02 | 131.77 | WATER YEAR 1994 HIGHEST 115.06 JAN 31, 1994 LOWEST 132.42 MAY 03, 1994 #### CALHOUN COUNTY 422812094383501. Local number, 88-33-01 BACD. LOCATION.—Lat 42°28'12", long 94°38'35", Hydrologic Unit 07100006, located approximately 4.5 mi north of Rockwell City, in a trailer park at the south end of North Twin Lake in Twin Lakes State Park. Owner: Pauline Goins. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.—Dug unused water-table well, diameter 24 in., depth 35 ft, casing interval unknown. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,222 ft above sea level, from topographic map. Measuring point: Top of casing, 1.12 ft above landsurface datum. REMARKS.--Twin Lakes (33F2) well. PERIOD OF RECORD.--May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.86 ft below land-surface datum, April 19, 1991; lowest measured, 16.96 ft below land-surface datum, February 28, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER LEVEL | <u>DATE</u> | WATER<br>LEVEL | |---------------|----------------|-------------|----------------|-------------|-------------|-------------|----------------| | <b>NOV 04</b> | 8.98 | FEB 02 | 9.45 | MAY 05 | 7.99 | AUG 02 | 9.54 | WATER YEAR 1994 HIGHEST 7.99 MAY 05, 1994 LOWEST 9.54 AUG 02, 1994 #### CARROLL COUNTY 415658094462601. Local number, 82-34-02 ABBB. LOCATION.—Lat 41°56′58", long 94°46′26", Hydrologic Unit 07100007, on county road approximately 1 mi west of the Town of Carrollton. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Middle Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 105 ft, cased to 105 ft, slotted from 87-96 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,170 ft above sea level, from topographic map. Measuring point: Top of casing, 2.15 ft above landsurface datum. REMARKS.--Well WC-149. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.61 feet below land-surface datum, August 11, 1993; lowest measured, 8.33 ft below land-surface datum, August 3, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 5.73 | FEB 01 | 7.27 | MAY 05 | 7.90 | AUG 03 | 8.33 | WATER YEAR 1994 HIGHEST 5.73 NOV 04, 1993 LOWEST 8.33 AUG 03, 1994 #### **CARROLL COUNTY--Continued** 420230094455101. Local number, 84-34-35 DAAA. LOCATION.-Lat 42°02'30", long 94°45'51", Hydrologic Unit 07100007, on the south side of county road, approximately 1 mi east of Arthur N. Neu County Airport. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Middle Raccoon alluvial and glacial drift: in alluvial sand and gravel of Quaternary age. WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 2 in., depth 40 ft, cased to 40 ft, slotted from 28-40 ft, gravel packed. Glacial till penetrated 31-36 ft and 37-40 ft. INSTRUMENT ATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,185 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above landsurface datum. REMARKS .-- Well WC-146. PERIOD OF RECORD .-- August 1992 to current year. EXTREMES FOR PERIOD OF RECORD .- Highest water level measured, 1.99 feet below land-surface datum, November 2, 1992; lowest measured, 5.48 ft below land-surface datum, August 3, 1994. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------------|----------------| | NOV 04 | 4.31 | FEB 01 | 5.35 | MAY 05 | 4.87 | AUG 03 | 5.48 | WATER YEAR 1994 HIGHEST 4.31 NOV 04, 1993 LOWEST 5.48 AUG 03, 1994 420233094475901. Local number, 83-35-34 BCDC. LOCATION.--Lat 42°02'33", long 94°47'59", Hydrologic Unit 07100007, approximately 3.5 mi west and 1.5 mi south of the Town of Glidden near the airport, west of County Road N-38. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 100 ft, cased to 99 ft, slotted from 72-76 ft; gravel packed, open hole 99-100 ft. Pennsylvanian rock 80-100 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 2.70 ft above landsurface datum. REMARKS.--Well WC-148. PERIOD OF RECORD .-- October 1982 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 15.56 ft below land-surface datum, May 4, 1983; lowest measured, 22.32 ft below land-surface datum, October 11, 1991. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE · | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 19.70 | FEB 01 | 20.62 | MAY 05 | 21.26 | AUG 08 | 21.61 | WATER YEAR 1994 HIGHEST 19.70 NOV 04, 1993 LOWEST 21.61 AUG 08, 1994 420643094403701. Local number, 84-33-03 CADA. LOCATION.--Lat 42°06'43", long 94°40'37", Hydrologic Unit 07100006, 3.5 mi north and 2.5 mi east of the Town of Glidden, on the west side of County Road N-50. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--North Raccoon alluvial: in alluvial sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth15 ft, cased to 15 ft, slotted from 13-15 ft, gravel-packed. .. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.-Elevation of land-surface datum is 1,090 ft above sea level, from topographic map. Measuring point: Top of casing, 2.31 ft above landsurface datum. REMARKS.--Well WC-131. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.06 ft below land-surface datum, July 10, 1990; lowest measured, 11.92 ft below land-surface datum, January 7, 1986. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 9.73 | FEB 01 | 10.93 | MAY 05 | 10.87 | AUG 03 | 11.52 | WATER YEAR 1994 HIGHEST 9.73 NOV 04, 1993 LOWEST 11.52 AUG 03, 1994 #### **CARROLL COUNTY--Continued** 420705094394501. Local number, 84-33-02 BDBA. LOCATION.--Lat 42°07'05", long 94°39'45", Hydrologic Unit 07100006, 3.75 mi north and 3.25 mi east of the Town of Glidden, east of County Road N-50 and the Kendal Bridge. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 76 ft., cased to 76 ft, slotted from 73-76 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.—Elevation of land-surface datum is 1,110 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well WC-132. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 46.93 ft below land-surface datum, August 3,1994; lowest measured, 57.30 ft below land-surface datum, February 13, 1990. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|--------|-----------------------|--------|-----------------------| | NOV 04 | 49.69 | MAY 05 | 46.98 | AUG 03 | 46.93 | WATER YEAR 1994 HIGHEST 46.93 AUG 03, 1994 LOWEST 46.69 NOV 04, 1993 421058094582701. Local number, 85-35-07 CCCC. LOCATION.-Lat 42°10'58", long 94°58'27", Hydrologic Unit 07100006, approximately 1 block north of Iowa Highway 217, next to the town maintenance building, Breda. Owner: Town of Breda. AQUIFER .-- Dakota: in sandstone of Cretaceous age WELL CHARACTERISTICS.--Drilled municipal artesian water well, diameter 10 in., depth 340 ft, cased to 320 ft, screen 320-340 ft. Original depth 349 ft. INSTRÛMENTATION .-- Quarterly measurement with chalked taped by USGS personnel. DATUM.--Elevation of land-surface datum is 1,362 ft above sea level, from topographic map. Measuring point: Vent pipe, 1.60 ft above land-surface datum. REMARKS.--Town well No. 2. Water levels affected by pumping. PERIOD OF RECORD.--March 1942 to August 1966, March 1968 to November 1971, June 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 187.70 ft below land-surface datum, March 25, 1948; lowest measured, 250.40 ft below land-surface datum, May 24, 1977. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|-------------|-----------------------|-------------|----------------|--------|----------------| | NOV 04 | 205.12 | FEB 01 | 216.65 | MAY 05 | 213.20 | AUG 03 | 215.59 | WATER YEAR 1994 HIGHEST 205.12 NOV 04, 1993 LOWEST 216.65 FEB 01, 1994 #### CASS COUNTY 411117095091901. Local number, 74-37-30 BBBB1. LOCATION.--Lat 41°11'17", long 95°09'19", Hydrologic Unit 10240003, on south side of county road approximately 1.75 mi south of the Town of Kirkman. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--East Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 42 ft, cased to 42 ft, slotted from 37-42 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM .- Elevation of land-surface datum is 1,090 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above landsurface datum. REMARKS .-- Well SW-16A(U). PERIOD OF RECORD.--June 1990 and November 1991 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.97 feet below land-surface datum, August 5, 1993; lowest measured, 20.84 ft below land-surface datum, November 20, 1991. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 15.62 | FEB 03 | 18.65 | MAY 05 | 19.23 | JUL 27 | 18.50 | WATER YEAR 1994 HIGHEST 15.62 OCT 29, 1993 LOWEST 19.23 MAY 05, 1994 411117095091902. Local number 74-37-30 BBBB2. LOCATION.--Lat 41°11'17", long 95°09'19", Hydrologic Unit 10240003, approximately 3 mi south of the Town of Griswold, and 1 mi west of Highway 48 on the Pottawattamie County-Cass County border. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--East Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS .-- Drilled observation water-table well, diameter 2 in., depth 70 ft, cased to 70 ft, slotted 59-70 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,090 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above landsurface datum. REMARKS .-- Well SW-16B(L). PERIOD OF RECORD .-- July 1986 to current year. REVISION.--Measuring point revised June 13, 1990 to May 7, 1993. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.62 ft below land-surface datum, June 1, 1987; lowest measured, 21.89 ft below land-surface datum, May 27, 1991. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |-------------|----------------|-------------|-----------------------|-------------|----------------|-------------|----------------| | OCT 29 | 15.47 | FEB 03 | 18.56 | MAY 05 | 19.04 | JUL 27 | 18.36 | WATER YEAR 1994 HIGHEST 15.47 OCT 29, 1993 LOWEST 19.04 MAY 05, 1994 #### CASS COUNTY--Continued 411900094530101. Local number, 75-35-07 BBAB. LOCATION.-Lat 41°19'00", long 94°55'30", Hydrologic Unit 10240003, approximately 3 mi north and 2.9 mi west of the Town of Cumberland, 2 mi south of County Road G-35 and 2.9 mi west of County Road N-28. Owner: Geological Survey Bureau/DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 2 in., depth 218 ft, cased to 189 ft, slotted 189-209 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,295 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above landsurface datum. REMARKS .-- Well SW-17. PERIOD OF RECORD .-- July 1986 to October 1987, February 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 111.65 ft below land-surface datum, August 5, 1993; lowest measured, 125.75 ft below land-surface datum, March 14, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|----------------| | OCT 29 | 111.90 | FEB 03 | 114.26 | MAY 05 | 115.48 | JUL 27 | 115.13 | WATER YEAR 1994 HIGHEST 111.90 OCT 29, 1993 LOWEST 115.48 MAY 05, 1994 412832095033501. Local number, 77-37-13 BBBB. LOCATION.-Lat 41°28'32", long 95°03'35", Hydrologic Unit 10240003, approximately 1 mi south of U.S. Interstate 80, and east of Highway 173. Approximately 2 mi north and 3 mi east of the Town of Mame. Owner: Geological Survey Bureau/DNR and U.S. Geological Survey. AQUIFER.-Buried channel: in sand of Pleistocene age. WELL CHARACTERISTICS .- Drilled observation artesian well, diameter 2 in., depth 201 ft, cased to 196 ft, slotted 196-201 ft. Open to Pennsylvanian limestone, 196-201'. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,298 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above land- REMARKS.--Well SW-18. PERIOD OF RECORD.—July 1986 to October 1987, February 1990 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 113.50 ft below land-surface datum, November 4, 1993; lowest measured, 128.40 ft below land-surface datum, March 14, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|-----------------------|--------|----------------| | NOV 04 | 113.50 | FEB 11 | 114.73 | MAY 04 | 117.45 | JUL 27 | 118.17 | WATER YEAR 1994 HIGHEST 113.50 NOV 04, 1993 LOWEST 118.17 JUL 27, 1994 #### CERRO GORDO COUNTY 430757093131801. Local number, 96-20-17 DAAD. LOCATION.--Lat 43°07'57", long 93°13'18", Hydrologic Unit 07080203, in southwest Mason City, 1 mi west of Highway 65 and south of the Iowa Terminal Railyard. Owner: AMPI Creamery (formerly State Brand Creameries). AQUIFER .-- Cambrian-Ordovician: in sandstone of Late Cambrian and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.--Unused drilled industrial artesian water well, diameter 10 in., depth 1,336 ft, cased from 0-1,080 ft, open hole from 1,080-1,336 ft. INSTRUMENTATION .-- Quarterly measurement with electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,162 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum. REMARKS.--State Brand Creameries Well #1. Records for 1968-1971 and 1973-1989 are unpublished and available in the files of the Iowa District Office. PERIOD OF RECORD .-- October 1968 to March 1971, and March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 170.80 ft below land-surface datum, August 4, 1977; lowest measured, 298.80 ft below land-surface datum, October 22, 1968. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|---------------|----------------|--------|-----------------------|-------------|----------------| | NOV 01 | 277.53 | <b>JAN 31</b> | 267.68 | MAY 02 | 255.33 | AUG 02 | 256.83 | WATER YEAR 1994 HIGHEST 255.33 MAY 02, 1994 LOWEST 277.53 NOV 01, 1993 430806093164501. Local number, 96-21-13 BCCB. LOCATION.--Lat 43°08'06", long 93°16'45", Hydrologic Unit 07080203, south of the County Home, just north of Iowa Highway 106, east of the City of Clear Lake. Owner: Mason City and Clear Lake Railroad. AQUIFER .-- Devonian: in Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS.-Drilled unused artesian water well, diameter 5 in., depth 198 ft. Casing information is not available. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel DATUM.--Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of well curb, 1.30 ft above land-surface datum. PERIOD OF RECORD.--November 1940 to August 1971, March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 1.44 ft below land-surface datum, February 12, 1982; lowest measured, 17.26 ft below land-surface datum, November 18, 1955. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------|----------------|-------------|----------------|--------|----------------|--------|----------------| | NOV 01 | 6.10 | JAN 31 | 6.93 | MAY 02 | 7.64 | AUG 02 | 5.85 | WATER YEAR 1994 HIGHEST 5.85 AUG 02, 1994 LOWEST 7.64 MAY 02, 1994 #### CHEROKEE COUNTY 423833095365701. Local number, 90-40-06 BDCD. LOCATION.--Lat 42°38'33", long 95°36'57", Hydrologic Unit 10230003, approximately 3.1 mi west of U.S. Highway 59 and 0.55 mi north of Iowa Highway 31 along the Illinois Central Railroad track. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 1.25 in., depth 253 ft, cased to 252 ft, sandpoint 252-253 ft. INSTRUMENTATION.--Quarterly measurements with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,182 ft above sea level, from topographic map. Measuring point: Top of casing, 3.93 ft above land-surface datum. REMARKS .-- Well D-6. PERIOD OF RECORD.--December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 28.38 ft below land-surface datum, August 27, 1983; lowest measured, 40.85 ft below land-surface datum, January 15, 1991. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 02 | 30.79 | FEB 08 | 32.53 | MAY 03 | 32.64 | JUL 27 | 32.27 | WATER YEAR 1994 HIGHEST 30.79 NOV 02, 1993 LOWEST 32.64 MAY 03, 1994 424039095342801. Local number, 91-40-21 CDDD1. LOCATION.—Lat 42°40'39", long 95°34'28", Hydrologic Unit 10230003, on north side of county road, approximately 4.5 mi northeast of the City of Quimby. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Little Sioux River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 23 ft, cased to 23 ft, slotted 20-23 ft, gravel packed. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS .-- Well LSR-20U. PERIOD OF RECORD .-- August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.52 feet below land-surface datum, August 4, 1993; lowest measured, 16.90 ft below land-surface datum, August 6, 1992. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|-------------|----------------|--------|----------------| | NOV 02 | 16.07 | FEB 08 | 16.65 | MAY 03 | 16.70 | JUL 27 | 16.40 | WATER YEAR 1994 HIGHEST 16.07 NOV 02, 1993 LOWEST 16.70 MAY 03, 1994 424039095342802. Local number, 91-40-21 CDDD2. LOCATION.—Lat 42°40'39", long 95°34'28", Hydrologic Unit 10230003, on north side of county road, approximately 4.5 mi northeast of the City of Quimby. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Little Sioux River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 2 in., depth 48 ft, cased to 48 ft, slotted 42-48 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS .-- Well LSR-20L. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.55 feet below land-surface datum, August 4, 1993; lowest measured, 16.34 ft below land-surface datum, May 4, 1994. WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|-------------|----------------|--------|----------------| | NOV 02 | 15.40 | FEB 08 | 16.21 | MAY 04 | 16.34 | JUL 27 | 16.04 | WATER YEAR 1994 HIGHEST 15.40 NOV 02, 1993 LOWEST 16.34 MAY 04, 1994 #### **CHEROKEE COUNTY--Continued** 424132095480211. Local number, 91-42-16 DDDD11. LOCATION.—Lat 42°41'32", long 95°48'02", Hydrologic Unit 10230004, approximately 2 mi north of the Village of Fielding at the junction of County Roads L-36 and C-44. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 390 ft, cased to 390 ft, perforated 386-390 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,320 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above landsurface datum. REMARKS .-- Well D-11. PERIOD OF RECORD .-- March 1980 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 141.67 ft below land-surface datum, May 5, 1993; lowest measured, 156.20 ft below land-surface datum, January 10, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|-------------|----------------|-------------|----------------|--------|----------------| | NOV 02 | 153.32 | FEB 08 | 153.12 | MAY 03 | 153.12 | JUL 28 | 152.72 | WATER YEAR 1994 HIGHEST 152.72 JUL 28, 1994 LOWEST 153.32 NOV 02, 1993 424348095231601. Local number, 91-39-01 ADAD1. LOCATION.-Lat 42°43'48", long 95°23'16", Hydrologic Unit 10230005, approximately 2 mi east and 0.5 mi north of the Town of Aurelia at the Larson Lake County Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: in sandstone of Cambrian age and dolomite of Ordovician age. WELL CHARACTERISITICS.--Drilled observation artesian water well, diameter 6 in. to 236 ft, 5 in. to 486 ft, 2 in. to 1,545 ft, depth 1,545 ft, cased to 1,126 ft, open hole 1,126 to 1,545 ft. INSTRUMENTATION.—Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 1.55 ft above landsurface datum. REMARKS.--Well D-28. PERIOD OF RECORD.--September 1979 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 189.65 ft below land-surface datum, December 19, 1984; lowest measured, 194.73 ft below land-surface datum, February 3, 1993. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|----------------|-------------|-----------------------|-------------|-----------------------| | NOV 02 | 193.10 | MAY 03 | 193.06 | JUL 27 | 193.31 | WATER YEAR 1994 HIGHEST 193.06 MAY 03, 1994 LOWEST 193.31 JUL 27, 1994 424348095231602. Local number, 91-39-01 ADAD2. LOCATION.-Lat 42°43'48", long 95°23'16", Hydrologic Unit 10230005, approximately 2 mi east and 0.5 mi north of the Town of Aurelia at the Larson Lake County Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 4 in., depth 340 ft, cased to 340 ft, perforated 235-240 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 1.75 ft above landsurface datum. REMARKS .-- Well D-29. PERIOD OF RECORD.--September 1979 to current year. EXTREMES FOR PERIOD OF RECORD. -Highest water level measured, 188.65 ft below land-surface datum, April 20, 1988; lowest measured, 194.15 ft below land-surface datum, August 24, 1982. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER <u>DATE</u> <u>LEVEL</u> | | WATER<br>LEVEL | |-------------|-----------------------|-------------|----------------|-------------|--------------------------------|--------|----------------| | | NOV 02 | 190.31 | MAY 03 | 190.08 | JUL 27 | 190.30 | | WATER YEAR 1994 HIGHEST 190.08 MAY 03, 1994 LOWEST 190.31 NOV 02, 1993 #### **CHEROKEE COUNTY--Continued** 424459095322411. Local number, 92-40-26 CCDD11. LOCATION.-Lat 42°44'59", long 95°32'24", Hydrologic Unit 10230003, in the City of Cherokee, to the north of County Road C-38 and east of Highway 59 near the old pumping station. Owner: City of Cherokee. AQUIFER .-- Cambrian-Ordovician: in sandstone of Late Cambrian age and sandy dolomite of Early Ordovician age WELL CHARACTERISTICS.--Unused drilled municipal artesian test water well, diameter 8 in., depth 1,055 ft, cased to 965 ft, open hole from 965-1055 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,180 ft above sea level, from topographic map. Measuring point: Top of casing, 3.53 ft above landsurface datum. REMARKS .-- City of Cherokee Test #1. PERIOD OF RECORD.--November 1987 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 15.33 ft below land-surface datum, November 5, 1992; lowest measured, 27.21 ft below land-surface datum, July 12, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 02 | 15.89 | FEB 08 | 17.53 | MAY 03 | 17.58 | JUL 27 | 16.83 | WATER YEAR 1994 HIGHEST 15.89 NOV 02, 1993 LOWEST 17.58 MAY 03, 1994 424523095313101. Local number, 92-40-26 ADDD1. LOCATION .- Lat 42°45'23", long 95°31'31", Hydrologic Unit 10230003, on the northwest corner of a T-intersection of county roads, approximately 1 mi west of the City of Cherokee. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Little Sioux River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 22.5 ft, cased to 22.5 ft, slotted 20.5-22.5 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,180 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above landsurface datum. REMARKS .-- Well LSR-35U. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.65 feet below land-surface datum, May 5, 1993; lowest measured, 14.06 ft below land-surface datum, February 8, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |-------------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 02 | 12.28 | FEB 08 | 14.06 | MAY 03 | 11.77 | JUL 27 | 10.00 | WATER YEAR 1994 HIGHEST 10.00 JUL 27, 1994 LOWEST 14.06 FEB 08, 1994 424523095313102. Local number, 92-40-26 ADDD2. LOCATION .- Lat 42°45'23", long 95°31'31", Hydrologic Unit 10230003, on the nonthwest corner of a T-intersection of county roads, approximately 1 mi west of the City of Cherokee. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Little Sioux River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 37.5 ft, cased to 37.5 ft, slotted 33.5-37.5 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,180 ft above sea level, from topographic map. Measuring point: Top of casing, 2.30 ft above landsurface datum. REMARKS .-- Well LSR-35M. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.32 feet below land-surface datum, May 5, 1993; lowest measured, 13.73 ft below land-surface datum, February 8, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 02 | 11.98 | FEB 08 | 13.73 | MAY 03 | 11.45 | JUL 27 | 9.74 | WATER YEAR 1994 HIGHEST 9.74 JUL 27, 1994 LOWEST 13.73 FEB 08, 1994 #### **CHEROKEE COUNTY--Continued** 424523095313103. Local number, 92-40-26 ADDD3. LOCATION.--Lat 42'45'23", long 95°31'31", Hydrologic Unit 10230003, on the northwest corner of a T-intersection of county roads, approximately 1 mi west of the City of Cherokee. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Little Sioux River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 52 ft, cased to 52 ft, slotted 48-52 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,180 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well LSR-35L. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.39 feet below land-surface datum, May 5, 1993; lowest measured, 13.83 ft below land-surface datum, February 8, 1994. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 02 | 12.05 | FEB 08 | 13.83 | MAY 03 | 11.53 | JUL 27 | 9.81 | WATER YEAR 1994 HIGHEST 9.81 JUL 27, 1994 LOWEST 13.83 FEB 08, 1994 424802095331201. Local number, 92-40-10 BDDD. LOCATION.--Lat 42°48'02", long 95°33'12", Hydrologic Unit 10230003, west of U.S. Highway 59, approximately 2.5 mi north of the City of Cherokee. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 2.50 in., depth 300 ft, cased to 300 ft, perforated 114-118 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS.--Well D-5. PERIOD OF RECORD.--April 1980 to October 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.05 ft below land-surface datum, June 27, 1984; lowest measured, 29.20 ft below land-surface datum, November 7, 1991. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 02 | 27.44 | FEB 08 | 27.51 | MAY 03 | 27.53 | JUL 27 | 27.66 | WATER YEAR 1994 HIGHEST 27.44 NOV 02, 1993 LOWEST 27.66 JUL 27, 1994 #### **CLAY COUNTY** 431316095135201. Local number, 97-37-17 ADDA1. LOCATION.--Lat 43°13'16", long 95°13'52", Hydrologic Unit 10230003, on the west side of a county road, .5 mi north of County Road B-17, approximately 3.5 mi south and west of the Town of Fostoria. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Little Sioux River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 17 ft, cased to 17 ft, slotted 14.8-17 ft, gravel packed. INSTRUMENTATION .- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,353 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above landsurface datum. REMARKS .-- Well LSR-1U. PERIOD OF RECORD .-- July 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.22 feet below land-surface datum, August 10, 1993; lowest measured, 13.01 ft below land-surface datum, July 27, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|--------|-----------------------|--------|-----------------------| | NOV 03 | 8.85 | MAY 03 | 10.53 | AUG 02 | 9.14 | WATER YEAR 1994 HIGHEST 8.85 NOV 03, 1993 LOWEST 10.53 MAY 03, 1994 431316095135202. Local number, 97-37-17 ADDA2. LOCATION.--Lat 43°13'16", long 95°13'52", Hydrologic Unit 10230003, on the west side of a county road, .5 mi north of County Road B-17, approximately 3.5 mi south and west of the Town of Fostoria. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Little Sioux River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 90 ft, cased to 90 ft, slotted 85 ft to 90 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,353 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above landsurface datum. REMARKS .-- Well LSR-1L. PERIOD OF RECORD .-- July 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.06 feet below land-surface datum, November 3, 1993; lowest measured, 15.76 ft below land-surface datum, July 27, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|--------|-----------------------|--------|-----------------------| | NOV 03 | 9.06 | MAY 03 | 13.00 | AUG 02 | 11.00 | WATER YEAR 1994 HIGHEST 9.06 NOV 03, 1993 LOWEST 13.00 MAY 03, 1994 #### **CLAYTON COUNTY** 424023091291201. Local number, 91-05-30 BBBB. LOCATION.--Lat 42°40'23", long 91°29'12", Hydrologic Unit 07060006, 5 mi northwest of the City of Edgewood, or 2 mi northwest of the junction of Iowa Highways 3 and 13, east of Strawberry Point. Owner: Harold Knight. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Dug unused water-table well, diameter 36 in., depth 36 ft. Casing information not available. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,233 ft above sea level, from topographic map. Measuring point: Hole in pump base at land-surface datum. PERIOD OF RECORD .-- June 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.68 ft below land-surface datum, August 7, 1991; lowest measured, 30.68 ft below land-surface datum, January 12, 1959. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | WATER | | WATER | | WATER | | WATER | |---------------|--------------|--------|--------------|--------|-------|--------|-------| | DATE | <u>LEVEL</u> | DATE | <u>LEVEL</u> | DATE | LEVEL | DATE | LEVEL | | OCT 18 | 18.74 | JAN 31 | 20.87 | APR 18 | 20.70 | лл. 29 | 18.75 | | NOV 17 | 19.65 | FEB 22 | 19.83 | MAY 02 | 20.80 | AUG 08 | 19.09 | | DEC 10 | 20.06 | MAR 07 | 19.69 | JUN 27 | 17.87 | SEP 20 | 20.02 | | <b>JAN 10</b> | 20.38 | | | | | | | WATER YEAR 1994 HIGHEST 17.87 JUN 27, 1994 LOWEST 20.87 JAN 31, 1994 424057091320001. Local number, 91-06-22 ACAC. LOCATION.--Lat 42°40'57", long 91°32'00", Hydrologic Unit 07060006, southeast corner of the junction of Iowa Highways 3 and 13, Strawberry Point. Owner: City of Strawberry Point. AQUIFER.--Cambrian-Ordovician and Silurian-Devonian: in dolomite of Late Ordovician and Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 16 in., depth 492 ft, cased to 161 ft with 16 in., 12 in. 130-161 ft; 10 in. liner 229-370 ft, open hole 161-229 ft and 370-492 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. Graphic water-level recorder March 1963 to October 1987. DATUM.--Elevation of land-surface datum is 1,219 ft above sea level, from topographic map. Measuring point: Top of pipe nipple, 2.55 ft above land-surface datum. REMARKS.--City well No. 2. PERIOD OF RECORD .-- March 1963 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 101.13 ft below land-surface datum, August 23, 1993; lowest recorded, 134.76 ft below land-surface datum, August 1, 1989. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 17 | 119.20 | JAN 31 | 122.30 | MAY 02 | 120.85 | AUG 10 | 121.34 | WATER YEAR 1994 HIGHEST 119.20 NOV 17, 1993 LOWEST 122.30 JAN 31, 1994 #### CLAYTON COUNTY--Continued 425433091285001. Local number, 94-05-31 DACC1. LOCATION.—Lat 42°54'33", long 91°28'50". Hydrologic Unit 07060004, located at entrance to Big Spring Fish Hatchery 4.5 mi west and 1.25 mi south of the Town of St. Olaf. Owner: Geological Survey Bureau, DNR, and U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diam. 5 in., depth 36 ft, cased with steel to 33 ft, screened 33-36 ft. INSTRUMENTATION .-- Intermittent measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 855 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 2.50 ft above land-surface datum. REMARKS.--Well BS1-A. Historical water-level data published in OFR 91-63 and OFR 92-67. PERIOD OF RECORD .- December 1988 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level recorded, 2.45 ft below land-surface datum, August 26, 1989; lowest daily mean water level recorded, 14.87 ft below land-surface datum, August 15-21, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |------------------|----------------|--------|-----------------------|-------------|-----------------------|--------|----------------| | NOV 17<br>DEC 08 | 13.00<br>13.17 | FEB 02 | 13.13 | MAY 02 | 13.10 | AUG 08 | 13.33 | WATER YEAR 1994 HIGHEST 13.00 NOV 17, 1993 LOWEST 13.33 AUG 08, 1994 425433091285002. Local number, 94-05-31 DACC2. LOCATION.—Lat 42°54'33", long 91°28'50", Hydrologic Unit 07060004, located at entrance to Big Spring Fish Hatchery 4.5 mi west and 1.25 mi south of the Town of St. Olaf. Owner: Geological Survey Bureau, DNR, and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: in Galena dolomite of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diam. 5 in., depth 85 ft, cased with steel to 61 ft, open hole 61-85 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 855 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 2.60 ft above land-surface datum. REMARKS.--Well BS1-B. Historical water-level data published in OFR 91-63 and OFR 92-67. PERIOD OF RECORD .-- December 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 0.62 ft above land-surface datum, August 20, 1993 (revised); lowest water level recorded 10.38 ft below land-surface datum, July 20, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|----------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 17<br>DEC 08 | 5.48<br>5.83 | FEB 02 | 6.28 | MAY 02 | 5.12 | AUG 08 | 6.06 | WATER YEAR 1994 HIGHEST 5.12 MAY 02, 1994 LOWEST 6.28 FEB 02, 1994 #### **CLAYTON COUNTY--Continued** 425940091194701. Local number, 95-04-32 DDDD. LOCATION.--Lat 42°59'40", long 91°19'47", Hydrologic Unit 07060004, 1 mi west of the junction of U.S. Highway 52 and Iowa Highway 13, or northeast of the Town of Farmersburg. Owner: Milton and Willis Meier. AQUIFER.--Cambrian-Ordovician: in St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS .-- Drilled stock artesian water well, diameter 6 in., depth 380 ft (reported). Casing information not available. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,090 ft above sea level, from topographic map. Measuring point: Plug in pump base, 1.00 ft above land-surface datum. PERIOD OF RECORD .-- October 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.08 ft below land-surface datum, July 10, 1984; lowest measured, 126.56 ft below land-surface datum, January 13, 1969. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|-------------|-----------------------|--------|----------------| | NOV 15 | 74.61* | JAN 31 | 94.73 | MAY 02 | 79.46 | AUG 08 | 80.19 | <sup>\*</sup> Recently pumped. WATER YEAR 1994 HIGHEST 79.46 MAY 02, 1994 LOWEST 94,73 JAN 31, 1994 430156091182901. Local number, 95-04-22 BCBD. LOCATION.--Lat 43°01'56", long 91°18'29", Hydrologic Unit 07060001, approximately 2 mi north of the junction of U.S. Highway 18 and U.S. Highway 52-lowa Highway 13, near Spook Cave. Owner: Gerald Mielke. AQUIFER.--Cambrian-Ordovician: in St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 49 ft. Casing information not available. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above sea level, from topographic map. Measuring point: Top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD.--October 1957 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 13.98 ft below land-surface datum, December 7, 1983; lowest measured, 27.88 ft below land-surface datum, March 4, 1968. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|-------------|-----------------------|-------------|----------------|--------|-----------------------| | NOV 15 | 23.43 | FEB 01 | 22.64 | MAY 03 | 23.15 | AUG 08 | 23.76 | WATER YEAR 1994 HIGHEST 22.64 FEB 01, 1994 LOWEST 23.76 AUG 08, 1994 #### CRAWFORD COUNTY 415512095313801. Local number, 82-40-17 ABBC. LOCATION.--Lat 41°55'12", long 95°31'38", Hydrologic Unit 10230007, approximately 1.75 mi west of the Town of Dow City on County Road E-5L, north of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 46 ft, cased to 46 ft, slotted from 40-46 ft, gravel-packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,122 ft above sea level, from topographic map. Measuring point: Top of casing, 1.60 ft above land- surface datum. REMARKS.--Well WC-188. PERIOD OF RECORD .-- May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.55 ft below land-surface datum, May 30, 1984; lowest measured, 26.40 ft below land-surface datum, October 17, 1990 and November 25, 1991. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|----------------|---------------|----------------|--------|-----------------------| | NOV 01 | 23.93 | FEB 07 | 24.29 | <b>MAY 04</b> | 25.11 | JUL 27 | 25.29 | WATER YEAR 1994 HIGHEST 23.93 NOV 01, 1993 LOWEST 25.29 JUL 27, 1994 415514095312001. Local number, 82-40-17 AABB. LOCATION.--Lat 41°55'14", long 95°31'20", Hydrologic Unit 10230007, approximately 1.5 mi west of the Town of Dow City on the south side of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 141 ft, cased to 141 ft, slotted from 123-141 ft, gravel- INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,150 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above landsurface datum. REMARKS.--Well WC-9 PERIOD OF RECORD .-- June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 38.15 ft below land-surface datum, May 3, 1983; lowest measured, 43.86 ft below land-surface datum, June 11, 1981. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 40.40 | FEB 07 | 40.87 | MAY 04 | 41.57 | JUL 27 | 41.81 | WATER YEAR 1994 HIGHEST 40.40 NOV 01, 1993 LOWEST 41.81 JUL 27, 1994 #### CRAWFORD COUNTY--Continued 420147095161301. Local number, 83-38-04 DABC LOCATION.-Lat 42°01'47", long 95°16'13", Hydrologic Unit 10230007, on the northeast corner of State Route 30 and county road, approximately 4.25 mi east of the City of Denison. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Boyer River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 29 ft, cased to 29 ft, slotted 20-29 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,220 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above landsurface datum. REMARKS .-- Well WC #63. PERIOD OF RECORD .-- June 1982 to July 1984, July 1990, and August 1992 to present. EXTREMES FOR PERIOD OF RECORD, -- Highest water level measured, 4.96 feet below land-surface datum, August 6, 1993; lowest measured, 12.59 ft, revised, below land-surface datum, February 9, 1983. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 6.06 | FEB 07 | 8.44 | MAY 04 | 9.50 | JUL 27 | 10.05 | WATER YEAR 1994 HIGHEST 6.06 NOV 01, 1993 LOWEST 10.05 JUL 27, 1994 420608095111701. Local number, 84-37-08 BCCB. LOCATION.—Lat 42°06'08", long 95°11'17", Hydrologic Unit 10230007, approximately 3 mi north of the Town of Vail on the east side of County Road E-25. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. QUIFER .-- Fremont buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS, -- Drilled observation artesian water well, diameter 2 in., depth 541 ft, cased to 541 ft, slotted from 527-541 ft, graveIpacked. Open to Pennsylvanian limestone 539-541 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,380 ft above sea level, from topographic map. Measuring point: Top of casing, 1.65 ft above landsurface datum. REMARKS.--Well WC-226. PERIOD OF RECORD .-- August 1983 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 208.35 ft below land-surface datum, July 17, 1988; lowest measured, 212.90 ft below land-surface datum, January 9, 1991. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 211.14 | FEB 07 | 211.15 | MAY 04 | 211.24 | JUL 27 | 211.44 | WATER YEAR 1994 HIGHEST 211.14 NOV 01, 1993, LOWEST 211.44 JUL 27, 1994 421005095342801. Local number, 85-41-13 CCCC. LOCATION.—Lat 42°10'05", long 95°34'28", Hydrologic Unit 10230001, approximately 7 mi west of the Town of Schleswig, northeast of the junction of County Roads L-51 and E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Dakota and glacial drift: in sandstone of Cretaceous age and sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 361 ft, cased to 322 ft, slotted from 307-322 ft, gravel-packed. Open to Dakota Formation from 320-361 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,375 ft above sea level, from topographic map. Measuring point: Top of casing, 3.49 ft above landsurface datum. REMARKS.--Well WC-6. PERIOD OF RECORD.--May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 244.23 ft below land-surface datum, July 28, 1981; Iowest measured, 249.05 ft below land-surface datum, February 5, 1982. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 245.47 | FEB 07 | 244.87 | MAY 04 | 245.39 | JUL 27 | 245.82 | WATER YEAR 1994 HIGHEST 244.87 FEB 07, 1994 LOWEST 245.82 JUL 27, 1994 #### CRAWFORD COUNTY--Continued 421031095225601. Local number, 85-39-16 ADDD1. LOCATION.--Lat 42°10'31", long 95°22'56", Hydrologic Unit 10230007, approximately 2.5 mi east and 0.5 mi north of the Town of Schleswig on the west side of County Road M-27. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 351 ft, cased to 351 ft, slotted from 315-330 ft, gravel-packed. Open to Pennsylvanian rock from 344-351 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM .- Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 3.14 ft above landsurface datum. REMARKS.--Well WC-7A. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 232.61 ft below land-surface datum, October 7, 1986; lowest measured, 238.35 ft below land-surface datum, June 10, 1981. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------|-----------------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 01 | 233.79 | FEB 07 | 233.70 | MAY 04 | 233.85 | JUL 27 | 233.90 | WATER YEAR 1994 HIGHEST 233.70 FEB 07, 1994 LOWEST 233.90 JUL 27, 1994 421031095225602. Local number, 85-39-16 ADDD2. LOCATION.--Lat 42°10'31", long 95°22'56", Hydrologic Unit 10230007, approximately 2.5 mi east and 0.5 mi north of the Town of Schleswig on the west side of County Road M-27. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS .- Drilled observation artesian water well, diameter 2 in., depth 561 ft, cased to 561 ft, perforated 543-561 ft, gravelpacked. INSTRUMENTATION .-- Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 3.14 ft above landsurface datum REMARKS .-- Well WC-7B. PERIOD OF RECORD .-- June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 304.53 ft below land-surface datum, April 18, 1991, lowest measured, 307.64 ft below land-surface datum, October 4, 1983. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 01 | 305.83 | FEB 07 | 305.92 | MAY 04 | 305.84 | JUL 27 | 305.88 | WATER YEAR 1994 HIGHEST 305.83 NOV 01, 1993 LOWEST 305.92 FEB 07, 1994 #### **CRAWFORD COUNTY--Continued** 421106095125501. Local number, 85-38-12 DCBA LOCATION.--Lat 42°11'06", long 95°12'55", Hydrologic Unit 10230007, approximately 5.5 mi east of the Town of Kiron on the south side of County Road E-16 near the Town of Boyer. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Fremont buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 341 ft, cased to 315 ft, slotted from 300-310 ft, gravel-packed open hole from 315-341 ft. Open to Pennsylvanian limestone and shale from 331-341 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above landsurface datum. REMARKS.--Well WC-14. PERIOD OF RECORD .-- July 1981 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 62.76 ft below land-surface datum, April 16, 1987; lowest measured, 65.15 ft below land-surface datum, January 19, 1992. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 01 | 63.77 | FEB 07 | 63.75 | MAY 04 | 63.90 | JUL 27 | 64.08 | WATER YEAR 1994 HIGHEST 63.75 FEB 07, 1994 LOWEST 64.08 JUL 27, 1994 #### **DELAWARE COUNTY** 422029091144302. Local number, 87-03-18 CBCD2. LOCATION .- Lat 42°20'37", long 91°14'47", Hydrologic Unit 07060006, behind the municipal utilities building in downtown Hopkinton. Owner: Town of Hopkinton. AOUIFER .-- Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 86 ft. Casing information not available. INSTRUMENTATION .-- Quarterly measurement with chalked tape by observer. DATUM .-- Elevation of land-surface datum is 863 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.46 ft above land- surface datum. REMARKS.--Hopkinton #1 well. Water levels affected by pumping of a nearby well. PERIOD OF RECORD.--December 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.74 ft below land-surface datum, August 10, 1994; lowest measured, 27.19 ft below land-surface datum, December 30, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|-----------------------|--------|----------------| | NOV 08 | 15.19 | FEB 02 | 19.90 | MAY 04 | 21.14 | AUG 10 | 10.74 | WATER YEAR 1994 HIGHEST 10.74 AUG 10, 1994 LOWEST 21.14 MAY 04, 1994 #### FLOYD COUNTY 430200092435301. Local number, 95-16-22 BCA1. LOCATION.-Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Glacial drift: in material of Pleistocene age WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 29 ft, cased 29 ft, perforated 10-29 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 1.92 ft above landsurface datum. REMARKS .-- Well FM-3 (T). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.98 ft above land-surface datum, May 6, 1993; lowest measured, 4.78 ft below land-surface datum, February 1, 1993. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------------|----------------|--------------|----------------|--------------|-----------------------|--------------|----------------| | AUG 04, 1992 | 4.67 | FEB 01, 1993 | 4.78 | AUG 23, 1993 | 2.07 | MAY 02, 1994 | 4.08 | | NOV 04, 1992 | 2.16 | MAY 06, 1993 | 1.98 | NOV 01, 1993 | 4.74 | AUG 02, 1994 | 3.82 | WATER YEAR 1994 HIGHEST 3.82 AUG 02, 1994 LOWEST 4.78 NOV 01, 1993 430200092435303. Local number, 95-16-22 BCA3. LOCATION.--Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: in dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1 in., depth 103 ft, cased 103 ft, perforated 91-103 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.94 ft above landsurface datum. REMARKS.--Well FM-3 (1). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.46 ft above land-surface datum, August 23, 1993; lowest measured, 74.35 ft below land-surface datum, May 2, 1994. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |----------------------------------------------|-------------------------|------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|----------------| | AUG 04, 1992<br>NOV 04, 1992<br>FEB 01, 1993 | 74.00<br>65.84<br>73.83 | MAY 06, 1993<br>AUG 23, 1993 | 62.55<br>61.46 | NOV 01, 1993<br>JAN 31, 1994 | 71.51<br>68.94 | MAY 02, 1994<br>AUG 02, 1994 | 74.35<br>71.04 | WATER YEAR 1994 HIGHEST 68.94 JAN 31, 1994 LOWEST 74.35 MAY 02, 1994 430200092435304. Local number, 95-16-22 BCA4. LOCATION.-Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Devonian: in dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 207 ft, cased 207 ft, perforated 167-207 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.77 ft above landsurface datum. REMARKS .-- Well FM-3 (2). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.05 ft above land-surface datum, August 23, 1993; lowest measured, 78.97 ft below land-surface datum, August 4, 1992. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | WATER | | WATER | | WATER | | WATER | |--------------|-------|--------------|-------|--------------|--------------|--------------|--------------| | DATE | LEVEL | DATE | LEVEL | <u>DATE</u> | <b>LEVEL</b> | DATE | <u>LEVEL</u> | | | | | | | | | | | AUG 04, 1992 | 78.97 | MAY 06, 1993 | 58.57 | NOV 01, 1993 | 73.70 | MAY 02, 1994 | 78.19 | | NOV 04, 1992 | 70.34 | AUG 23, 1993 | 56.05 | JAN 31, 1994 | 75.51 | AUG 02, 1994 | 75.30 | | FEB 01, 1993 | 78.31 | • | | | | | | WATER YEAR 1994 HIGHEST 73.70 NOV 01, 1993 LOWEST 78.19 MAY 02, 1994 #### **FLOYD COUNTY--Continued** 430200092435305. Local number, 95-16-22 BCA5. LOCATION.--Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Devonian: in dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 297 ft, cased 297 ft, perforated 257-297 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.73 ft above landsurface datum. REMARKS .-- Well FM-3 (3). PERIOD OF RECORD .-- August 1992 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 55.21 ft above land-surface datum, August 23, 1993; lowest measured, 76.63 ft below land-surface datum, November 1, 1993. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |----------------------------------------------|-------------------------|------------------------------|-----------------------|------------------------------|----------------|------------------------------|----------------| | AUG 04, 1992<br>NOV 04, 1992<br>FEB 01, 1993 | 73.84<br>63.86<br>73.72 | MAY 06, 1993<br>AUG 23, 1993 | 57.85<br>55.21 | NOV 01, 1993<br>JAN 31, 1994 | 76.63<br>72.66 | MAY 02, 1994<br>AUG 02, 1994 | 74.14<br>70.77 | WATER YEAR 1994 HIGHEST 70.77 AUG 02, 1994 LOWEST 76.63 NOV 01, 1993 430200092435306. Local number, 95-16-22 BCA6. LOCATION.--Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Devonian: in dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 360 ft, cased 360 ft, perforated 340-360 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.53 ft above landsurface datum. REMARKS .-- Well FM-3 (4). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.23 ft above land-surface datum, August 23, 1993; lowest measured, 78.99 ft below land-surface datum, August 4, 1992. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|-------------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | AUG 04, 1992<br>NOV 04, 1992<br>FEB 01, 1993 | 78.99<br>70.53<br>78.35 | MAY 06, 1993<br>AUG 23, 1993 | 58.59<br>56.23 | NOV 01, 1993<br>JAN 31, 1994 | 73.77<br>76.88 | MAY 02, 1994<br>AUG 02, 1994 | 78.24<br>75.34 | WATER YEAR 1994 HIGHEST 73.77 NOV 01, 1993 LOWEST 78.24 MAY 02, 1994 #### FRANKLIN COUNTY 423332093034302. Local number, 90-19-35 CDCC. LOCATION.--Lat 42°33'32", long 90°19'35", Hydrologic Unit 07080205, 0.25 mi west of intersection of U.S. Highway 20 and County Road S-56, on the north side of U.S. Highway 20 adjacent to the canning plant Owner: City of Ackley. AOUIFER .-- Devonian: in limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 10 in., depth 175 ft, cased to 159 ft, perforated 145-165 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,008 ft above sea level, from topographic map. Measuring point: Top of casing, 1.85 ft above land- surface datum. REMARKS.—Ackley No. 1 well, formerly Marshall Canning Co. No. 2. PERIOD OF RECORD.—September 1988 to present. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 24.17 ft below land-surface datum, August 23, 1993; lowest measured, 34.58 ft below land-surface datum, August 5, 1992. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 01 | 28.69 | JAN 31 | 30.68 | MAY 02 | 30.83 | AUG 02 | 30.90 | WATER YEAR 1994 HIGHEST 28.69 NOV 01, 1993 LOWEST 30.90 AUG 02, 1994 #### FREMONT COUNTY 404946095344801. Local number, 70-41-32 AABB1. LOCATION.--Lat 40°49'46", long 95°34'48", Hydrologic Unit 10240002, on the south side of county road, approximately 2.25 mi northeast of the Town of Almerican. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 38 ft, cased to 38 ft, slotted 35-38 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 960 ft above sea level, from topographic map. Measuring point: Top of casing, 2.25 ft above landsurface datum. REMARKS.--Well SW-38A. PERIOD OF RECORD.--June 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.83 feet below land-surface datum, August 5, 1993; lowest measured, 19.96 ft below land-surface datum, May 5, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 15.75 | FEB 04 | 18.74 | MAY 05 | 19.96 | JUL 26 | 18.99 | WATER YEAR 1994 HIGHEST 15.75 OCT 29, 1993 LOWEST 19.96 MAY 05, 1994 404946095344802. Local number, 70-41-32 AABB2. LOCATION.—Lat 40°49'46", long 95°34'48", Hydrologic Unit 10240002, on the south side of county road, approximately 2.25 mi northeast of the Town of Anderson. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 55 ft, cased to 50 ft, screened 50-55 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 960 ft above sea level, from topographic map. Measuring point: Top of casing, 2.05 ft above landsurface datum. REMARKS .-- Well SW-38B. PERIOD OF RECORD.--June 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.87 feet below land-surface datum, August 5, 1993; lowest measured, 19.90 ft below land-surface datum, May 5, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 14.34 | FEB 04 | 18.70 | MAY 05 | 19.90 | JUL 26 | 18.95 | WATER YEAR 1994 HIGHEST 14.34 OCT 29, 1993 LOWEST 19.90 MAY 05, 1994 #### **GREENE COUNTY** 415448094163401. Local number, 82-29-18 CBAA. LOCATION .- Lat 41°54'48", long 94°16'34", Hydrologic Unit 07100006, approximately 3.75 west and 1.5 mi south of the Town of Rippey, south of County Road E-57 on the west edge of the North Raccoon River. Owner: Geological Survey Bureau, DNR and U.S. Geological AQUIFER .-- North Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 34 ft, cased to 30 ft, slotted from 20-30 ft, gravelpacked. Open hole from 30-34 ft into glacial till INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM -- Elevation of land-surface datum is 965 ft above sea level, from topographic map. Measuring point: Top of casing, 1.45 ft above landsurface datum. REMARKS.--Well WC-115. PERIOD OF RECORD.—August 1982 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.84 ft below land-surface datum, July 5, 1983; lowest measured, # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|-------------|----------------| | NOV 04 | 16.32 | MAY 04 | 17.09 | AUG 03 | 18.37 | WATER YEAR 1994 HIGHEST 16.32 NOV 04, 1993 LOWEST 35.47 AUG 03, 1994 415449094155601. Local number, 82-29-18 DBAA. LOCATION.--Lat 41°54'49", long 94°15'56", Hydrologic Unit 07100006, approximately 3.25 mi west and 1.5 mi south of the Town of Rippey, south of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 90 ft, cased to 75 ft, slotted 65-75 ft, gravel-packed; open hole from 75-90 ft. Pleistocene glacial till open from 75-86 ft, and Pennsylvanian shale and siltstone open from 86-90 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,005 ft above sea level, from topographic map. Measuring point: Top of casing, 1.85 ft above landsurface datum. REMARKS .-- Well WC-117. PERIOD OF RECORD.--August 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.2 ft below land-surface datum, Aug. 17, 1993; lowest measured, 40.13 ft below land-surface datum, February 13, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|-------------|----------------|-------------|----------------| | NOV 04 | 33.07 | MAY 04 | 35.08 | AUG 03 | 35.47 | WATER YEAR 1994 HIGHEST 17.09 MAY 04, 1994 LOWEST 33.07 NOV 04, 1993 #### **GREENE COUNTY--Continued** 415449094161501. Local number, 82-29-18 CAAA1. LOCATION.-Lat 41°54'49", long 94°16'15", Hydrologic Unit 07100006, approximately 0.5 mi south and 4 mi east of the Village of Cooper and just south of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian: in sandstone of Pennsylvanian age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 101 ft, cased to 100 ft, perforated 89-100 ft, gravel-packed; open hole 100-101 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 960 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well WC-116. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.41 ft above land-surface datum, July 5, 1983; lowest measured, 6.57 ft below land-surface datum, February 13, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|-------------|----------------|--------|----------------| | NOV 04 | 1.43 | MAY 04 | 2.54 | AUG 03 | 3.19 | WATER YEAR 1994 HIGHEST 1.43 NOV 04, 1993 LOWEST 3.19 AUG 03, 1994 415449094173201. Local number, 82-30-13 CABA. LOCATION.--Lat 41°54'49", long 94°17'32", Hydrologic Unit 07100006, approximately 0.5 mi south and 3 mi east of the Village of Cooper and just south of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Pennsylvanian: in sandstone of Pennsylvanian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 230 ft, cased to 230 ft, perforated 209-230 ft, gravel-packed. Original depth 245 ft, casing plugged at 230 ft. INSTRUMENTATION .- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,035 ft above sea level, from topographic map. Measuring point: Top of casing, 1.45 ft above land-surface datum. REMARKS.--Well WC-118. PERIOD OF RECORD. -- September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 66.79 ft below land-surface datum, July 5, 1983; lowest measured, 73.67 below land-surface datum, February 13, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|-----------------------|-------------|-----------------------|-------------|-----------------------| | NOV 04 | 68.60 | MAY 04 | 69.86 | AUG 03 | 70.41 | WATER YEAR 1994 HIGHEST 68.60 NOV 04, 1993 LOWEST 70.41 AUG 03, 1994 #### **GREENE COUNTY--Continued** 415608094260701. Local number, 82-31-10 AAAA. LOCATION.—Lat 41°56'08", long 94°26'07", Hydrologic Unit 07100006, approximately 7 mi south and 3.5 mi west of the City of Jefferson, 1.0 mi east of the junction of County Roads E-57 and P-14 on the south side of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 125 ft, cased to 125 ft, slotted 111-120, gravelpacked. Open to Pennsylvanian shale and coal 121-125 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,108 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above landsurface datum. REMARKS.--Well WC-235. PERIOD OF RECORD.--September 1983 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 12.03 ft below land-surface datum, July 12, 1984; lowest measured, 14.92 ft below land-surface datum, October 2, 1989. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|--------|----------------|--------|-----------------------| | NOV 04 | 12.17 | MAY 04 | 12.98 | AUG 03 | 13.23 | WATER YEAR 1994 HIGHEST 12.17 NOV 04, 1993 LOWEST 13.23 AUG 03, 1994 420116094363001. Local number, 83-32-08 BBBC. LOCATION.—Lat 42°01'16", long 94°36'30", Hydrologic Unit 07100006, approximately 3 mi west of the Town of Scranton, south of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Hardin Creek buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, cased to 181 ft, slotted 161-171 ft, gravelpacked. Open to Pennsylvanian shale and siltstone, 171-181 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,135 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above landsurface datum. REMARKS.--Well WC-229. PERIOD OF RECORD.--September 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.44 ft below land-surface datum, August 19, 1993; lowest measured, 51.03 ft below land-surface datum, July 8, 1985. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|----------------|-------------|-----------------------|-------------|-----------------------| | NOV 04 | 39.60 | MAY 04 | 40.28 | AUG 03 | 39.63 | WATER YEAR 1994 HIGHEST 39.60 NOV 04, 1993 LOWEST 40.28 MAY 04, 1994 420146094272301. Local number, 83-31-04 ADDB. LOCATION. -Lat 42°01'46", long 94°27'23", Hydrologic Unit 07100006, approximately 4 mi west of the City of Jefferson and 0.5 mi south of U.S. Highway 30, on the west side of County Road P-14. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 54 ft, cased to 51 ft, slotted 40-51 ft, gravel-packed. Open to Pennsylvanian shale 51-54 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,000 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above landsurface datum. REMARKS .-- Well WC-120. PERIOD OF RECORD .-- August 1982 to July 1987, February 1990 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.39 ft below land-surface datum, July 5, 1983; lowest measured, 19.23 ft below land-surface datum, October 7, 1985. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|-------------|----------------| | NOV 04 | 16.68 | MAY 04 | 17.03 | AUG 03 | 17.77 | WATER YEAR 1994 HIGHEST 16.68 NOV 04, 1993 LOWEST 17.77 AUG 03, 1994 #### **GREENE COUNTY--Continued** 420149094344701. Local number, 83-32-04 ACCC. LOCATION.--Lat 42°01'49", long 94°34'47", Hydrologic Unit 07100006, 1.5 mi west of the Town of Scranton south of U.S. Highway 30, adjacent to the Scranton Cemetery. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 240 ft, cased to 240 ft, slotted 220-240 ft, gravel-packed. Open to Pennsylvanian shale 234-240 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,202 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. REMARKS .-- Well WC-228. PERIOD OF RECORD .-- July 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 152.07 ft below land-surface datum, May 3, 1993; lowest measured, 155.48 ft below land-surface datum, April 17, 1991. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |---------------|----------------|--------|----------------|--------|----------------| | <b>NOV</b> 04 | 152.52 | MAY 05 | 152.85 | AUG 03 | 152.62 | WATER YEAR 1994 HIGHEST 152.52 NOV 04, 1993 LOWEST 152.85 MAY 05, 1994 420507094141901. Local number, 84-29-16 CBAB. LOCATION.-Lat 42°05'07", long 94°14'19", Hydrologic Unit 07100006, approximately 1.5 mi south of the Town of Dana, east of Iowa Highway 144 near the Chicago and Northwestern Railroad. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Beaver buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, cased to 181 ft, slotted 161-176 ft, gravel-packed. Open to Pennsylvanian shale 177-181 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,075 ft above sea level, from topographic map. Measuring point: Top of casing, 1.80 ft above land-surface datum. REMARKS .-- Well WC-233. PERIOD OF RECORD .-- August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 38.63 ft below land-surface datum, April 2, 1985; lowest measured, 43.28 ft below land-surface datum, October 2, 1989. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|-----------------------|-------------|-----------------------|-------------|-----------------------| | NOV 04 | 39.90 | MAY 04 | 40.27 | AUG 03 | 41.99 | WATER YEAR 1994 HIGHEST 39.90 NOV 04, 1993 LOWEST 41.99 AUG 03, 1994 #### **GRUNDY COUNTY** 422605092560001. Local number, 88-18-15 DBBB. LOCATION.-Lat 42°26'05", long 92°56'00", Hydrologic Unit 07080205, west of the corner of Monroe and 4th Streets and west of the high school, Wellsburg. Owner: City of Wellsburg. AQUIFER .-- Devonian: in limestone and dolomite of Late Devonian age. WELL CHARACTERISTICS.--Drilled public-emergency-supply artesian water well, diameter 12 in., depth 280 ft, cased to 128 ft, open hole 128-280 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,060 ft above sea level, from topographic map. Measuring point: Edge of vent pipe, 1.25 ft above land-surface datum REMARKS .-- Water levels affected by pumping and nearby pumping. PERIOD OF RECORD.--September 1960 to August 1971, May 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.78 ft below land-surface datum, June 18, 1987; lowest measured, 96.81 ft below land-surface datum, September 27, 1960. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|-------------|-----------------------|-------------|-----------------------|--------|-----------------------| | NOV 01 | 39.84 | JAN 31 | 38.47 | MAY 02 | 38.43 | AUG 02 | 40.92 | WATER YEAR 1994 HIGHEST 38.43 MAY 02, 1994 LOWEST 40.92 AUG 02, 1994 #### GUTHRIE COUNTY 413223094150801. Local number, 78-30-24 CAAB LOCATION .-- Lat 41°32'23", long 94°15'08", Hydrologic Unit 07100007, approximately 0.5 mi west and 1.5 north of the Town of Dexter. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drill observation artesian water well, diameter 2 in., depth 72 ft, cased to 72 ft, slotted 60-68 ft, gravel-packed. Open to Pennsylvanian shale 65-72 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,020 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above landsurface datum. REMARKS.--Well WC-238. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.57 ft below land-surface datum, August 13, 1993; lowest measured, 48.82 ft below land-surface datum, April 10, 1986. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|-------------|----------------|--------|----------------| | NOV 04 | 40.39 | FEB 02 | 40.06 | MAY 04 | 39.81 | AUG 03 | 39.72 | WATER YEAR 1994 HIGHEST 39.72 AUG 03, 1994 LOWEST 40.39 NOV 04, 1993 #### **GUTHRIE COUNTY--Continued** 413248094314301. Local number, 78-32-21 AAAA. LOCATION.—Lat 41°32'48", long 94°31'43", Hydrologic Unit 07100008, approximately 2.25 mi north of the Town of Casey. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 161 ft, cased to 135 ft, slotted 125-135 ft, gravelpacked. Open to Pennsylvanian shale 158-161 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,250 ft above sea level, from topographic map. Measuring point: Top of casing, 1.90 ft above landsurface datum. REMARKS .-- Well WC-239. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 70.50 ft below land-surface datum, January 12, 1988; lowest measured, 74.38 ft below land-surface datum, January 9, 1985. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 72.58 | FEB 02 | 72.97 | MAY 04 | 73.28 | AUG 03 | 73.09 | WATER YEAR 1994 HIGHEST 72.58 NOV 04, 1993 LOWEST 73.28 MAY 04, 1994 414110094260501. Local number, 79-31-23 BBBB. LOCATION.—Lat 41°41°10", long 94°26'05", Hydrologic Unit 07100007, approximately 1 mi north of the Town of Monteith on the east side of County Road P-20. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- South Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 30 ft, cased to 27 ft, slotted 21-27 ft, gravel-packed. Open to Pennsylvanian shale 27-30 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,037 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above landsurface datum. REMARKS.--Well WC-85. PERIOD OF RECORD.-July 1982 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 3.93 ft below land-surface datum, April 11, 1983; lowest measured, 11.07 ft below land-surface datum, October 19, 1988. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 6.59 | MAY 04 | 7.94 | AUG 03 | 8.45 | WATER YEAR 1994 HIGHEST 6.59 NOV 04, 1993 LOWEST 8.45 AUG 03, 1994 414652094293301. Local number, 81-31-32 CBCC. LOCATION.--Lat 41°46'52", long 94°29'33", Hydrologic Unit 07100007, approximately 1 mi west of Springbrook State Park at the junction of Iowa Highways 25 and 384. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER.-Middle Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 52 ft, cased to 51 ft, slotted 40-51 ft, gravel-packed, open hole 51-52 ft. Open to Pennsylvanian shale, 49-52 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,090 ft above sea level, from topographic map. Measuring point: Top of casing, 2.03 ft above landsurface datum. REMARKS .-- Well WC-106. PERIOD OF RECORD.--August 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.96 ft below land-surface datum, August 13, 1993; lowest measured, 35.92 ft below land-surface datum, October 6, 1982. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 32.95 | FEB 01 | 33.66 | MAY 04 | 35.16 | AUG 03 | 34.44 | WATER YEAR 1994 HIGHEST 32.95 NOV 04, 1993 LOWEST 35.16 MAY 04, 1994 #### **GUTHRIE COUNTY--Continued** 414728094385301. Local number, 81-33-26 DDDD. LOCATION.--Lat 41°47'28", long 94°38'53", Hydrologic Unit 07100007, approximately 5 mi south and 1.25 mi east of the Town of Coon Rapids on the north side of County Road F-24. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFÉR .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 80 ft, cased to 75 ft, slotted 60-65 ft, gravel-packed, open hole 75-80 ft. Open to Pennsylvanian shale 67-80 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,205 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-93. PERIOD OF RECORD .-- July 1982 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 36.76 ft below land-surface datum, May 4, 1994; lowest measured, 40.98 ft below land-surface datum, January 3, 1983. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|-------------|----------------|--------|----------------| | NOV 04 | 38.19 | FEB 01 | 39.07 | MAY 04 | 36.76 | AUG 03 | 39.74 | WATER YEAR 1994 HIGHEST 36.76 MAY 04, 1994 LOWEST 39.74 AUG 03, 1994 414728094392401, Local number, 81-33-35 ABBC, LOCATION.--Lat 41°47'28", long 94°39'24", Hydrologic Unit 07100007, approximately 5 mi south and 1 mi east of the Town of Coon Rapids, on the south side of County Road F-24. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- South Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 41 ft, cased to 35 ft, slotted 26-35 ft gravel-packed, open hole 35-41 ft. Open to Early Cretaceous sandstone and shale 38-41 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,150 ft above sea level, from topographic map. Measuring point: Top of casing, 0.80 ft above land-surface datum. REMARKS.--Well WC-94 PERIOD OF RECORD .-- July 1982 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 12.80 ft below land-surface datum, July 1, 1983; lowest measured, 16.94 ft below land-surface datum, February 14, 1990. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------|-----------------------|-------------|----------------|--------|----------------|--------|----------------| | NOV 04 | 15.17 | FEB 01 | 15.44 | MAY 04 | 16.22 | AUG 03 | 16.30 | WATER YEAR 1994 HIGHEST 15.17 NOV 04, 1993 LOWEST 16.30 AUG 03, 1994 #### **GUTHRIE COUNTY--Continued** 414821094271301. Local number, 81-31-22 CCCC. LOCATION.—Lat 41°48°21", long 94°27'13", Hydrologic Unit 07100007, approximately 2.5 mi south and 1 mi west of the Town of Bagley, north of Spring Brook State Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 153 ft, cased to 153 ft, slotted 143-153 ft, gravelpacked. Open to Pennsylvanian shale 149-153 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,190 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above landsurface datum. REMARKS .-- Well WC-105. PERIOD OF RECORD.--August 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.84 ft below land-surface datum, August 3, 1994; lowest measured, 69.88 ft below land-surface datum, December 9, 1982. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 54.00 | FEB 01 | 54.67 | MAY 04 | 46.90 | AUG 03 | 46.84 | WATER YEAR 1994 HIGHEST 46.84 AUG 03, 1994 LOWEST 54.67 FEB 01, 1994 #### HARDIN COUNTY 423310093032802. Local number, 89-19-02 BDAC2. LOCATION .-- Lat 42°33'10", long 93°03'28", Hydrologic Unit 07080205, 0.35 south and 0.10 mi west of the intersection of U.S. Highway 20 and County Road S-56. Well is in a shed at the west end of 2nd Avenue adjacent to railroad tracks. Owner: City of Ackley. QUIFER.--Mississippian: in limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 10 in., depth 134 ft, cased to 68 ft, perforated 57-60 ft, open hole 68-134 ft. Open to Devonian rock 131-134 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder, 60 minute punch, to October, 1992. DATUM.-Elevation of land-surface datum is 1,085 ft above sea level, from topographic map. Measuring point: Top of recorder base, 0.8 ft above land-surface datum. REMARKS.--Ackley No. 5 well. PERIOD OF RECORD.—September 1988 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 14.14 ft below land-surface datum, May 4, 1993; lowest measured, 24.15 ft below land-surface datum, February 25, 1990. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|-----------------------| | NOV 01 | 17.17 | JAN 31 | 18.90 | MAY 02 | 19.79 | AUG 02 | 19.81 | WATER YEAR 1993 HIGHEST 17.17 NOV 01, 1993 LOWEST 19.81 AUG 02, 1994 #### HARRISON COUNTY 413024095353901. Local number, 78-41-31 DDDD. LOCATION.--Lat 41°30'24", long 95°35'39", Hydrologic Unit 10230006, approximately 4.5 mi south of the Town of Persia and west of Iowa Highway 191 to the north of the Tri-County High School. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 129 ft, cased to 129 ft, slotted 109-119 ft, gravelpacked. Open to Pennsylvanian shale and limestone 118-129 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,158 ft above sea level, from topographic map. Measuring point: Top of casing, 2.05 ft above landsurface datum. REMARKS.--Well WC-27. PERIOD OF RECORD.—January 1982 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 55.26 ft below land-surface datum, July 7, 1982; lowest measured, 60.54, July 5, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|----------------|--------|-----------------------| | NOV 04 | 55.89 | MAY 04 | 57.20 | JUL 29 | 57.72 | WATER YEAR 1994 HIGHEST 55.89 NOV 04, 1993 LOWEST 57.72 JUL 29, 1994 413523095483101. Local number, 78-43-05 ACDD. LOCATION .- Lat 41°35'23", long 95°48'31", Hydrologic Unit 10230007, approximately 3.25 mi south of the Town of Logan and 1.5 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 179 ft, cased to 179 ft, slotted 168-175 ft, gravelpacked. Open to Pennsylvanian shale 175-179 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,080 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above landsurface datum. REMARKS.--Well WC-33. PERIOD OF RECORD .-- May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 66.20 ft below land-surface datum, March 21, 1990; lowest measured, 74.90 ft below land-surface datum, February 16, 1988. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |-------------|-----------------------|--------|----------------|--------|-----------------------|--------|----------------| | NOV 01 | 71.54 | FEB 01 | 71.29 | MAY 02 | 72.26 | JUL 29 | 72.99 | WATER YEAR 1994 HIGHEST 71.29 FEB 01, 1994 LOWEST 72.99 JUL 29, 1994 413524095490601. Local number, 78-43-05 BCDD. LOCATION.--Lat 41°35'24", long 95'49'06", Hydrologic Unit 10230007, approximately 2 mi north and 3.5 mi east of the Town of Missouri Valley and 1 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 51 ft, cased to 51 ft, slotted 48-51 ft, gravel-packed. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,010 ft above sea level, from topographic map. Measuring point: Top of casing, 3.10 ft above landsurface datum. REMARKS.--Well WC-32. PERIOD OF RECORD.--May 1982 to current year. REVISION.--Measuring point revised September 4, 1990 to September 29, 1992. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.71 ft below land-surface datum, April 12, 1983; lowest measured, 7.00 ft below land-surface datum, September 9, 1988, October 18, 1990 and December 5, 1990. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |---------------|----------------|--------|-----------------------|---------------|----------------|-------------|----------------| | OCT 29 | 4.08 | JAN 20 | 4.95 | MAY 02 | 4.33 | JUL 01 | 5.00 | | NOV 26 | 4.27 | JAN 31 | 4.59 | MAY 16 | 4.63 | JUL 29 | 5.37 | | <b>DEC 29</b> | 4.74 | APR 04 | 4.00 | <b>MAY 25</b> | 4.95 | | | WATER YEAR 1994 HIGHEST 4.00 APR 04, 1994 LOWEST 5.37 JUL 29, 1994 413838095462001. Local number, 79-42-19 AADB. LOCATION.--Lat 41°38'38", long 95°46'20", Hydrologic Unit 10230007, approximately 0.5 mi east of the Town of Logan, north of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Mississippian: in dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 628 ft, cased to 628 ft, perforated 588-628 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,045 ft above sea level, from topographic map. Measuring point: Top of casing, 4.40 ft above landsurface datum. REMARKS.--Well WC-22 PERIOD OF RECORD.--November 1981 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 0.33 ft above land-surface datum, June 19, 1987; lowest measured, 16.37 ft below land-surface datum, June 3, 1982. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|-----------------------|--------|----------------| | NOV 01 | 8.56 | JAN 31 | 8.95 | MAY 02 | 9.52 | JUL 29 | 9.10 | WATER YEAR 1994 HIGHEST 8.56 NOV 01, 1993 LOWEST 9.52 MAY 02, 1994 414149095422401. Local number, 80-42-35 BDCC. LOCATION.--Lat 41°41'49", long 95°42'24", Hydrologic Unit 10230007, approximately 3 mi south of the Town of Woodbine, on the west side of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 120 ft, cased to 118 ft, slotted 103-105 ft, gravelpacked, open hole 118-120 ft. Open to Pennsylvanian shale 112-120 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM .-- Elevation of land-surface datum is 1,140 ft above sea level, from topographic map. Measuring point: Top of casing, 1.70 ft above landsurface datum. REMARKS,--Well WC-193. PERIOD OF RECORD.--June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 47.28 ft below land-surface datum, November 1, 1993; lowest measured, 58.30 ft below land-surface datum, March 21, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 01 | 47.28 | JAN 31 | 47.37 | MAY 02 | 47.76 | JUL 29 | 48.42 | HIGHEST 47.28 NOV 01, 1993 LOWEST 48.42 JUL 29, 1994 414213095431602. Local number, 80-42-34 ABBB2. LOCATION .- Lat 41°42'13", long 95°43'16", Hydrologic Unit 10230007, approximately 2 mi south of the Town of Woodbine and 1 mi west of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .- Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 37 ft, cased to 37 ft, slotted 32-37 ft, gravel-packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,045 ft above sea level, from topographic map. Measuring point: Top of casing, 2.30 ft above landsurface datum. REMARKS .-- Well WC-191. PERIOD OF RECORD .-- May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.08 ft below land-surface datum, October 14, 1986; lowest measured, 7.20 ft below land-surface datum, September 9, 1988. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |-------------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 01 | 4.93 | JAN 31 | 5.44 | MAY 02 | 5.14 | JUL 29 | 6.03 | WATER YEAR 1994 HIGHEST 4.93 NOV 01, 1993 LOWEST 6.03 JUL 29, 1994 414517095453401. Local number, 80-42-08 ACCC. LOCATION.--Lat 41°45'17", long 95°45'34", Hydrologic Unit 10230007, approximately 2.75 mi west and 1 mi north of the City of Woodbine, on the north side of County Road F2OL. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian: in sandstone of Pennsylvanian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 336 ft, cased to 336 ft, slotted 311-336 ft, gravelpacked. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,220 ft above sea level, from topographic map. Measuring point: top of casing, 1.26 ft above landsurface datum. REMARKS.--Well WC-3. PERIOD OF RECORD .-- May 1981 to current year. REVISION .-- Measuring point revised October 10, 1990 to August 3, 1992. EXTREMES FOR PERIOD OF RECORD.-- Highest water level measured, 146.60 ft below land-surface datum, January 6, 1986; lowest water level measured, 292.54 ft below land-surface datum, May 7, 1981. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|-----------------------| | NOV 01 | 158.43 | FEB 01 | 156.19 | MAY 04 | 154.33 | JUL 29 | 152.80 | WATER YEAR 1994 HIGHEST 152.80 JUL 29, 1994 LOWEST 158.43 NOV 01, 1993 414700095373001. Local number, 81-41-33 CAAA. LOCATION .-- Lat 41°47'00", long 95°37'30", Hydrologic Unit 10230007, approximately 4.5 mi south of the Town of Dunlap, and 2 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 169 ft, cased to 155 ft, slotted 145-154 ft, gravel- INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,182 ft above sea level, from topographic map. Measuring point: Top of casing, 2.90 ft above landsurface datum. REMARKS.--Well WC-52. PERIOD OF RECORD .-- June 1982 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 70.50 ft below land-surface datum, August 12, 1993; lowest measured, 85.03 ft below land-surface datum, June 4, 1982. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 71.91 | FEB 01 | 73.11 | MAY 02 | 74.05 | JUL 29 | 74.58 | WATER YEAR 1994 HIGHEST 71.91 NOV 01, 1993 LOWEST 74.58 JUL 29, 1994 414955096000601. Local number, 81-44-18 AADA. LOCATION.—Lat 41°49'55", long 96°00'06", Hydrologic Unit 10230003, approximately 1.8 mi northeast of the Town of Little Sioux, just west of Iowa Highway 301. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian: in sandstone of Pennsylvanian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 126 ft, cased to 126 ft, perforated 108-126 ft, gravelpacked. Open to Pleistocene glacial drift 108-112 ft. Original depth 209 ft, casing plugged at 126 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,075 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above landsurface datum. REMARKS.--Well WC-23. PERIOD OF RECORD.—January 1982 to current year. REVISION.—Measuring point revised January 14, 1991 to August 3, 1992. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 52.33 ft below land-surface datum, July 12, 1984; lowest measured, 65.30 ft below land-surface datum, April 10, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 03 | 59.97 | FEB 01 | 62.03 | MAY 02 | 61.93 | JUL 29 | 61.27 | WATER YEAR 1994 HIGHEST 59.97 NOV 03, 1993 LOWEST 62.03 FEB 01, 1994 415148095545001. Local number, 81-44-01 ABAB. LOCATION.-Lat 41°51'48", long 95°54'50", Hydrologic Unit 10230001, approximately 2 mi north of the Town of Pisgah on the west side of Iowa Highway 183. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Soldier alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 61 ft, cased to 58 ft, slotted 53-58 ft, gravel packed, open hole 58-61 ft. Pleistocene glacial drift 57-61 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,065 ft above sea level, from topographic map. Measuring point: Top of casing, 1.80 ft above landsurface datum. REMARKS .-- Well WC-177. PERIOD OF RECORD .-- May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.13 ft below land-surface datum, April 11, 1984; lowest measured, 12.12 ft below land-surface datum, October 17, 1988. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 03 | 8.84 | FEB 01 | 8.89 | MAY 02 | 9.76 | JUL 29 | 10.53 | WATER YEAR 1994 HIGHEST 8.84 NOV 03, 1993 LOWEST 10.53 JUL 29, 1994 ## HENRY COUNTY 405010091424901. Local number, 70-07-30 BCDD. LOCATION.--Lat 40°50'10", long 91°42'49", Hydrologic Unit 07080107, in the Hillsboro City Park adjacent to water tower. Owner: City of Hillsboro. AQUIFER.--Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS.—Drilled unused test hole, diameter 6 in., depth 365 ft, cased to 74.8 ft, open hole 74.8-365 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 733 ft above sea level, from topographic map. Measuring point: Hole in top of casing, 1.15 ft above land-surface datum. REMARKS .-- Hillsboro Test 1. PERIOD OF RECORD .-- August 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.28 ft below land-surface datum, November 9, 1993, May 6, 1994; lowest measured, 77.21 ft below land-surface datum, October 27, 1989. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 09 | 70.28 | FEB 01 | 70.54 | MAY 06 | 70.28 | AUG 01 | 70.60 | WATER YEAR 1994 HIGHEST 70.28 NOV 09, 1993, MAY 06, 1994 LOWEST 70.60 AUG 01, 1994 #### **HENRY COUNTY--Continued** 410852091394301. Local number, 73-07-09 AABD. LOCATION.--Lat 41°08'52", long 91°39'43", Hydrologic Unit 07080107, north of Main Street near the water tower, Wayland. Owner: Town of Wayland. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Dug unused water-table well, diameter 4 ft, depth 52 ft. Casing information not available. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 735 ft above sea level, from topographic map. Measuring point: Top of cement cover, 0.21 ft above land-surface datum. PERIOD OF RECORD .-- September 1960 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.30 ft below land-surface datum, September 1, 1965; lowest measured, 14.69 ft below land-surface datum, February 15, 1977. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 09 | 9.96 | FEB 01 | 10.00 | MAY 06 | 9.80 | AUG 01 | 11.17 | WATER YEAR 1994 HIGHEST 9.80 MAY 06, 1994 LOWEST 11.17 AUG 01, 1994 #### **HUMBOLDT COUNTY** 424039094103601. Local number, 91-28-20 CAAA. LOCATION.--Lat 42°40'39", long 94°10'36", Hydrologic Unit 07100004, approximately 3 mi south of the Town of Dakota City, on the west side of County Road P-56. Owner: Elmer Gravdlund. QUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Unused water-table well, diameter 3 ft, cribbed with field stone, depth 24.5 ft, casing information unavailable. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,135 ft above sea level, from topographic map. Measuring point: Top of casing, 0.30 ft above landsurface datum. PERIOD OF RECORD .-- July 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.40 ft below land-surface datum, April 26, 1991; lowest measured, 19.29 ft below land-surface datum, March 12, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|---------------|-----------------------|--------|-----------------------|--------|-----------------------| | OCT 29 | 8.87 | <b>JAN 26</b> | 10.45 | APR 25 | 14.00 | JUL 22 | 8.75 | | NOV 22 | 9.47 | FEB 24 | 9.77 | MAY 24 | 9.03 | AUG 22 | 8.96 | | DEC 20 | 7.60 | MAR 22 | 8.84 | JUN 21 | 9.27 | SEP 23 | 9.32 | WATER YEAR 1994 HIGHEST 7.60 DEC 20, 1993 LOWEST 14.00 APR 25, 1994 #### **HUMBOLDT COUNTY--Continued** 424736094244701. Local number, 92-30-08 CDAA1. LOCATION.--Lat 42°47'36', long 94°24'47", Hydrologic Unit 07100002, approximately .5 mi south of Bradgate, at junction of County Road P19 and Highway 26. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Des Moines Alluvial: in sands and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 8 ft, cased 8 ft, perforated 5-8 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,116 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above landsurface datum. REMARKS .-- Well WD-16U. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.34 ft above land-surface datum, May 3,1993; lowest measured, 4.97 ft below land-surface datum, February 4, 1993. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | AUG 07, 1992 | 2.88 | FEB 04, 1993 | 4.97 | AUG 18, 1993 | 1.08 | MAY 03, 1994 | 3.92 | | NOV 05, 1992 | 3.08 | MAY 03, 1993 | 0.34 | NOV 22, 1993 | 4.42 | AUG 02, 1994 | 3.89 | WATER YEAR 1994 HIGHEST 3.89 AUG 02. 1994 LOWEST 4.42 NOV 22, 1993 424736094244702. Local number, 92-30-08 CDAA2. LOCATION.--Lat 42°47'36', long 94°24'47", Hydrologic Unit 07100002, approximately .5 mi south of Bradgate, at junction of County Road P19 and Highway 26. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Des Moines Alluvial: in sands and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 14.5 ft, cased 14.5 ft, perforated 13-14.5 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,116 ft above sea level, from topographic map. Measuring point: Top of casing, 2.60 ft above landsurface datum. REMARKS.--Well WD-16L. PERIOD OF RECORD .-- August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.34 ft above land-surface datum, May 3,1993; lowest measured, 7.60 ft below land-surface datum, December 20, 1993. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|-----------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | AUG 07, 1992<br>NOV 05, 1992<br>FEB 04, 1993 | 2.89<br>2.96<br>4.98 | MAY 03, 1993<br>AUG 18, 1993 | 0.34<br>1.11 | NOV 22, 1993<br>DEC 20, 1993 | 4.41<br>7.60 | MAY 03, 1994<br>AUG 02, 1994 | 3.98<br>3.89 | WATER YEAR 1994 HIGHEST 3.89 AUG 02, 1994 LOWEST 7.60 DEC 20, 1993 ## **IDA COUNTY** 422215095390811. Local number, 87-41-05 CCCC11. LOCATION.--Lat 42°22'15", long 95°39'08", Hydrologic Unit 10230005, approximately 0.75 mi east and 6.5 mi south of the Village of Cushing. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 490 ft, cased to 490 ft, perforated 301-305 ft. Original depth 510 ft, cemented back to 490 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM .-- Elevation of land-surface datum is 1,344 ft above sea level, from topographic map. Measuring point: Top of casing, 2.72 ft above landsurface datum. REMARKS .-- Well D-10. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 202.55 ft below land-surface datum, June 4, 1980; lowest measured, 206.50 ft below land-surface datum, May 7, 1982. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|----------------|--------|----------------|--------|-----------------------|-------------|-----------------------| | NOV 01 | 203.25 | FEB 08 | 204.28 | MAY 04 | 204.15 | JUL 27 | 204.75 | WATER YEAR 1994 HIGHEST 203.25 NOV 01, 1993 LOWEST 204.75 JUL 27, 1994 #### **IDA COUNTY--Continued** 423107095383201. Local number, 89-41-13 CCCC. LOCATION.—Lat 42°31'07", long 95°38'32", Hydrologic Unit 10230003, at a roadside park on County Road D-15, approximately 1.5 mi east and 3.5 mi north of the Village of Cushing. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS.—Drilled observation ariesian water well, diameter 2 in., depth 469 ft, cased to 465 ft, sand point 465-468 ft, open hole 468-469 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,320 ft above sea level, from topographic map. Measuring point: Top of casing, 2.11 ft above landsurface datum. REMARKS.--Well D-9. PERIOD OF RECORD.--December 1978 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 180.97 ft below land-surface datum, July 27, 1994; lowest measured, 244.55 ft below land-surface datum, July 9, 1980. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 183.17 | FEB 08 | 181.43 | MAY 04 | 181.38 | JUL 27 | 180.97 | WATER YEAR 1994 HIGHEST 180.97 JUL 27, 1994 LOWEST 183.17 NOV 01, 1993 423131095442601. Local number, 89-41-18 CBBB. LOCATION.—Lat 42°31'31", long 95°44'26", Hydrologic Unit 10230003, on the southwest comer of the intersection of State Route 31 and County Road D-15, approximately 4.5 mi northeast of the City of Correctionville. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Little Sioux River alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 26 ft, cased to 26 ft, slotted 23-26 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,134 ft above sea level, from topographic map. Measuring point: Top of casing, 2.30 ft above landsurface datum. REMARKS.--Well LSR-22. PERIOD OF RECORD .-- August 1992 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 8.64 feet below land-surface datum, August 4, 1993; lowest measured, 14.40 ft below land-surface datum, May 3, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 12.02 | FEB 08 | 13.98 | MAY 03 | 14.40 | JUL 27 | 13.42 | WATER YEAR 1994 HIGHEST 12.02 NOV 01, 1993 LOWEST 14.40 MAY 03, 1994 ## **IOWA COUNTY** 414709091515801. Local number, 81-09-35 BCAA. LOCATION.-Lat 41°47'09", long 91°51'58", Hydrologic Unit 07080208, approximately 400 ft northwest of the Iowa River, east of Iowa Highway 149, and approximately 1.1 mi south of the Village of Amana. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 10 in, depth 27 ft, cased to 18 ft, screened 18-27 ft. INSTRUMENTATION. -- Quarterly measurements with chalked tape by USGS personnel. Analog digital water-level recorder -- 60 minute punch. Graphic water-level recorder December 1984 to June 1991. DATUM.-Elevation of land-surface datum is 710 ft above sea level, from topographic map. Measuring point: Top of casing, 4.0 ft above landsurface datum. REMARKS.--Well IRA-24. PERIOD OF RECORD.-December 1984 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level recorded, 0.30 ft above land-surface datum, May 31, 1991; lowest recorded, 12.45 ft below land-surface datum, December 31, 1988, and January 3, 1989. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 LOWEST VALUES | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | WATER<br><u>DATE</u> <u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |-------------|----------------|--------|----------------|-----------------------------------|--------|-----------------------| | NOV 10 | 7.66 | FEB 03 | 8.62 | MAY 03 7.99 | AUG 02 | 7.58 | WATER YEAR 1994 HIGHEST 7.58 AUG 02, 1994 LOWEST 8.62 FEB 03, 1994 #### **IOWA COUNTY--Continued** 414816092053401. Local number, 81-11-23 DCCC. LOCATION.--Lat 41°48'16", long 92°05'34", Hydrologic Unit 07080208, approximately 0.75 mi west of the Town of Marengo, 0.5 mi north of Iowa Highway 212 and 0.5 mi south of the Iowa River. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 31 ft, cased to 28 ft, screened 28-31 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 745 ft above sea level, from topographic map. Measuring point: Top of casing, 2.30 ft above land-surface datum. REMARKS.--Well IRA-4A. Records for October 1984 to July 1986 are available in the files of the Iowa District Office. PERIOD OF RECORD .-- October 1984 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 0.85 ft below land-surface datum, May 28, 1991; lowest measured, 9.33 ft below land-surface datum, January 26, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|-----------------------|---------------|----------------| | NOV 10 | 3.66 | FEB 03 | 5.38 | MAY 03 | 4.76 | <b>AUG</b> 05 | 5.29 | WATER YEAR 1994 HIGHEST 3.66 NOV 10, 1993 LOWEST 5.38 FEB 03, 1994 #### JACKSON COUNTY 420842090165701. Local number, 85-6E-29 ACAD1. LOCATION.--Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER .-- Dresbach: in Mt. Simon sandstone of Early Cambrian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in. depth 1,804 ft, cased to 1,705 ft, screened 1,705-1,725 ft, open hole 1,725-1,804 ft. INSTRUMENTATION.--Quarterly measurement with engineers rule by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Mark on angle iron attached to well house, 6.05 ft above land-surface datum. REMARKS .-- Flowing well. Green Island #1. PERIOD OF RECORD .-- May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.81 ft above land-surface datum, May 16, 1988; lowest measured, 8.87 ft above land-surface datum, May 3, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 (MEASUREMENTS ABOVE LAND SURFACE INDICATED BY "+") | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|-------------|----------------|-------------|----------------|--------|----------------| | NOV 08 | +8.60 | FEB 02 | +8.22 | MAY 03 | 8.87 | AUG 01 | 8.73 | WATER YEAR 1994 HIGHEST +8.82 FEB 02, 1994 LOWEST 8.87 MAY 03, 1994 #### JACKSON COUNTY--Continued 420842090165702. Local number, 85-06E-29 ACAD2. LOCATION.-Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER .-- Cambrian-Ordovician, in Wonewoc sandstone of Late Cambrian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 1,275 ft, cased to 1,204.4 ft, screened 1,204.4 to 1,224.4 ft, open hole 1,224.4 to 1,275 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, 2.0 ft above landsurface datum REMARKS.--Green Island No. 2 well. Well pumped during winter to supply water to goose pond. Water levels water years 1986 to 1989 affected by oil in the well. PERIOD OF RECORD.--July 1982 to November 1983, September 1986 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 1.84 ft above land-surface datum, May 21, 1987; lowest measured, 3.88 below land-surface datum, November 4, 1982. ## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 08 | 1.30 | FEB 02 | 0.86 | MAY 03 | 0.67 | AUG 01 | 0.90 | WATER YEAR 1994 HIGHEST 0.67 MAY 03, 1994 LOWEST 1.30 NOV 08, 1993 420842090165703. Local number, 85-6E-29 ACAD3 LOCATION .-- Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.—Cambrian-Ordovician: in Prairie du Chien dolomite of Early Ordovician age and St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 2 in., depth 910 ft, cased to 604.2 ft, screened 604.2-624.2 ft, open hole 624.2-910 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above landsurface datum. REMARKS .-- Green Island No. 3. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.19 ft below land-surface datum, January 8, 1986; lowest measured 9.90 ft below land-surface datum, August 31, 1983. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 08 | 7.96 | FEB 02 | 6.95 | MAY 03 | 6.98 | AUG 01 | 7.07 | WATER YEAR 1994 HIGHEST 6.95 FEB 02, 1994 LOWEST 7.96 NOV 08, 1993 ### **JACKSON COUNTY--Continued** 420842090165704. Local number, 85-6E-29 ACAD4. LOCATION.--Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Rail- road tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER .-- Cambrian-Ordovician: in Galena dolomite of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 400 ft, cased to 299.6 ft, screened 299.6-319.6 ft, open hole 319.6-400 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above landsurface datum. REMARKS .-- Green Island No. 4. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.39 ft below land-surface datum April 27, 1993; lowest measured, 19.46 ft below land-surface datum, September 20, 1988. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|-----------------------| | NOV 08 | 15.74 | FEB 02 | 15.95 | MAY 03 | 13.86 | AUG 01 | 16.16 | WATER YEAR 1994 HIGHEST 13.86 MAY 03, 1994 LOWEST 16.16 AUG 01, 1994 ### JASPER COUNTY 414147093035401. Local number, 80-19-33 ACAC. LOCATION.--Lat 41°41'50", long 93°03'53", Hydrologic Unit 07080105, 231 West 10th Street, Newton. Owner: John Coppess. AQUIFER.--Cambrian-Ordovician: in sandstone and sandy dolomite of Late Cambrian and Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused private artesian water well, diameter 12 to 6 in., depth 2,567 ft, cased to 1,750 ft, open hole 1,750-2,567 ft. Open to 461 ft of Early Ordovician Prairie du Chien formation, 262 ft of Late Cambrian St. Lawrence formation, and 94 ft of Middle Cambrian Franconia formation. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 915 ft above sea level, from topographic map. Measuring point: Plug in cement well cover, 0.50 ft above land-surface datum. PERIOD OF RECORD.--September 1963 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 98.43 ft below land-surface datum, June 14, 1966; lowest measured, 276.35 ft below land-surface datum, August 6, 1992. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |---------------|-----------------------|--------|-----------------------|--------|----------------|--------|----------------| | <b>NOV</b> 10 | 261.80 | FEB 03 | 259.80 | MAY 04 | 261.54 | AUG 03 | 238.25 | WATER YEAR 1994 HIGHEST 213.25 AUG 03, 1994 LOWEST 261.80 NOV 10, 1993 414210092592001. Local number, 80-18-31 ABBB. LOCATION.--Lat 41°42'10", long 92°59'20", Hydrologic Unit 07080105, approximately 3 mi east of the City of Newton just south of U.S. Highway 6. Owner: P.W. Beukema. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS .-- Dug stock water-table well, diameter 36 in., depth 37 ft, cribbed with brick. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above sea level, from topographic map. Measuring point: Top of cement platform, 0.70 ft above land-surface datum. PERIOD OF RECORD.--February 1940 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.67 ft below land-surface datum, June 10, 1947; lowest measured, 27.15 ft below land-surface datum, December 18, 1948. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|-------------|----------------|-------------|----------------|--------|-----------------------| | NOV 10 | 6.36 | FEB 03 | 11.16 | MAY 04 | 9.74 | AUG 03 | 10.11 | WATER YEAR 1994 HIGHEST 6.36 NOV 10, 1994 LOWEST 11.16 FEB 03, 1994 ### **JOHNSON COUNTY** 413925091324001. Local number, 79-06-09 DDBC. LOCATION.-Lat 41°39'34", long 91°32'42", Hydrologic Unit 07080209, at the Quadrangle Dormitory, University of Iowa, Iowa City. Owner: University of Iowa. AQUIFER .-- Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.—Drilled unused artesian water well, diameter 12 in., depth 430.5 ft, cased to 225 ft, open hole 225-430.5 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 714 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.81 ft above land- surface datum. REMARKS .-- Water levels affected by nearby wells pumping in late spring, summer, and early fall. PERIOD OF RECORD .-- April 1975 to current year. REVISED RECORDS.--WDR IA-84-1, WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.63 ft below land-surface datum, March 21, 1979; lowest measured, 168.89 ft below land-surface datum, August 2, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|----------------|--------|----------------|-------------|-----------------------| | NOV 12 | 140.27 | FEB 04 | 127.06 | MAY 03 | 147.44 | AUG 02 | 168.89 | WATER YEAR 1994 HIGHEST 127.06 FEB 04, 1994 LOWEST 168.89 AUG 02, 1994 414107091322901. Local number, 79-06-04 AAAA. LOCATION.--Lat 41°41'07", long 91°32'29", Hydrologic Unit 07080209, at Forest View Trailer Court, northern edge of Iowa City. Owner: Forest View Trailer Court. AQUIFER .-- Silurian: in limestone of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 280 ft, cased to 96 ft, open hole 96-280 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1971 to October 1986. DATUM.--Elevation of land-surface datum is 735 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to top of casing, 1.62 ft above land-surface datum. REMARKS.--Water levels affected by wells in the area pumping in late spring, summer, and early fall. PERIOD OF RECORD .-- May 1971 to current year. **REVISED RECORDS.--WDR IA-84-1** EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 96.93 ft below land-surface datum, March 23, 1979; lowest measured, 150.14 ft below land-surface datum, August 6, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|--------|----------------| | NOV 12 | 137.55 | FEB 28 | 137.42 | MAY 03 | 140.20 | WATER YEAR 1994 HIGHEST 137.42 FEB 28, 1994 LOWEST 140.20 MAY 03, 1994 414132091345501. Local number, 80-06-31 ADAC1. LOCATION.--Lat 41°41'44", long 91°34'52 " AQUIFER .-- Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, depth 500 ft, cased from 0-130 ft with 5 in. diameter steel, 0-300 ft with 2 in. diameter PVC, open hole 300-500 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM .-- Elevation of land-surface datum is 795 ft above sea level, from topographic map. Measuring point: top of casing, 0.70 ft above landsurface datum. REMARKS .-- Coralville Observation No. 2, East. PERIOD OF RECORD .-- June 1988 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 192.75 ft below land-surface datum, March 20, 1990; lowest water level measured, 259.48 ft below land-surface datum, July 22, 1994. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | OCT 28 | 243.50 | JAN 25 | 229.56 | APR 19 | 231.63 | JUL 22 | 259.48 | | NOV 30 | 224.36 | FEB 28 | 248.06 | MAY 25 | 248.10 | AUG 25 | 254.11 | | DEC 28 | 222.23 | MAR 29 | 229.45 | JUN 24 | 254.76 | SEP 27 | 251.60 | WATER YEAR 1994 HIGHEST 224.36 NOV 30, 1993 LOWEST 259.48 JUL 22, 1994 414132091345502. Local number, 80-06-31 ADBC1. LOCATION.--Lat 41°41'45", long 91°34'58", Hydrologic Unit 07080209, located in the City of Coralville, approximately 0.25 mi north of U.S. Interstate 80. Owner: City of Coralville. AQUIFER.--Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, depth 500 ft, cased 0-130 ft with 5 in. diameter steel, 0-300 ft with 2 in. diameter PVC, open hole 300-500 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 795 ft above sea level, from topographic map. Measuring point: top of casing, 1.03 ft above landsurface datum. REMARKS.--Coralville Observation No. 3, North. PERIOD OF RECORD.--June 1988 to current year EXTREMES FOR PERIOD OF RECORD.--Highest level measured, 169.04 ft below land-surface datum, June 21, 1988; lowest water level measured, 251.34 ft. below land-surface datum, July 22, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|--------|-----------------------|-------------|-----------------------| | OCT 28 | 235.54 | JAN 25 | 221.24 | APR 19 | 223.45 | JUL 22 | 251.34 | | NOV 30 | 216.12 | FEB 28 | 240.00 | MAY 25 | 239.87 | AUG 25 | 245.89 | | DEC 28 | 210.88 | MAR 29 | 230.10 | JUN 24 | 246.77 | SEP 27 | 243.27 | WATER YEAR 1994 HIGHEST 216.12 NOV 30, 1993 LOWEST 251.34 JUL 22, 1994 414132091345503. Local number, 80-06-31 ADBD1. LOCATION.--Lat 41°41'44", long 91°34'35", Hydrologic Unit 07080209, located in the City of Coralville, north of U.S. Interstate 80. Owner: City of Coralville. AQUIFER .-- Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled public-supply water well, 12 in. diameter, depth 500 ft, cased 0-200 ft, open hole 200-500 ft. INSTRUMENTATION.--Monthly airline measurement by USGS personnel. DATUM .-- Elevation of land-surface datum is 795 ft above sea level, from topographic map. Measuring point: airline gauge, 2.88 ft above landsurface datum. REMARKS .-- Coralville Production No. 9. PERIOD OF RECORD.--June 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 204 ft below land-surface datum, July 25, 1988; lowest water level measured, 291 ft below land-surface datum, July 22, 1994. # WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|---------------|----------------| | OCT 28 | 273 | JAN 25 | 259 | APR 19 | 259 | JUL 22 | 291 | | NOV 30 | 251 | FEB 28 | 278 | MAY 25 | 277 | <b>AUG 25</b> | 285 | | DEC 28 | 223 | MAR 29 | 265 | JUN 24 | 287 | SEP 27 | 283 | WATER YEAR 1994 HIGHEST 251 NOV 30, 1993 LOWEST 291 JUL 22, 1994 414221091361101. Local number, 80-07-25 DBAC1. LOCATION.—Lat 41°42'24", long 91°36'16", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/Geological Survey Bureau's Oakdale core repository. Owner: Geological Survey Bureau/DNR. AQUIFER.--Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, depth 532 ft, cased 0-164 ft with 6 in., 0-319 ft of 5 in., 319-361.5 ft of 4 in. diameter pipe, and liner set 310-361.5 ft. Open hole 361.5-532 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder platform, 2.65 ft above land-surface datum. REMARKS.--Oakdale No. 1 (ODW-1). PERIOD OF RECORD.--April 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 210.34 ft below land-surface datum, February 4, 1993; lowest water level measured, 245.93 ft below land-surface datum, July 26, 1991. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 12 | 220.19 | FEB 04 | 214.80 | MAY 03 | 221.02 | AUG 02 | 233.82 | WATER YEAR 1994 HIGHEST 214.80 FEB 04. 1994 LOWEST 233.82 AUG 02. 1994 414221091361102. Local number, 80-07-25 DBAC2. LOCATION.--Lat 41°42'24", long 91°36'16", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/Geological Survey Bureau's Oakdale core repository. Owner: Geological Survey Bureau/DNR. AQUIFER.--Devonian: in limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 301 ft, cased 0-175 ft, open hole 175-301 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder platform, 2.55 ft above land-surface datum. REMARKS .-- Oakdale No. 2, (ODW-2). PERIOD OF RECORD.—April 1990 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 201.16 ft below land-surface datum, February 4, 1993; lowest water level measured, 227.09 ft below land-surface datum, August 28, 1991. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER •<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 12 | 208.37 | FEB 04 | 204.23 | MAY 03 | 210.20 | AUG 04 | 221.47 | WATER YEAR 1994 HIGHEST 204.23 FEB 04, 1994 LOWEST 221.47 AUG 04, 1994 414221091361103. Local number, 80-07-25 DBAD1. LOCATION.-Lat 41°42'24", long 91°36'16", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/Geological Survey Bureau's Oakdale core repository. Owner: Geological Survey Bureau/DNR. AQUIFER.—Buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 4 in., depth 171 ft, cased 0-171 ft, slotted 153-171. ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder platform, 2.55 ft above land-surface datum. REMARKS, -- Oakdale No. 3 (ODW-3). PERIOD OF RECORD.--April 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 124.43 ft below land-surface datum, February 4, 1994; lowest water level measured, 128.74 ft below land-surface datum, April 12, 1992. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|-------------|-----------------------|--------|----------------| | NOV 12 | 124.56 | FEB 04 | 124.43 | MAY 03 | 125.82 | AUG 04 | 126.27 | WATER YEAR 1994 HIGHEST 124.43 FEB 04, 1994 LOWEST 126.27 AUG 04, 1994 414315091252001. Local number, 80-05-22 CBCB1. LOCATION.--Lat 41°43'15", long 91°25'20", Hydrologic Unit 07080209, along the Chicago, Rock Island and Pacific Railroad track, southeast of the overpass on Rapid Creek Road over the track, approximately 5.5 mi northeast of the junction of Interstate 80 and Iowa Highway 1. Owner: Chicago, Rock Island and Pacific Railroad Co. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 2.25 in., depth 18.43 ft, cased to 18 ft, screened 18-20 ft. Depth originally 20 ft, re-measured June 23, 1989. INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel. Graphic water-level recorder February 1942 to October DATUM .-- Elevation of land-surface datum is 753 ft above sea level, from topographic map. Measuring point: Nipple welded to casing, 4.47 ft above land-surface datum. REMARKS.--At the site of the former Elmira depot. PERIOD OF RECORD.--May 1941 to September 1956, January 1958 to current year. REVISED RECORDS.--WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.84 ft below land-surface datum, April 29, 1947 (revised); lowest measured, dry, November 10, 15, 20, 25, and 30, 1964, December 5, 10, 15, 20,25 and 31, 1964, December 1 and 10, 1975, October 21, 1976, November 23, 1976, December 17, 1976, January 20, 1977, and February 18, 1977. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|----------------| | OCT 28 | 8.58 | JAN 25 | 8.98 | APR 19 | 9.36 | JUL 22 | 10.35 | | NOV 30 | 8.72 | FEB 28 | 9.20 | MAY 25 | 9.65 | AUG 25 | 10.84 | | DEC 28 | 8.82 | MAR 29 | 9.27 | JUN 24 | 10.04 | SEP 27 | 11.36 | WATER YEAR 1994 HIGHEST 8.58 OCT 28, 1993 LOWEST 11.36 SEP 27, 1994 414315091252002. Local number, 80-05-22 CBCB2. LOCATION .-- Lat 41°43'15", long 91°25'20", Hydrologic Unit 07080209, along the Chicago, Rock Island and Pacific Railroad track, southeast of the overpass on Rapid Creek Road over the track, approximately 5.5 mi northeast of the junction of Interstate 80 and Iowa Highway 1. Owner: Chicago, Rock Island and Pacific Railroad Co. AQUIFER .-- Devonian: in Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS .- Drilled unused artesian water well, diameter 5 in., depth 82 ft. Casing information not available. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM .-- Elevation of land-surface datum is 753 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 4.01 ft above land- surface datum. REMARKS .-- At the site of the former Elmira depot. PERIOD OF RECORD, -- December 1941 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.58 ft below land-surface datum, November 27, 1992; lowest measured, 21.65 ft below land-surface datum, August 21, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|-----------------------| | OCT 28 | 12.77 | JAN 25 | 15.33 | APR 19 | 15.67 | JUL 22 | 16.30 | | NOV 30 | 14.24 | FEB 28 | 14.90 | MAY 25 | 16.03 | AUG 25 | 17.11 | | DEC 28 | 14.87 | MAR 29 | 15.28 | JUN 24 | 14.66 | SEP 27 | 17.15 | WATER YEAR 1994 HIGHEST 12.77 OCT 28, 1993 LOWEST 17.15 SEP 27, 1994 414853091425101, Local number, 81-07-19 BCBB1. LOCATION.--Lat 41°48'53", long 91°42'51", Hydrologic Unit 07080208, approximately 0.75 mi west and 2.25 mi south of the Town of Swisher. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 6 in., depth 535 ft, cased to 130 ft, open hole 130-535 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder November 1976 to October DATUM.--Elevation of land-surface datum is 745 ft above sea level, from topographic map. Measuring point: Top of casing, 3.50 ft above landsurface datum. REMARKS .-- Plum Creek well. PERIOD OF RECORD.--November 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 49.39 ft below land-surface datum, August 24, 1993; lowest recorded, 76.97 ft below land-surface datum, October 6, 1988. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|-----------------------|--------|----------------| | NOV 12 | 52.53 | FEB 04 | 54.15 | MAY 03 | 56.40 | AUG 01 | 58.13 | #### WATER YEAR 1994 HIGHEST 52.53 NOV 12, 1993 LOWEST 58.13 AUG 01, 1994 # JONES COUNTY 415808091160501. Local number, 83-04-25 CBBB. LOCATION.-Lat 41°58'08", long 91°16'05", Hydrologic Unit 07080103, 4 mi north of the Town of Mechanicsville and 1 mi west of County Road X-40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER .-- Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 6 in. to 41 ft, 5 in. to 517 ft, depth 517 ft, cased to 41 ft, open hole 41 to 517 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM .-- Elevation of land-surface datum is 811 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.16 ft above land- surface datum. REMARKS.--White Oak Creek well. PERIOD OF RECORD .-- July 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.78 ft below land-surface datum, May 3, 1993; lowest measured, 6.21 ft below land-surface datum, September 11, 1989. ### WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|-------------|----------------|--------|----------------| | NOV 12 | 2.71 | FEB 02 | 3.85 | MAY 04 | 3.71 | AUG 01 | 4.44 | WATER YEAR 1994 HIGHEST 2.71 NOV 12, 1993 LOWEST 4.44 AUG 01, 1994 ### KEOKUK COUNTY 412030092121601. Local number, 76-12-35 DBDC. LOCATION.—Lat 41°20'30", long 92°12'16", Hydrologic Unit 07080106, approximately 0.25 mi north of the town of Sigourney, 0.25 mi north of Highway 92. Owner: City of Sigourney. AQUIFER.--Mississippian: in limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 14 in., depth 300 ft, cased to 128 ft, open hole 128-300 ft. INSTRUMENTATION.-- Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder January 1989 to September 1992. DATUM.—Elevation of land-surface datum is 769 ft above sea level, from topographic map. Measuring point: Top of recorder base, 1.50 ft above land-surface datum. REMARKS.--Sigourney South Rock Island No. 1 well. Water levels affected by nearby pumping. PERIOD OF RECORD.--Hily 1988 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 81.15 ft below land-surface datum, March 29, 1991; lowest measured, 118.29 ft below land-surface datum, August 31, 1991. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 09 | 83.83 | FEB 01 | 94.26 | MAY 05 | 81.44 | AUG 01 | 82.56 | WATER YEAR 1994 HIGHEST 81.44 MAY 05, 1994 LOWEST 94.26 FEB 01, 1994 ### LINN COUNTY 415343091360101. Local number, 82-07-25 AAAB. LOCATION.—Lat 41°53'43", long 91°36'01", Hydrologic Unit 07080208, 0.5 mi northwest of the Town of Ely at the southwest corner of the junction of County Roads E-70 and W-6E. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Silurian: in limestone and dolomite of Silurian age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 6 in., depth 401 ft, cased to 121.5 ft, open hole 121.5-401 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder April 1978 to October 1979. Intermittent measurement with chalked tape by USGS personnel May 1976 to April 1978. DATUM.--Elevation of land-surface datum is 772 ft above sea level, from topographic map. Measuring point: Top of casing, 1.76 ft above landsurface datum. REMARKS.--Ely (Northwest) Railroad well. Records for May 1976 to September 1988 are unpublished and available in the files of the Iowa District Office. PERIOD OF RECORD .-- May 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.03 ft below land-surface datum, August 26, 1993; lowest measured, 19.96 ft below land-surface datum, June 14, 1977. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 12 | 6.89 | FEB 02 | 8.99 | MAY 03 | 11.24 | AUG 01 | 11.97 | WATER YEAR 1994 HIGHEST 6.89 NOV 12, 1993 LOWEST 11.97 AUG 01, 1994 415422091422601. Local number, 82-07-18 CDCD. LOCATION.--Lat 41°54'22", long 91°42'26", Hydrologic Unit 07080205, on 76th Avenue SW, approximately 1.5 mi west of U.S. Highway 218, Cedar Rapids. Owner: Edwin J. Hynek. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS .-- Dug unused water-table well, diameter 4 ft, depth 13.5 ft, cribbed with brick. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder July 1959 to September DATUM .-- Elevation of land-surface datum is 835 ft above sea level, from topographic map. Measuring point: Base of recorder shelter, 0.37 ft above land-surface datum. REMARKS.--Well previously owned by Lester Petrak. PERIOD OF RECORD .-- July 1959 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 1.09 ft below land-surface datum, August 4, 1968; lowest recorded, 11.75 ft below land-surface datum, February 8, 1977. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 12 | 7.36 | FEB 02 | 9.35 | MAY 03 | 6.77 | AUG 01 | 7.45 | #### WATER YEAR 1994 HIGHEST 6.77 MAY 03,1994 LOWEST 9.35 FEB 02, 1994 415509091461801. Local number, 82-08-20 ACBB. LOCATION.-Lat 41°55'09", long 91°46'18", Hydrologic Unit 070802005, approximately 1.5 mi southwest of the Town of Fairfax, just northwest of Iowa Highway 149. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 569 ft, cased to 100.5 ft, open hole 100.5-569 ft. INSTRUMENTATION .- Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder February 1974 to July 1978. Intermittent measurement with chalked tape by USGS personnel March 1973 to February 1974. DATUM .-- Elevation of land-surface datum is 842 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.39 ft above land-surface datum. REMARKS.--Rock Pile well. PERIOD OF RECORD.--March 1973 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 96.70 ft below land-surface datum, June 21, 1974; lowest measured, 109.17 ft below land-surface datum, September 11, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|-------------|----------------|--------|----------------|--------|----------------| | NOV 12 | 101.70 | FEB 04 | 101.49 | MAY 03 | 104.28 | AUG 01 | 104.82 | WATER YEAR 1994 HIGHEST 101.49 FEB 04, 1994 LOWEST 104.82 AUG 01, 1994 415725091410101. Local number, 83-07-32 ACDC LOCATION .-- Lat 41°57'25", long 91°41'01", Hydrologic Unit 07080205, northwest corner of 22nd Avenue SW and 11th Street SW, Cedar Rapids. Owner: Floyd Fetter. AQUIFER .-- Silurian: in limestone of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 282 ft. Casing information not available. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM .- Elevation of land-surface datum is 805 ft above sea level, from topographic map. Measuring point: Plug in well cover at land-surface REMARKS.--Water levels may be affected by pumping of near by wells. PERIOD OF RECORD.--July 1940 to current year. REVISED RECORDS.--WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 75.88 ft below land-surface datum, January 26, 1942; lowest measured, 107.00 ft below land-surface datum, September 16, 1976. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|-----------------------|--------|----------------| | NOV 12 | 90.52 | FEB 04 | 91.32 | MAY 03 | 92.05 | AUG 01 | 96.87 | WATER YEAR 1994 HIGHEST 90.52 NOV 12, 1993 LOWEST 96.87 AUG 01, 1994 415834091351601. Local number, 83-06-30 ABBA. LOCATION.--Lat 41°58'34", long 91°35'16", Hydrologic Unit 07080206, approximately 200 ft west of 5201 Mount Vernon Road SE, Cedar Rapids. Owner: Vulcan Auto Yard. Formerly owned by B.L. Anderson. AQUIFER.--Silurian-Devonian: in dolomite of Silurian and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 76.5 ft. Casing information not available. Devonian rock reported to yield little, if any, water. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 755 ft above sea level, from topographic map. Measuring point: Hole in pump base, 0.50 ft above land-surface datum. REMARKS.--Katz well. PERIOD OF RECORD, -- May 1940 to current year. EXTREMES OF PERIOD OF RECORD.--Highest water level measured, 37.68 ft below land-surface datum, August 24, 1993; lowest measured, 53.90 ft below land-surface datum, December 21, 1970. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 12 | 45.23 | FEB 04 | 47.49 | MAY 03 | 47.81 | AUG 01 | 48.46 | WATER YEAR 1994 HIGHEST 45.23 NOV 12, 1993 LOWEST 48.46 AUG 01, 1994 420300091325801. Local number, 84-06-33 ABBB. LOCATION.--Lat 42°03'00", long 91°32'58", Hydrologic Unit 07080206, near the City of Marion on the east side of Iowa Highway 13, approximately 1 mi north of U.S. Highway 151. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 481 ft, cased to 142 ft, open hole 142-481 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 838 ft above sea level, from topographic map. Measuring point: Top of casing, 0.90 ft above landsurface datum. REMARKS .-- Marion well. PERIOD OF RECORD.--June 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.15 ft below land-surface datum, June 18, 1986; lowest measured, 50.26 ft below land-surface datum, December 1, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|-----------------------|-------------|----------------| | NOV 12 | 44.17 | FEB 03 | 46 01 | MAY 03 | 46.13 | AUG 01 | 45.92 | WATER YEAR 1994 HIGHEST 44.17 NOV 12, 1993 LOWEST 46.13 MAY 03, 1994 420320091472201. Local number, 84-08-28 CBDD. LOCATION .-- Lat 42°03'20", long 91°47'22", Hydrologic Unit 07080205, 0.5 mi southeast of the Town of Palo, 0.25 mi east of Iowa Highway 94. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 5 in., depth 442 ft, cased to 148 ft, open hole 148-442 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder April 1976 to December DATUM. -- Elevation of land-surface datum is 743 ft above sea level, from topographic map. Measuring point: Top of casing, 3.08 ft above landsurface datum. REMARKS.--Palo well. Records for April 1976 to September 1988 are unpublished and available in the files of the Iowa District Office. PERIOD OF RECORD.—April 1976 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 3.64 ft below land-surface datum, April 5, 1979; lowest measured, 13.26 ft below land-surface datum, July 17, 1977. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 12 | 7.60 | FEB 03 | 8.87 | MAY 03 | 8.69 | AUG 01 | 8.12 | WATER YEAR 1994 HIGHEST 7.60 NOV 12, 1993 LOWEST 8.87 FEB 03, 1994 420508091395811. Local number, 84-07-16 DBBB. LOCATION.—Lat 42°05°16°, long 91°40′02°, Hydrologic Unit 07080205, approximately 0.5 mi south of County Road E-34, north of the Town of Robins. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 520 ft, cased to 173 ft, open hole 173-520 ft, 18 ft of Devonian rock open. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder November 1975 to September 1979. Intermittent measurement with chalked tape by USGS personnel April 1975 to November 1975. DATUM. -Elevation of land-surface datum is 873 ft above sea level, from topographic map. Measuring point: Top of casing, 1.20 ft above landsurface datum. REMARKS.--Robins well. Records for April 1975 to September 1988 are unpublished and available in the files of the Iowa District Office. PERIOD OF RECORD.--April 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.33 ft below land-surface datum, August 24, 1993; lowest measured, 57.50 ft below land-surface datum, December 1, 1989. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 12 | 43.30 | FEB 03 | 47.28 | MAY 03 | 46.87 | AUG 01 | 45.23 | WATER YEAR 1994 HIGHEST 43.30 NOV 12, 1993 LOWEST 47.28 FEB 03, 1994 420526091370701. Local number, 84-07-13 BCBB. LOCATION.--Lat 42°05'26", long 91°37'07", Hydrologic Unit 07080206, approximately 0.25 mi south of the junction of County Roads W-58 and E-34, on the east side of the road, or approximately 3.75 mi north of the City of Marion. Owner: U.S. Geological Survey. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 1.25 in., depth 17 ft, cased to 15 ft, screened 15-17 ft. INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 882 ft above sea level, from topographic map. Measuring point: Nipple welded to casing, 1.24 ft above land-surface datum. REMARKS .-- USGS13E2 well. PERIOD OF RECORD.--September 1948 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 0.93 ft below land-surface datum, May 18, 1982; lowest measured, 15.19 ft below land-surface datum, January 20, 1977. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|---------------|-----------------------|---------------|-----------------------|---------------|-----------------------| | OCT 28 | 4.19 | <b>JAN 25</b> | 5.56 | APR 19 | 4.25 | JUL 22 | 3.50 | | NOV 30 | 4.90 | FEB 28 | 3.45 | <b>MAY 25</b> | 4.57 | <b>AUG 25</b> | 4.97 | | DEC 28 | 4.87 | MAR 29 | 3.72 | JUN 24 | 3.10 | SEP 27 | 3.53 | WATER YEAR 1994 HIGHEST 3.10 JUN 24, 1994 LOWEST 5.56 JAN 25, 1994 420730091490401. Local number, 85-08-31 DDCD1. LOCATION.--Lat 42°07'30", long 91°49'04", Hydrologic Unit 07080205, at the fenced north end of Pleasant Creek Reservoir near the beach house in the beach area. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 5 in., depth 481 ft, cased to 214 ft, open hole 214-481 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1975 to December 1979. DATUM.--Elevation of land-surface datum is 833 ft above sea level, from topographic map. Measuring point: Top of casing, 1.17 ft above land-surface datum. REMARKS.--Pleasant Creek Reservoir/Silurian well. Records for May 1975 to September 1988 are unpublished and available in the files of the lowa District Office. PERIOD OF RECORD.--May 1975 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 84.17 ft below land-surface datum, April 5, 1976; lowest measured, 108.11 ft below land-surface datum, December 1, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 16 | 95.02 | FEB 04 | 101.01 | MAY 03 | 98.53 | AUG 01 | 106.42 | 420730091490402. Local number, 85-08-31 DDCD2. LOCATION .-- Lat 42°07'30", long 91°49'04", Hydrologic Unit 07080205, at the fenced north end of Pleasant Creek Reservoir near the beach house in the beach area. Owner: Geological Survey Bureau, DNR, and U.S. Geological Survey. AQUIFER.—Devonian: in limestone and dolomite of Devonian age. WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 5 in., depth 205 ft, cased to 52 ft, open hole 52 ft. INSTRUMENTATION. -Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1975 to December 1979. DATUM.-Elevation of land-surface datum is 841 ft above sea level, from topographic map. Measuring point: Top of casing, 2.38 ft above landsurface datum. REMARKS.--Pleasant Creek Reservoir/Devonian well. Records for May 1975 to September 1989 are unpublished and available in the Iowa District Office. PERIOD OF RECORD .-- May 1975 to May 1980, April 1984 to present. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 14.60 ft below land-surface datum, May 31, 1991; lowest measured, 48.55 ft below land-surface datum, November 12, 1976. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|-------------|----------------|-------------|----------------|-------------|----------------| | NOV 16 | 16.80 | FEB 04 | 17.33 | MAY 03 | 16.88 | AUG 01 | 17.12 | WATER YEAR 1994 HIGHEST 16.80 NOV 16, 1993 LOWEST 17.33 FEB 04, 1994 421149091403301. Local number, 85-07-04 CCCC. LOCATION.--Lat 42°11'49", long 91°40'33", Hydrologic Unit 07080205, approximately 5 mi east of the Town of Center Point, north side of County Road E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 435 ft, cased to 41 ft, 5 in. liner 129-147 ft, open hole 41-129 ft and 147-435 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder March 1974 to December 1979. Intermittent measurement with chalked tape by USGS personnel July 1973 to March 1974. DATUM.—Elevation of land-surface datum is 912 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.21 ft above land- surface datum. REMARKS.--Alice well. PERIOD OF RECORD.-July 1973 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.06 ft below land-surface datum, June 10, 1974; lowest measured, 34.27 ft below land-surface datum, December 1, 1989. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|-------------|-----------------------|-------------|----------------|-------------|----------------| | NOV 12 | 25.03 | FEB 03 | 27.99 | MAY 03 | 28.68 | AUG 01 | 28.14 | WATER YEAR 1994 HIGHEST 25.03 NOV 12, 1993 LOWEST 28.68 MAY 03, 1994 # LYON COUNTY 431713096140501. Local number, 98-46-24 CCCC1. LOCATION .-- Lat 43°17'13", long 96°14'05", Hydrologic Unit 10170204, on the northeast corner of the intersection of County Roads K-42 and A-44, approximately .5 mi northwest of the Town of Doon. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 2 in., depth 17 ft, cased to 17 ft, slotted 16-17 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,274 ft above sea level, from topographic map. Measuring point: Top of casing, 3.10 ft above landsurface datum. REMARKS .-- Well RR-5U. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 7.38 feet below land-surface datum, August 3, 1993; lowest measured, 14.72 ft below land-surface datum, July 26, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 02 | 11.00 | FEB 10 | 12.57 | MAY 03 | 11.39 | JUL 29 | 11.74 | 431713096140502. Local number, 98-46-24 CCCC2. LOCATION.--Lat 43°17'13", long 96°14'05", Hydrologic Unit 10170204, on the northeast corner of the intersection of County Roads K-42 and A-44, approximately .5 mi northwest of the Town of Doon. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 2 in., depth 29 ft, cased to 29 ft, slotted 26-29 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,274 ft above sea level, from topographic map. Measuring point: Top of casing, 2.70 ft above land-surface datum. REMARKS.--Well RR-5L PERIOD OF RECORD .-- July 1990 and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.55 feet below land-surface datum, August 3, 1993; lowest measured, 14.80 ft below land-surface datum, July 26, 1990. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|----------------|-------------|----------------|--------|-----------------------| | NOV 02 | 11.09 | FEB 10 | 12.67 | MAY 03 | 11.47 | JUL 28 | 11.81 | WATER YEAR 1994 HIGHEST 11.09 NOV 02, 1993 LOWEST 12.67 FEB 10, 1994 431812096302701. Local number, 98-48-16 DDAD. LOCATION.--Lat 43°18'12", long 96°30'27", Hydrologic Unit 10170203, approximately 3.5 mi east of the City of Canton, S.D., south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 358 ft, cased to 358 ft, perforated 335-355 ft. Open to Late Precambrian Sioux quartzite from 353-358 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,268 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well D-20. PERIOD OF RECORD .-- December 1978 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 91.89 ft below land-surface datum, July 8, 1986; lowest measured, 107.60 ft below land-surface datum, November 7, 1991. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|--------|----------------|--------|-----------------------|--------|-----------------------| | NOV 02 | 104.44 | FEB 10 | 103.24 | MAY 03 | 103.61 | JUL 28 | 104.34 | WATER YEAR 1994 HIGHEST 103.24 FEB 10, 1994 LOWEST 104.44 NOV 02, 1993 432140095595301. Local number, 99-44-26 DDDD. LOCATION. -Lat 43°21'40", long 95°59'53", Hydrologic Unit 10170204, 1 mi north of the City of George, west of Iowa Highway 339. Owner: State of Iowa. AQUIFER.-Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.-Drilled unused water-table well, diameter 20 in., depth 38 ft, lined with tile. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,400 ft above sea level, from topographic map. Measuring point: Plug in well cover, 2.01 ft above land-surface datum. PERIOD OF RECORD .-- October 1940 to June 1943, May 1947 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 0.41 ft above land-surface datum, May 9, 1979; lowest measured, 9.74 ft below land-surface datum, October 24, 1940. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|----------------|------------------|----------------|--------|----------------|-------|----------------| | NOV 02<br>FEB 11 | 0.82<br>1.55 | MAY 03<br>MAY 24 | 0.11<br>0.19 | JUL 28 | 1.52 | AUG16 | 1.54 | WATER YEAR 1994 HIGHEST 0.11 MAY 03, 1994 LOWEST 1.55 FEB 11, 1994 432553096105701. Local number, 99-45-05 ABAC. LOCATION.--Lat 43°25'53", long 96°10'55", Hydrologic Unit 10170204, 0.05 mi south of Iowa Highway 9 on 2nd Street, Rock Rapids. Owner: City of Rock Rapids. AQUIFER. -- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled unused artesian water well, diameter 10 in., depth 375 ft, cased to 296 ft, open hole 296-375 ft. INSTRUMENTATION. --Intermittent measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,368 ft above sea level, from topographic map. Measuring point: Plug in cover over casing, 1.00 ft above land-surface datum. REMARKS.--City test well No. 3. PERIOD OF RECORD.--August 1960 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.08 ft below land-surface datum, July 27, 1964; lowest measured, 115.76 ft below land-surface datum, February 11, 1992. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------| | NOV 16 | 115.47 | MAR 02 | 115.40 | JUL 28 | 115.58 | WATER YEAR 1994 HIGHEST 115.40 MAR 02, 1994 LOWEST 115.58 JUL 28, 1994 ### LYON COUNTY -- Continued 432601096335511. Local number, 100-48-31 CCCC11. LOCATION.-Lat 43°26'01", long 96°33'55", Hydrologic Unit 10170203, 0.5 mi west and 2.5 mi south of the Village of Granite. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 657 ft, cased to 657 ft, perforated 450-455 ft and 630-650 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,417 ft above sea level, from topographic map. Measuring point: Top of casing at land-surface datum. REMARKS .-- Well D-19. PERIOD OF RECORD.--December 1978 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 151.57 ft below land-surface datum, February 11, 1994; lowest measured, 164.00 ft below land-surface datum, Feb. 5, 1992 (revised). WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|-----------------------| | NOV 02 | 153.81 | FEB 11 | 151.57 | MAY 03 | 153.91 | JUL 28 | 154.09 | WATER YEAR 1994 HIGHEST 151.57 FEB 11, 1994 LOWEST 154.09 JUL 28, 1994 432834096102701. Local number, 100-45-21 BBBB1. LOCATION.--Lat 43°28'34", long 96°10'27", Hydrologic Unit 10170204, on the southwest corner of the intersection of county roads, approximately 3 mi north of the City of Rock Rapids. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 12.5 ft, cased to 12.5 ft, slotted 10.5-12.5 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,360 ft above sea level, from topographic map. Measuring point: Top of casing, 2.25 ft (revised, effective July 26, 1990) above land-surface datum. REMARKS.--Well RR-1U. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.87 feet below land-surface datum, August 3, 1993; lowest measured, 9.83 ft below land-surface datum, July 26, 1990. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|----------------|--------|----------------|--------|-----------------------| | NOV 02 | 7.48 | FEB 11 | 8.09 | MAY 03 | 7.19 | JUL 28 | 7.71 | WATER YEAR 1994 HIGHEST 7.19 MAY 03, 1994 LOWEST 8.09 FEB 11, 1994 ### LYON COUNTY -- Continued 432834096102702. Local number, 100-45-21 BBBB2. LOCATION.—Lat 43°28'34", long 96°10'27", Hydrologic Unit 10170204, on the southwest corner of the intersection of county roads, approximately 3 mi north of the City of Rock Rapids. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 23 ft, cased to 23 ft, slotted 19.5-23 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,360 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft (revised, effective July 26, 1990) above land-surface datum. REMARKS.--Well RR-1L. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.87 feet below land-surface datum, August 3, 1993; lowest measured, 9.73 ft below land-surface datum, July 26, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 02 | 7.48 | FEB 11 | 8.05 | MAY 03 | 7.15 | JUL 28 | 7.67 | WATER YEAR 1994 HIGHEST 7.15 MAY 03, 1994 LOWEST 8.05 FEB 11, 1994 ### MADISON COUNTY 411727093483001. Local number, 75-26-23 AAAC. LOCATION.-Lat 41°17'27", long 93°48'30", Hydrologic Unit 07100008, near the shelter house in the city park, St. Charles. Owner: City of St. Charles. AQUIFER.--Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 867 ft, cased to 657 ft, open hole 657-867 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,067 ft above sea level, from topographic map. Measuring point: Plug in well cover, 1.20 ft above land-surface datum. REMARKS .-- City well No. 1. PERIOD OF RECORD.--November 1962 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 261.76 ft below land-surface datum, November 20, 1962; lowest measured, 277.34 ft below land-surface datum, July 27, 1994. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|-------------|----------------|-------------|----------------| | JAN 28 | 276.91 | APR 20 | 277.30 | JUL 27 | 277.34 | WATER YEAR 1994 HIGHEST 276.91 JAN 28, 1994 LOWEST 277.34 JUL 27, 1994 # MAHASKA COUNTY 411912092273601. Local number, 75-14-10 BAAC. LOCATION.-Lat 41°19'12", long 92°27'30", Hydrologic Unit 07080106, approximately 0.5 mi south of Iowa Highway 92 in the town of Rose Hill. Owner: City of Rose Hill. AQUIFER.—Missispipain: in limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.—Drilled unused public-supply artesian well, diameter 6 in., depth 370 ft, casing interval unknown. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder July 1990 to October 1992. Intermittent measurement with chalked tape by USGS personnel May 1989 to June 1989. ATIMATICAL STATES OF Lad surface of the content th DATUM.--Elevation of land-surface datum is 815 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 1.63 ft above land-surface datum. REMARKS.--Rose Hill No. 2 well PERIOD OF RECORD .-- May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.69 ft below land-surface datum, July 30, 1992; lowest measured, 103.61 ft below land-surface datum, March 5, 6, 7, and 8, 1990. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 09 | 101.47 | FEB 01 | 101.27 | MAY 04 | 101.23 | AUG 01 | 101.15 | WATER YEAR 1994 HIGHEST 101.15 AUG 01.1994 LOWEST 101.47 NOV 09, 1993 ### MAHASKA COUNTY--Continued 411914092274701. Local number, 75-14-10 BABC. LOCATION.-Lat 41°19'14", long 9°2°27'47", Hydrologic Unit 07080106, approximately 0.45 mi south of Iowa Highway 92, behind City Hall in the Town of Rose Hill. Owner: City of Rose Hill. AQUIFER.—Mississippian: in limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.—Drilled unused public-supply artesian well, diameter 5 in., depth 273 ft, casing interval unknown. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 817 ft above sea level, from topographic map. Measuring point: Top of casing, 1.53 ft above landsurface datum. REMARKS.--Rose Hill No. 4 well. PERIOD OF RECORD.--September 1988 to current year. REVISION .-- Site identification number. Previously published as 411914092273001. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.79 ft below land-surface datum, August 1, 1994; lowest measured, 103.20 ft below land-surface datum, October 26, 1989. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 09 | 101.17 | FEB 01 | 101.08 | MAY 04 | 100.87 | AUG 01 | 100.79 | WATER YEAR 1994 HIGHEST 100.79 AUG 01, 1994 LOWEST 101.17 NOV 09, 1993 412002092470301. Local number, 75-17-02 BAAB. LOCATION.--Lat 41°20'02", long 92°47'03", Hydrologic Unit 07100009, just south of County Road G-39, in a field at the south end of Main Street in the Town of Leighton. Owner: Royce Pierson. AQUIFER.—Pennsylvanian: in sandstone of Pennsylvanian age. WELL CHARACTERISTICS.—Drilled unused private semi-confined well, diameter 12 in., depth 50 ft, cased to 30.25 ft, open 30.25 to 50 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 780 ft above sea level, from topographic map. Measuring point: Top of casing, 2.38 ft above landsurface datum. REMARKS.--Formerly Leighton No. 2 well. PERIOD OF RECORD.--October 1988 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 5.88 ft below land-surface datum, May 6, 1993; lowest measured, 15.41 ft below land-surface datum, January 3, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|-------------|----------------|--------|----------------|-------------|----------------| | NOV 10 | 7.44 | FEB 01 | 7.97 | MAY 04 | 8.48 | AUG 01 | 7.95 | WATER YEAR 1994 HIGHEST 7.44 NOV 10, 1993 LOWEST 8.48 MAY 04, 1994 412020092471002. Local number, 76-17-35 CADB. LOCATION.—Lat 41°20°20°, long 92°47'10°, Hydrologic Unit 07100009, 150 ft east of the old treatment plant near a retirement village on the north end of the Town of Leighton. Owner: Town of Leighton. AQUIFER.--Cambrian-Ordovician: in sandstone of Late Cambrian and sandstone and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.-Drilled unused public-supply artesian well, diameter 8 in., depth 2200 ft, cased to 1778 ft, open 1778-2200 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 820 ft above sea level, from topographic map. Measuring point: Top of casing, 5.43 ft above landsurface datum. REMARKS.--Leighton No. 4 well. PERIOD OF RECORD.--May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 215.38 ft below land-surface datum, May 11, 1989; lowest measured, 253.47 ft below land-surface datum, August 11, 1993. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 10 | 255.71 | FEB 01 | 258.38 | MAY 03 | 259.70 | AUG 01 | 259.00 | WATER YEAR 1994 HIGHEST 255.71 NOV 10, 1993 LOWEST 259.70 MAY 03, 1994 ### MAHASKA COUNTY--Continued 412023092471201. Local number, 76-17-35 CADB. LOCATION.--Lat 41°20'23", long 92°47'12", Hydrologic Unit 07100009, inside the old treatment plant at the north end of the Town of Leighton. Owner: Town of Leighton. AQUIFER .-- Mississippian: in limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.—Drilled unused public-supply artesian well, diameter 6 in., depth 210 ft, cased 0-210 ft, perforated 140-210 ft. Open to Pleistocene sand and gravel 140-142 ft. INSTRUMENTATION.-- Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder July 1989 to September 1992. DATUM.--Elevation of land-surface datum is 823 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 2.06 ft above land-surface datum. REMARKS .-- Leighton No. 1 well PERIOD OF RECORD .-- May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 75.84 ft below land-surface datum, August 11, 1993; lowest measured, 84.15 ft below land-surface datum, September 6 and 7, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 10 | 75.85 | FEB 01 | 76.37 | MAY 04 | 76.84 | AUG 01 | 77.48 | WATER YEAR 1994 HIGHEST 75.85 NOV 10, 1993 LOWEST 77.48 AUG 01, 1994 ### MARION COUNTY 411323093142601. Local number, 74-21-11 DBCB1. LOCATION.--Lat 41°13'23", long 93°14'26", Hydrologic Unit 07100008, north of the water tower in the town square, Melcher. Owner: Town of Melcher. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.—Drilled unused water-table well, diameter 18 in., depth 9.7 ft, lined with tile. Depth originally 25 ft, re-measured in 1981 to a depth of 12.2 ft, re-measured in 1991. INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 948 ft above sea level, from topographic map. Measuring point: Top of tile casing at land-surface datum REMARKS .-- Town well No. 2. PERIOD OF RECORD .-- March 1950 to current year. REVISION.--Highest water level measured, 0.20 ft below land-surface datum, October 10, 1973; lowest measured, 15.27 ft below land-surface datum, October 22, 1953. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.20 ft below land-surface datum, October 10, 1973; lowest measured, 15.27 ft below land-surface datum, October 22, 1953. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|----------------| | OCT 14 | 4.78 | JAN 20 | 5.89 | APR 19 | 5.61 | JUL 29 | 6.32 | | NOV 16 | 5.41 | FEB 16 | 5.65 | MAY 17 | 5.58 | SEP 01 | 6.97 | | DEC 09 | 5.53 | MAR 17 | 4.47 | JUN 14 | 5.45 | SEP 14 | 6.73 | # WATER YEAR 1994 HIGHEST 4.47 MAR 17, 1994 LOWEST 6.97 SEP 01, 1994 ### **MARION COUNTY--Continued** 411328093143503. Local number, 74-21-11 CAAD3. LOCATION.-Lat 41°13'28", long 93°14'35", Hydrologic Unit 07100008, northeast corner of the junction of West 1st Street and North A Street, Melcher. Owner: Town of Melcher. AQUIFER .-- Glacial drift: in sand of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 1.25 in., depth 96.5 ft, cased to 80 ft, screened 80-82 ft, open hole 82-96.5 ft. INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel. DATUM .-- Elevation of land-surface datum is 944 ft above sea level, from topographic map. Measuring point: Nipple welded to casing, 0.51 ft above land-surface datum. REMARKS .-- Town well No. 5, well 11L1. PERIOD OF RECORD .-- August 1953 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.09 ft below land-surface datum, May 8, 1958; lowest measured (nearby well pumping), 55.16 ft, revised, below land-surface datum, March 4, 1954. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|-------------|----------------|--------|----------------|--------|----------------| | OCT 14 | 11.50 | JAN 21 | 12.45 | APR 19 | 12.34 | JUL 29 | 12.66 | | NOV 16 | 11.89 | FEB 16 | 12.53 | MAY 17 | 12.39 | SEP 01 | 13.25 | | DEC 09 | 12.00 | MAR 17 | 12.03 | JUN 14 | 12.44 | SEP 14 | 13.26 | WATER YEAR 1994 HIGHEST 11.50 OCT 14, 1993 LOWEST 13.26 SEP 14, 1994 411329093142902. Local number, 74-21-11 DBBB2. LOCATION.--Lat 41°13'29", long 93°14'29", Hydrologic Unit 07100008, southeast corner of the T junction of North B Street and Main Street, Melcher. Owner: Town of Melcher. AQUIFER .-- Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 119 ft, cased to 76 ft, open hole 76-119 ft. Sand and gravel 103-117 ft. Pennsylvanian shale 117-119 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 943 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.82 ft above land- surface datum. REMARKS.--Town well No. 3, well 11K1. PERIOD OF RECORD.--July 1945 to December 1955, October 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.43 ft below land-surface datum, May 21, 1986; lowest measured (nearby well pumping), 108.85 ft below land-surface datum, December 4, 6-7, 1949. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|-------------|-----------------------|--------|----------------| | OCT 14 | 20.67 | JAN 21 | 21.43 | APR 19 | 21.29 | JUL 29 | 21.60 | | NOV 16 | 20.92 | FEB 16 | 21.68 | MAY 17 | 21.28 | SEP 01 | 21.75 | | DEC 09 | 20.94 | MAR 17 | 20.86 | JUN 14 | 21.15 | SEP 14 | 21.68 | ### MARSHALL COUNTY 415640093062101. Local number, 82-19-06 ACCB. LOCATION.--Lat 41°56'40", long 93°06'21", Hydrologic Unit 07080106, located on the west side of Iowa Highway 395, approximately 0.4 mi south of the junction of Iowa Highway 395 and 330, in the old treatment plant in the City of Melbourne. Owner: City of Melbourne. AQUIFER .-- Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 10 in., depth 1,340 ft, cased to 1,212 ft, open hole 1,212-1,340 ft. Open to Ordovician rock 1,305-1,340 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,045 ft above sea level, from topographic map. Measuring point: Top of casing, 0.65 ft above landsurface datum. REMARKS .-- Melbourne No. 1 well. PERIOD OF RECORD .-- September 1988 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 201.56 ft below land-surface datum, August 5, 1992; lowest measured, 232.32 ft below land-surface datum, November 1, 1993. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|-------------|----------------|--------|----------------|------|----------------| | NOV 01 | 232.32 | JAN 31 | 209.47 | MAY 02 | 208.27 | | | WATER YEAR 1994 HIGHEST 208.27 MAY 02, 1994 LOWEST 232.32 NOV 01, 1993 420355092534701. Local number, 84-18-24 CDCA. LOCATION.--Lat 41°03'55", long 92°53'47", Hydrologic Unit 07080208, east of Riverview Park and south of the sewage treatment plant, Marshalltown. Owner: City of Marshalltown. AQUIFER.-Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.-Drilled unused artesian water well, diameter 8 in., depth 200 ft, cased to 190 ft, screened 190-200 ft. INSTRUMENTATION .-- Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 871 ft above sea level, from topographic map. Measuring point: Top of casing, 0.22 ft above landsurface datum. PERIOD OF RECORD.--May 1949 to August 1971, March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.92 ft below land-surface datum, July 13, 1951; lowest measured, 54.95 ft below land-surface datum, May 8, 1981. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|-------------|----------------| | NOV 01 | 33.83 | MAY 02 | 31.52 | AUG 02 | 47.14 | WATER YEAR 1994 HIGHEST 31.52 MAY 02, 1994 LOWEST 47.14 AUG 02, 1994 ### MARSHALL COUNTY--Continued 421120093003001. Local number, 85-19-12 ADCD. LOCATION.—Lat 41°11'20", long 93°00'30", Hydrologic Unit 07080207, located behind the old City Hall across the street from the Community Center and Fire Station. Owner: City of Liscomb. AQUIFER.--Mississippian: in limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 8 in., depth 278 ft, cased to 159 ft, perforated 110-159 ft, open hole 159-278 ft. Open to Devonian rock 274-278 ft. INSTRUMENTATION .- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,008 ft above sea level, from topographic map. Measuring point: Top of casing, 0.56 ft above landsurface datum. REMARKS.--Liscomb No. 1 well. PERIOD OF RECORD.--September 1988 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 92.48 ft below land-surface datum, August 23, 1993; lowest measured, 101.50 ft below land-surface datum, November 29, 1989. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 95.51 | JAN 31 | 97.56 | MAY 02 | 97.69 | AUG 02 | 97.87 | WATER YEAR 1994 HIGHEST 95.51 NOV 01, 1993 LOWEST 97.87 AUG 02, 1994 ### MILLS COUNTY 405641095365101. Local number, 71-42-24 AAAA. LOCATION.—Lat 40°56'41", long 95°36'51", Hydrologic Unit 10240002, at the intersection of County Roads M-16 and H-46, approximately 5 mi southeast of the City of Malvern. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 255 ft, cased to 250 ft, slotted 240-250 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,102 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above landsurface datum. REMARKS.--Well SW-41. PERIOD OF RECORD.--June 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 135.50 feet below land-surface datum, August 5, 1993; lowest measured, 144.30 ft below land-surface datum, June 13, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 136.04 | FEB 04 | 137.35 | MAY 05 | 138.07 | JUL 26 | 137.89 | WATER YEAR 1994 HIGHEST 136.04 OCT 29, 1993 LOWEST 138.07 MAY 05, 1994 405813095433201. Local number, 71-42-07 BBCD. LOCATION.—Lat 40°58'13", long 95°43'32", Hydrologic Unit 10240001, on the west side of the T-intersection of county roads, approximately 5.5 mi south of the City of Glenwood. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 351 ft, cased to 342 ft, slotted 332-342 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,122 ft above sea level, from topographic map. Measuring point: Top of casing, 1.80 ft above landsurface datum. REMARKS .-- Well SW-40. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 165.70 feet below land-surface datum, August 5, 1993; lowest measured, 170.31 ft below land-surface datum, November 3, 1992. WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|-----------------------|--------|----------------| | OCT 29 | 166.56 | FEB 04 | 168.39 | MAY 05 | 169.14 | JUL 26 | 168.64 | WATER YEAR 1994 HIGHEST 166.56 OCT 29, 1993 LOWEST 169.14 MAY 05, 1994 ### **MILLS COUNTY--Continued** 405911095302301. Local number, 71-41-04 AADA1. LOCATION. -Lat 40°59'11", long 95°30'23", Hydrologic Unit 10240002, on the west side of county road, approximately 2 mi southeast of the City of Malvern. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 44 ft, cased to 44 ft, slotted 40-44 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 977 ft above sea level, from topographic map. Measuring point: Top of casing, 2.73 ft above landsurface datum. REMARKS .-- Well SW-36A. PERIOD OF RECORD .-- June 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 3.47 feet below land-surface datum (recently pumped), September 21, 1993; lowest measured, 8.43 ft below land-surface datum, June 13, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 3.57 | FEB 04 | 5.59 | MAY 05 | 5.84 | JUL 26 | 5.33 | WATER YEAR 1994 HIGHEST 3.57 OCT 29, 1993 LOWEST 5.84 MAY 05, 1994 405911095302302. Local number, 71-41-04 AADA2. LOCATION. -Lat 40°59'11", long 95°30'23", Hydrologic Unit 10240002, on the west side of county road, approximately 2 mi southeast of the City of Malvern. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 62 ft, cased to 57 ft, screened 57-62 ft, gravel packed. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 977 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above landsurface datum. REMARKS.--Well SW-36B. PERIOD OF RECORD .-- June 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.31 feet below land-surface datum, August 5, 1993; lowest measured, 14.44 ft below land-surface datum, June 13, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|-------------|----------------|--------|----------------| | OCT 29 | 4.65 | FEB 04 | 8.99 | MAY 05 | 10.65 | JUL 26 | 8.89 | WATER YEAR 1994 HIGHEST 4.65 OCT 29, 1993 LOWEST 10.65 MAY 05, 1994 ### MITCHELL COUNTY 432156092484101. Local number, 95-17-23 DAA. LOCATION. Lat 43°21'56', long 98°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 27 ft, cased 27 ft, perforated 10-27 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.41 ft above landsurface datum. REMARKS.--Well FM-2T. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.46 ft above land-surface datum, May 6, 1993; lowest measured, 5.07 ft below land-surface datum, January 31, 1994. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|----------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | AUG 04, 1992<br>NOV 03, 1992<br>FEB 01, 1993 | 3.51<br>2.73<br>3.50 | MAY 06, 1993<br>AUG 23, 1993 | 1.46<br>2.43 | NOV 01, 1993<br>JAN 31, 1994 | 3.40<br>5.07 | MAY 02, 1994<br>AUG 02, 1994 | 2.64<br>2.24 | WATER YEAR 1994 HIGHEST 2.24 AUG 02, 1994 LOWEST 5.07 JAN 31, 1994 ### MITCHELL COUNTY--Continued 432156092484102. Local number, 95-17-23 DAA. LOCATION.—Lat 43°21'56', long 98°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. - Devonian: in dolomite of Devonian age. WELL CHARACTERISTICS. - Drilled observation well, diameter 1 in., depth 70 ft, cased 70 ft, perforated 55-70 ft. INSTRUMENTATION. - Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.58 ft above landsurface datum. REMARKS .-- Well FM-2 (1). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.89 ft above land-surface datum, August 23, 1993; lowest measured, 11.92 ft below land-surface datum, January 31, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|-----------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | AUG 04, 1992<br>NOV 03, 1992<br>FEB 01, 1993 | 9.94<br>9.77<br>10.73 | MAY 06, 1993<br>AUG 23, 1993 | 7.27<br>6.89 | NOV 01, 1993<br>JAN 31, 1994 | 10.46<br>11.92 | MAY 02, 1994<br>AUG 02, 1994 | 10.80<br>7.72 | # WATER YEAR 1994 HIGHEST 7.72 AUG 02, 1994 LOWEST 11.92 JAN 31, 1994 432156092484103. Local number, 95-17-23 DAA. LOCATION.-Lat 43°21'56', long 98°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Devonian: in dolomite of Devonian age. WELL CHARACTERISTICS.-Drilled observation well, diameter 1.5 in., depth 150 ft, cased 150 ft, perforated 110-150 ft. INSTRUMENTATION.-Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.55 ft above landsurface datum. REMARKS .-- Well FM-2 (2). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.78 ft above land-surface datum, August 23, 1993; lowest measured, 12.26 ft below land-surface datum, January 31, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|-------------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | AUG 04, 1992<br>NOV 03, 1992<br>FEB 01, 1993 | 10.48<br>10.70<br>11.55 | MAY 06, 1993<br>AUG 23, 1993 | 6.93<br>6.78 | NOV 01, 1993<br>JAN 31, 1994 | 10.36<br>12.26 | MAY 02, 1994<br>AUG 02, 1994 | 11.66<br>8.48 | WATER YEAR 1994 HIGHEST 8.48 AUG 02, 1994 LOWEST 12.26 JAN 31, 1994 432156092484104. Local number, 95-17-23 DAA. LOCATION .- Lat 43°21'56', long 98°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-- Devonian: in dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 250 ft, cased 250 ft, perforated 188-250 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.44 ft above landsurface datum. REMARKS.--Well FM-2 (3). PERIOD OF RECORD .-- August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.54 ft above land-surface datum, May 6, 1993; lowest measured, 14.92 ft below land-surface datum, January 31, 1994. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|-------------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | AUG 04, 1992<br>NOV 03, 1992<br>FEB 01, 1993 | 12.52<br>13.88<br>14.24 | MAY 06, 1993<br>AUG 23, 1993 | 5.54<br>7.32 | NOV 01, 1993<br>JAN 31, 1994 | 11.98<br>14.92 | MAY 02, 1994<br>AUG 02, 1994 | 14.43<br>10.81 | WATER YEAR 1994 HIGHEST 10.81 AUG 02, 1994 LOWEST 14.92 JAN 31, 1994 ### MITCHELL COUNTY--Continued 432156092484105. Local number, 95-17-23 DAA. LOCATION.--Lat 43°21'56', long 98°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Devonian: in dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 348 ft, cased 348 ft, perforated 278-348 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.37 ft above landsurface datum. REMARKS .-- Well FM-2 (4). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.04 ft above land-surface datum, August 23, 1993; lowest measured, 19.49 ft below land-surface datum, February 1, 1993 and May 2, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | AUG 04, 1992 | 16.85 | MAY 06, 1993 | 11.47 | NOV 01, 1993 | 15.77 | MAY 02, 1994 | 19.49 | | NOV 03, 1992<br>FEB 01, 1993 | 19.20<br>19.49 | AUG 23, 1993 | 10.04 | JAN 31, 1994 | 15.35 | AUG 02, 1994 | 16.00 | WATER YEAR 1994 HIGHEST 15.35 JAN 31, 1994 LOWEST 19.49 MAY 02, 1994 ### MONONA COUNTY 415456095414101. Local number, 82-42-14 ADCA. LOCATION.—Lat 41°54′56″, long 95°41′41″, Hydrologic Unit 10230007, approximately 6 mi southeast of the Town of Soldier, on the north side of Iowa Highway 37. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 341 ft, cased to 336 ft, slotted 311-336 ft, gravelpacked. INSTRUMENTATION. -- Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,340 ft above sea level, from topographic map. Measuring point: Top of casing, 2.02 ft above landsurface datum. REMARKS.--Well WC-4. PERIOD OF RECORD .-- May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 240.25 ft below land-surface datum, January 10, 1984; lowest measured, 246.69 ft below land-surface datum, July 28, 1981. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |-------------|----------------|--------|----------------|--------|-----------------------|-------------|----------------| | NOV 03 | 241.68 | FEB 01 | 242.72 | MAY 04 | 242.78 | JUL 29 | 243.13 | WATER YEAR 1994 HIGHEST 241.68 NOV 03, 1993 LOWEST 243.13 JUL 29, 1994 420004095451501. Local number, 83-42-17 ACDD. LOCATION.--Lat 41°00'04", long 95°45'15", Hydrologic Unit 10230001, approximately 1.75 mi northeast of the Town of Soldier, 0.25 mi west of Iowa Highway Highway 183. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 161 ft, cased to 161 ft, slotted 149-154 ft. Open to 8 ft of Pennsylvanian shale and limestone, 153-161 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,160 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above landsurface datum. REMARKS .-- Well WC-176. PERIOD OF RECORD .-- May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 54.50 ft below land-surface datum, November 6, 1991; lowest measured, 64.09 ft below land-surface datum, September 7, 1983. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |-------------|-----------------------|--------|-----------------------|--------|-----------------------|-------------|----------------| | NOV 03 | 58.96 | FEB 01 | 58.48 | MAY 02 | 58.69 | JUL 29 | 59.03 | WATER YEAR 1994 HIGHEST 58.48 FEB 01, 1994 LOWEST 59.03 JUL 29, 1994 ### **MONONA COUNTY--Continued** 420004095454801. Local number, 83-42-17 CABB. LOCATION.—Lat 42°00'04", long 95°45'48", Hydrologic Unit 10230001, on the southwest corner of the intersection of State Highway 183 and county road, approximately 1.25 mi northeast of the City of Soldier. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Soldier River alluvial: in sand of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 37 ft, cased to 37 ft, slotted from 23.5-26 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,140 ft above sea level, from topographic map. Measuring point: Top of casing, 1.75 ft above landsurface datum. REMARKS.--Well WC-173. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.50 feet below land-surface datum, August 5, 1993; lowest measured, 18.52 ft below land-surface datum, August 6, 1992. ### WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM. WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 03 | 17.60 | FEB 01 | 17.23 | MAY 02 | 18.36 | JUL 29 | 18.27 | WATER YEAR 1994 HIGHEST 17.23 FEB 01, 1994 LOWEST 18.36 MAY 02, 1994 420139095155701. Local number, 83-43-04 CBCB. LOCATION.—Lat 41°01'39", long 95°51'57", Hydrologic Unit 10230005, approximately 5.5 mi northwest of the Town of Soldier and 1.5 mi north of Iowa Highway 37. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 321 ft, cased to 315 ft, slotted 297-315 ft, gravelpacked, open hole 315-321 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,235 ft above sea level, from topographic map. Measuring point: Top of casing, 2.53 ft above landsurface datum. REMARKS.--Well WC-5. PERIOD OF RECORD.--May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 183.60 ft below land-surface datum, November 3, 1993; lowest measured, 189.96 ft below land-surface datum, February 2, 1982. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------|----------------| | NOV 03 | 183.60 | FEB 01 | 184.37 | MAY 02 | 184.67 | JUL29 | 185.14 | WATER YEAR 1994 HIGHEST 183.60 NOV 03, 1993 LOWEST 185.14 JUL 29, 1994 ### **MONONA COUNTY--Continued** 420730095510701. Local number, 84-43-04 ABAA. LOCATION.--Lat 41°07'30", long 95°51'07", Hydrologic Unit 10230005, approximately 4 mi southwest of the Town of Mapleton, on the north side of Iowa Highway 175. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Maple alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 72 ft, cased to 58 ft, slotted 53-58 ft, gravel-packed, open hole 58-72 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,090 ft above sea level, from topographic map. Measuring point: Top of casing, 2.40 ft above land-surface datum. REMARKS.--Well WC-163. PERIOD OF RECORD .-- May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.58 ft below land-surface datum, August 5, 1993; lowest measured, 15.79 ft below land-surface datum, January 11, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 03 | 9.06 | FEB 01 | 11.10 | MAY 02 | 12.23 | JUL 29 | 12.13 | WATER YEAR 1994 HIGHEST 9.06 NOV 03, 1993 LOWEST 12.23 MAY 02, 1994 421006095580301. Local number, 85-44-16 DCDD. LOCATION.--Lat 41°10'06", long 95°58'03", Hydrologic Unit 10230003, approximately 0.75 mi west of the Town of Ticonic on the north side of County Road E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Little Sioux alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 43 ft, cased to 40 ft, slotted 35-40 ft, gravel-packed. Open to Dakota sandstone 40-43 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,060 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well WC-156. PERIOD OF RECORD .-- October 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.92 ft below land-surface datum, March 10, 1983; lowest measured, 14.90 ft below land-surface datum, October 10, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|-----------------------|--------|----------------| | NOV 03 | 9.47 | FEB 01 | 10.26 | MAY 02 | 9.85 | JUL 29 | 9.88 | ### MONONA COUNTY--Continued 421018095582001. Local number, 85-44-16 CDAA. LOCATION.--Lat 41°10'18", long 95°58'20", Hydrologic Unit 10230003, approximately 1.25 mi west of the Town of Ticonic on the north side of County Road E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 81 ft, cased to 77 ft, slotted 67-77 ft, gravel-packed, open hole 77-81 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,060 ft above sea level, from topographic map. Measuring point: Top of casing, 2.25 ft above landsurface datum. REMARKS.--Well WC-155 PERIOD OF RECORD .-- October 1982 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 4.99 ft below land-surface datum, August 5, 1993; lowest measured, 17.85 ft below land-surface datum, April 10, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|-------------|-----------------------|--------|-----------------------|--------|----------------| | NOV 03 | 11.02 | FEB 01 | 11.94 | MAY 02 | 11.69 | JUL 29 | 11.83 | WATER YEAR 1994 HIGHEST 11.02 NOV 03, 1993 LOWEST 11.94 FEB 01, 1994 421018095591301. Local number, 85-44-17 DCAA. LOCATION.--Lat 41°10'18", long 95°59'13", Hydrologic Unit 10230003, approximately 2.5 mi southwest of the Town of Rodney on the north side of County Road L-12. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 135 ft, cased to 135 ft, slotted 115-125 ft, gravelpacked. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,110 ft above sea level, from topographic map. Measuring point: Top of casing, 2.70 ft above landsurface datum. REMARKS.--Well WC-158. PERIOD OF RECORD.--October 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.62 ft below land-surface datum, November 3, 1993; lowest measured, 55.99 ft below land-surface datum, January 11, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|-----------------------|-------------|----------------|-------------|-----------------------| | NOV 03 | 49.62 | FEB 01 | 50.59 | MAY 02 | 50.80 | JUL 29 | 51.16 | WATER YEAR 1994 HIGHEST 49.62 NOV 03, 1993 LOWEST 51.16 JUL 29, 1994 # MONTGOMERY COUNTY 405403095004401. Local number, 71-36-32 DCCD. LOCATION.--Lat 40°54'03", long 95°00'44", Hydrologic Unit 10240009, on the east side of County Road J-14, approximately 2 mi southwest of the City of Villisca. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 2 in., depth 42 ft, cased to 42 ft, slotted 37-42 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,021 ft above sea level, from topographic map. Measuring point: Top of casing, 2.40 ft above landsurface datum. REMARKS .-- Well SW-65. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.30 feet below land-surface datum, August 5, 1993; lowest measured, 15.49 ft below land-surface datum, May 5, 1994. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|-------------|-----------------------|--------|----------------|--------|----------------| | OCT 29 | 9.83 | FEB 04 | 14.51 | MAY 05 | 15.49 | JUL 27 | 12.60 | WATER YEAR 1994 HIGHEST 9.83 OCT 29, 1993 LOWEST 15.49 MAY 05, 1994 405841095012702. Local number, 71-36-06 DADA2. LOCATION.-Lat 40°58'41", long 95°01'27", Hydrologic Unit 10240009, located east of dam at Viking Lake State Park, approximately 0.3 mi south of Iowa Highway 34 on the west side of road. Owner: Geological Survey Bureau, DNR, and U.S. Geological Survey. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 2 in., depth 36 ft, cased to 33 ft, screened 33-36 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by observer and U.S.G.S. personnel. DATUM. -- Elevation of land-surface datum is 1,080 ft above sea level, from topographic map. Measuring point: Top of casing, 2.28 ft above landsurface datum. REMARKS.--Viking Lake No. 2 (6J2) well. PERIOD OF RECORD.--June 1989 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.51 ft below land-surface datum, September 9, 1989; lowest measured, 17.15 ft below land-surface datum, August 15, 1989. ### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 14.70 | FEB 04 | 15.54 | MAY 09 | 15.27 | JUL 26 | 15.97 | WATER YEAR 1994 HIGHEST 14.70 OCT 29, 1993 LOWEST 15.97 JUL 26, 1994 ### **MONTGOMERY COUNTY--Continued** 410057095075101. Local number, 72-37-29 BABA. LOCATION .-- Lat 41°00'57", long 95°07'51", Hydrologic Unit 10240005, approximately 4.35 mi east of the City of Red Oak, just south of County Road H-34. Owner: John Ogden. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS .- Bored observation water-table well, diameter 3 in., depth 40 ft, cased to 40 ft, perforated. Interval of perforation not available INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,275 ft above sea level, from topographic map. Measuring point: Top of casing, 1.00 ft above land- PERIOD OF RECORD .-- June 1937 to current year. REVISION.--Measuring point revised May 10, 1990 to September 10, 1992. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.14 ft below land-surface datum, July 22, 1993; lowest measured, dry, July 8, 1963 and February 3, 1964. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|--------|----------------|--------|----------------|--------|-----------------------| | OCT 29 | 8.78 | APR 18 | 17.89 | JUN 01 | 18.70 | JUL 27 | 12.42 | | FEB 04 | 16.82 | MAY 05 | 17.99 | JUL 19 | 11.46 | SEP 01 | 17.31 | | MAR 08 | 16.69 | | | | | | | WATER YEAR 1994 HIGHEST 8.78 OCT 29, 1993 LOWEST 18.70 JUN 01, 1994 410103095594501. Local number, 72-36-04 CDDD. LOCATION.--Lat 41°03'33", long 94°59'45", Hydrologic Unit 10240009, on the north side of County Road H-28, approximately 1.5 mi southwest of the Town of Mortons Mill. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 34 ft, cased to 34 ft, slotted 29-34 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,076 ft above sea level, from topographic map. Measuring point: Top of casing, 2.30 ft above landsurface datum. REMARKS.--Well SW-66. PERIOD OF RECORD.--October 1987 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 6.78 feet below land-surface datum, August 5, 1993; lowest measured, 15.36 ft below land-surface datum, May 5, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|-----------------------|--------|----------------| | OCT 29 | 10.31 | FEB 09 | 14.55 | MAY 05 | 15.36 | JUL 27 | 12.92 | WATER YEAR 1994 HIGHEST10.31 OCT 29, 1993. LOWEST 15.36 MAY 05, 1994 ### **MONTGOMERY COUNTY--Continued** 410134095141601. Local number, 72-38-20 ACAA1. LOCATION.—Lat 41°01°34", long 95°14'16", Hydrologic Unit 10240003, on the north side of U.S. Highway 34, approximately .25 mi west of State Highway 48, west of the City of Red Oak. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 17 ft, cased to 17 ft, slotted 14-17 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,038 ft above sea level, from topographic map. Measuring point: Top of casing, 2.90 ft above landsurface datum REMARKS.--Well SW-35A. PERIOD OF RECORD .-- June 1990 and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.25 feet below land-surface datum, August 5, 1993; lowest measured, 9.45 ft below land-surface datum, June 14, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 4.50 | FEB 04 | 8.18 | MAY 05 | 9.18 | JUL 27 | 6.71 | WATER YEAR 1994 HIGHEST 4.50 OCT 29, 1993 LOWEST 9.18 MAY 05, 1994 410134095141602. Local number, 72-38-20 ACAA2. LOCATION.-Lat 41°01'34", long 95°14'16", Hydrologic Unit 10240003, on the north side of U.S. Highway 34, approximately .25 mi west of State Highway 48, west of the City of Red Oak. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 27 ft, cased to 27 ft, slotted 22-27 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,038 ft above sea level, from topographic map. Measuring point: Top of casing, 2.58 ft above landsurface datum. REMARKS.--Well SW-35B. PERIOD OF RECORD .-- June 1990 and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 3.22 feet below land-surface datum, August 5, 1993; lowest measured, 9.42 ft below land-surface datum, June 14, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 29 | 4.44 | FEB 04 | 8.16 | MAY 05 | 9.16 | JUL 27 | 6.68 | WATER YEAR 1994 HIGHEST 4.44 OCT 29, 1993 LOWEST 9.16 MAY 05, 1994 ### MUSCATINE COUNTY 412120091080401. Local number, 76-02-30 CBAA1. LOCATION.--Lat 4121'20", long 91°08'04", Hydrologic Unit 07080101, west of the Town of Fruitland on an Iowa State University Agricultural Experiment Farm. Owner: U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS .- Drilled observation water-table well, diameter 6 in., depth 27 ft, cased to 24 ft, screened 24-27 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1966 to October DATUM .-- Elevation of land-surface datum is 546 ft above sea level, from topographic map. Measuring point: Base of recorder shelter, 3.40 ft above land-surface datum. REMARKS.--Fruitland/30M4 well. PERIOD OF RECORD .-- May 1966 to current year. REVISED RECORDS .-- WDR IA-84-1 EXTREMES FOR PERIOD OF RECORD .-- Highest water level recorded, 7.15 ft below land-surface datum, September 7, 1993; lowest measured, 17.86 ft below land-surface datum, August 2, 1989. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | WATER | | WATER | | WATER | | WATER | |--------|--------------|--------|--------------|--------|--------------|---------|--------------| | DATE | <u>LEVEL</u> | DATE | <u>LEVEL</u> | DATE | <b>LEVEL</b> | DATE | <u>LEVEL</u> | | 007701 | ~ ~ ~ | | | | 4 | 3545500 | 40.00 | | OCT 01 | 7.25 | DEC 28 | 11.45 | MAR 28 | 12.70 | MAY 25 | 13.79 | | OCT 29 | 8.54 | JAN 26 | 11.85 | APR 22 | 13.16 | JUN 21 | 14.26 | | NOV 30 | 9.98 | FEB 01 | 12.01 | MAY 09 | 13.47 | JUL 01 | 14.27 | | DEC 09 | 10.30 | FEB 28 | 12.59 | MAY 18 | 13.67 | AUG 05 | 15.21 | WATER YEAR 1994 HIGHEST 7.25 OCT 01, 1993 LOWEST 15.21 AUG 05, 1994 # O'BRIEN COUNTY 425610095250611. Local number, 94-39-26 BADB11. LOCATION.-Lat 41°56'10", long 95°25'06", Hydrologic Unit 10230003, near a dead-end road just south of the Little Sioux River, 0.9 mi north of Iowa Highway 10, approximately 5 mi southeast of the Town of Sutherland. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.50 in., depth 329 ft, cased to 329 ft, perforated 291-295 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,212 ft above sea level, from topographic map. Measuring point: Top of casing, 2.30 ft above landsurface datum. REMARKS.--Well D-3. PERIOD OF RECORD.--April 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.14 ft below land-surface datum, August 25, 1993; lowest measured, 36.85 ft below land-surface datum, December 15, 1980. ### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 03 | 35.24 | MAY 03 | 35.28 | AUG 02 | 35.67 | WATER YEAR 1994 HIGHEST 35.24 NOV 03, 1993 LOWEST 35.67 AUG 02, 1994 ### O'BRIEN COUNTY--Continued 425808095480311. Local number, 94-42-09 DDDD11. LOCATION.--Lat 41°58'08", long 95°48'03", Hydrologic Unit 10230003, west of Iowa Highway 143, 1 mi west and 1 mi north of the Village of Germantown. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 638 ft, cased to 638 ft, perforated 516-536 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,440 ft above sea level, from topographic map. Measuring point: Top of casing, 4.00 ft above landsurface datum. REMARKS.--Well D-42. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 215.09 ft below land-surface datum, May 6, 1982; lowest measured, 260.64 ft below land-surface datum, July 10, 1980. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|-------------|-----------------------|--------|----------------|--------|----------------| | NOV 02 | 252.69 | FEB 11 | 252.24 | MAY 03 | 253.24 | JUL 28 | 253.57 | WATER YEAR 1994 HIGHEST 252.24 FEB 11, 1994 LOWEST 253.57 JUL 28, 1994 430930095350401. Local number, 96-40-05 DDDA1. LOCATION.--Lat 41°09'30", long 95°35'04", Hydrologic Unit 10230003, approximately 3 mi east of the Town of Sanborn and 2 mi south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Ordovician and Dakota: in sandy shale of Ordovician age and sandstone of Cretaceous age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 2 in., depth 701 ft, cased to 701 ft, perforated 661-701 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,560 ft above sea level, from topographic map. Measuring point: Top of casing, 2.06 ft above land- surface datum. REMARKS .-- Well D-41. PERIOD OF RECORD .-- June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 358.39 ft below land-surface datum, July 8, 1986; lowest measured, 364.74 ft below land-surface datum, November 7, 1991. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|----------------|--------|----------------|--------|----------------|--------|-----------------------| | NOV 02 | 360.87 | FEB 11 | 360.73 | MAY 03 | 360.69 | ЛП. 28 | 360.88 | WATER YEAR 1994 HIGHEST 360.69 MAY 03, 1994 LOWEST 360.88 JUL 28, 1994 ### OSCEOLA COUNTY 431613095251801. Local number, 98-39-26 CDCC. LOCATION.--Lat 41°16'13", long 95°25'18", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS. -- Drilled observation artesian water well, diameter 2 in., depth 500 ft, cased to 500 ft, perforated 490-500 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.—Elevation of land-surface datum is 1,398 ft above sea level, from topographic map. Measuring point: Top of casing, 2.70 ft above landsurface datum. REMARKS.--Well D-39. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 189.99 ft below land-surface datum, June 17, 1980; lowest measured, 196.85 ft (nearby well pumping) below land-surface datum, September 6, 1984. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 03 | 191.65 | JAN 31 | 192.02 | MAY 03 | 191. <i>7</i> 7 | AUG 02 | 191.49 | WATER YEAR 1994 HIGHEST 191.49 AUG 02, 1994 LOWEST 192.02 JAN 31, 1994 431620095250501. Local number, 98-39-26 CDAD1. LOCATION.--Lat 41°16'20", long 95°25'05", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Cambrian-Ordovician: in St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS, -- Drilled observation artesian water well, diameter 2 in., depth 662 ft, cased to 662 ft, perforated 622-662 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,402 ft above sea level, from topographic map. Measuring point: Top of low pipe, 1.47 ft above land-surface datum REMARKS.--Well D-38, Deep Hibbing. PERIOD OF RECORD.—June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 192.96 ft below land-surface datum, November 20, 1989; lowest measured, 200.11 ft below land-surface datum, February 12, 1992. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------| | NOV 09 | 198.93 | MAY 03 | 198.17 | AUG 02 | 198.21 | WATER YEAR 1994 HIGHEST 198.17 MAY 03, 1994 LOWEST 198.93 NOV 09, 1993 431620095250511. Local number, 98-39-26 CDAD11. LOCATION.--Lat 41°16'20", long 95°25'05", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 345 ft, cased to 345 ft, perforated 335-345 ft. INSTRUMENTATION .- Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,402 ft above sea level, from topographic map. Measuring point: Top of high pipe, 2.60 ft above land-surface datum. REMARKS.--Well D-38, Shallow Hibbing. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 192.20 ft below land-surface datum, September 10, 1981; lowest measured, 195.05 ft below land-surface datum, August 6, 1992. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|-------------|----------------|--------|----------------| | NOV 09 | 194.70 | MAY 03 | 194.42 | AUG 02 | 194. <b>46</b> | WATER YEAR 1994 HIGHEST 194.42 MAY 03, 1994 LOWEST 194.70 NOV 09, 1993 # **OSCEOLA COUNTY--Continued** 431620095482402. Local number, 98-42-33 AABB2. LOCATION.--Lat 41°16'20", long 95°48'24", Hydrologic Unit 10170204, approximately 2.75 mi south of the Town of Ashton, west of Iowa Local number, 98-42-39, Hydrologic Unit 10170204, approximately 2.75 mi south of the Town of Ashton, west of Iowa Local number, 98-42-39, Local number, 98-42-39 AABB2. Highway 60, near the Chicago and Northwestern Railroad tracks. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 400 ft, cased to 400 ft, perforated 385-395 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,440 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above landsurface datum. REMARKS.--Well D-40. PERIOD OF RECORD.--December 1980 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 195.87 ft below land-surface datum, June 1, 1983; lowest measured, 238.48 ft below land-surface datum, July 28, 1994. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>- <u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|-------------|-----------------------|--------|-------------------------|--------|----------------| | NOV 02 | 237.18 | FEB 11 | 236.90 | MAY 03 | 238.08 | JUL 28 | 238.48 | WATER YEAR 1994 HIGHEST 236.90 FEB 11, 1994 LOWEST 238.48 JUL 28, 1994 432129095315001. Local number, 99-40-26 DCDD1. LOCATION.-Lat 43°21'29", long 95°31'50", Hydrologic Unit 10230003, on the north side of County Road A-30, approximately 4 mi south of the Town of Ocheyedan. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS .- Drilled observation water-table well, diameter 2 in., depth 9 ft, cased to 9 ft, slotted 7-9 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,452 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above landsurface datum. REMARKS.--Well OR-1U. PERIOD OF RECORD.--Highest water level measured, 0.80 feet below land-surface datum, May 5, 1993; lowest measured, 8.68 ft below land-surface datum, July 27, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|-------------|-----------------------|-------------|----------------| | NOV 03 | 5.33 | MAY 03 | 3.82 | AUG 02 | 4.71 | WATER YEAR 1994 HIGHEST 3.82 MAY 03, 1994 LOWEST 5.33 NOV 03, 1993 ## OSCEOLA COUNTY--Continued 432129095315002. Local number, 99-40-26 DCDD2. LOCATION. - Lat 43°21'29", long 95°31'50", Hydrologic Unit 10230003, on the north side of County Road A-30, approximately 4 mi south of the Town of Ocheyedan. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 30 ft, cased to 30 ft, slotted 26-30 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,452 ft above sea level, from topographic map. Measuring point: Top of casing, 1.90 ft above landsurface datum. REMARKS .-- Well OR-1M. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 1.77 feet below land-surface datum, May 5, 1993; lowest measured, 8.70 ft below land-surface datum, July 27, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|----------------| | NOV 03 | 5.39 | MAY 03 | 4.10 | AUG 02 | 4.80 | WATER YEAR 1994 HIGHEST 4.10 MAY 03, 1994 LOWEST 5.39 NOV 03, 1993 432129095315003. Local number, 99-40-26 DCDD3. LOCATION.—Lat 43°21'29", long 95°31'50", Hydrologic Unit 10230003, on the north side of County Road A-30, approximately 4 mi south of the Town of Ocheyedan. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation water-table well, diameter 2 in., depth 58 ft, cased to 58 ft, slotted 54-58 ft, gravel packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,452 ft above sea level, from topographic map. Measuring point: Top of casing, 1.70 ft above landsurface datum. REMARKS.--Well OR-1L. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 2.02 feet below land-surface datum, May 5, 1993; lowest measured, 8.71 ft below land-surface datum, July 27, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------| | NOV 03 | 5.90 | MAY 03 | 4.18 | AUG 02 | 4.86 | WATER YEAR 1994 HIGHEST 4.18 MAY 03, 1994 LOWEST 5.90 NOV 03, 1993 432828095283611. Local number, 100-39-17 DCCB11. LOCATION. -Lat 41°28'28", long 95°28'36", Hydrologic Unit 10230003, approximately 2 mi west and 2 mi north of the Town of Harris, east of County Road M-12. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 461 ft, 4 in. to 760 ft, depth 760 ft, cased to 760 ft, perforated 680-700 ft. INSTRUMENTATION.—Quarterly measurement with electric line or chalked tape by USGS personnel. INSTRUMENTATION.—Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,560 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above landsurface datum. REMARKS.--Well D-13. PERIOD OF RECORD .-- July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 341.80 ft below land-surface datum, August 5, 1980; lowest measured, 344.99 ft below land-surface datum, May 5, 1993. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|-----------------------|-------------|----------------| | NOV 03 | 344.60 | JAN 31 | 344.83 | MAY 03 | 344.75 | AUG 02 | 344.56 | WATER YEAR 1994 HIGHEST 344.56 AUG 02, 1994 LOWEST 344.83 JAN 31, 1994 #### PAGE COUNTY 403446095010701. Local number, 67-36-30 DCCD. LOCATION.--Lat 40°34'46", long 95°00'58", Hydrologic Unit 10240010, on the north side of County Road J-55, approximately .5 mi southwest of the Town of Braddyville. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 20 ft, cased to 20 ft, slotted 16-20 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 948 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land- surface datum. REMARKS .-- Well SW-64. PERIOD OF RECORD.--September 1987 to November 1987, June 1990, and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 0.04 feet below land-surface datum, May 7, 1993; lowest measured, 3.00 ft below land-surface datum, July 26, 1994. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|-------------|----------------|--------|----------------| | OCT 29 | 0.98 | FEB 04 | 2.75 | MAY 05 | 2.64 | JUL 26 | 3.00 | WATER YEAR 1994 HIGHEST 0.98 OCT 29, 1993 LOWEST 3.00 JUL 26, 1994 404257095150801. Local number, 68-38-07 CCAA. LOCATION.--Lat 40°42′57", long 95°15′08", Hydrologic Unit 10240005, approximately 2 mi south of the Village of Norwich and 1.5 mi west of County Road M-48. Owner: William Brayman. AQUIFER .-- Glacial drift: in material of Pleistocene age WELL CHARACTERISTICS, -- Drilled unused water-table well, diameter 12 in., depth 44 ft, lined with tile. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,087 ft above sea level, from topographic map. Measuring point: Top of well, 1.20 ft below original land-surface datum. REMARKS .-- Terracing of the farm land surrounding well has lowered the land surface below the original measuring point. PERIOD OF RECORD.--January 1938 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 2.09 ft below land-surface datum, March 26, 1946; lowest measured, 22.76 ft below land-surface datum, June 23, 1947. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | |--------|-----------------------|-------------|-----------------------|-------------|-----------------------| | FEB 04 | 13.51 | MAY 05 | 10.78 | JUL 27 | 13.31 | WATER YEAR 1994 HIGHEST 10.78 MAY 05, 1994 LOWEST 13.51 FEB 04, 1994 #### PALO ALTO COUNTY 430246094421201. Local number, 95-33-14 ACDD. LOCATION.--Lat 43°02'46', long 94°42'12", Hydrologic Unit 07100002, approximately 3.5 mi south of Emmetsburg on Highway 4, and 1.25 mi west on road north of County Road B53. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Des Moines alluvial: sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation well, diameter 2 in., depth 8 ft, cased 8 ft, perforated 3-8 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,188 ft above sea level, from topographic map. Measuring point: Top of casing, 2.15 ft above landsurface datum. REMARKS .-- Well WD-9U. PERIOD OF RECORD .-- August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.36 ft above land-surface datum, May 5, 1993; lowest measured, 4.34 ft below land-surface datum, January 31, 1994. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 (MEASUREMENTS ABOVE LAND SURFACE INDICATED BY "+") | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |----------------------------------------------|-----------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | AUG 07, 1992<br>NOV 05, 1992<br>FEB 04, 1993 | +0.10<br>0.00<br>2.15 | MAY 05, 1993<br>AUG 10, 1993 | +0.36<br>0.79 | NOV 02, 1993<br>JAN 31, 1994 | 1.83<br>4.34 | MAY 03, 1994<br>AUG 02, 1994 | 0.95<br>1.99 | WATER YEAR 1994 HIGHEST 0.95 MAY 03, 1994 LOWEST 4.34 JAN 31, 1994 430246094421202. Local number, 95-33-14 ACDD. LOCATION.-Lat 43°02'46', long 94°42'12", Hydrologic Unit 07100002, approximately 3.5 mi south of Emmetsburg on Highway 4, and 1.25 mi west on road north of County Road B53. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Des Moines alluvial: sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 17 ft, cased 17 ft, perforated 15-17 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,188 ft above sea level, from topographic map. Measuring point: Top of casing, 1.45 ft above landsurface datum. REMARKS .-- Well WD-9M1 PERIOD OF RECORD.--July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 0.53 ft above land-surface datum, May 5, 1993; lowest measured, 6.48 ft below land-surface datum, May 3, 1994, 1994. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 (MEASUREMENTS ABOVE LAND SURFACE INDICATED BY "+") | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|------------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | JUL 27, 1990<br>AUG 07, 1992<br>NOV 05, 1992 | 2.95<br>+0.40<br>+0.23 | FEB 04, 1993<br>MAY 05, 1993 | 1.94<br>+0.53 | AUG 10, 1993<br>NOV 02, 1993 | 0.51<br>1.59 | MAY 03, 1994<br>AUG 02, 1994 | 6.48<br>1.80 | WATER YEAR 1994 HIGHEST 1.59 NOV 02, 1993 LOWEST 6.48 MAY 03, 1994 430246094421203. Local number, 95-33-14 ACDD. LOCATION.--Lat 43°02'46', long 94°42'12", Hydrologic Unit 07100002, approximately 3.5 mi south of Emmetsburg on Highway 4, and 1.25 mi west on road north of County Road B53. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Des Moines alluvial: sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation well, diameter 2 in., depth 33 ft, cased 33 ft, perforated 30-33 ft. INSTRUMENTATION .- Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,188 ft above sea level, from topographic map. Measuring point: Top of casing, 1.30 ft above landsurface datum. REMARKS.--Well WD-9M2. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.49 ft above land-surface datum, May 5, 1993; lowest measured, 6.14 ft below land-surface datum, May 3, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 (MEASUREMENTS ABOVE LAND SURFACE INDICATED BY "+") | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|-----------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | JUL 27, 1990<br>AUG 07, 1992<br>NOV 05, 1992 | 2.94<br>+0.35<br>0.32 | FEB 04, 1993<br>MAY 05, 1993 | 1.99<br>+0.49 | AUG 10, 1993<br>NOV 02, 1993 | 0.68<br>1.68 | MAY 03, 1994<br>AUG 02, 1994 | 6.14<br>1.84 | WATER YEAR 1994 HIGHEST 1.68 NOV 02, 1993 LOWEST 6.14 MAY 03, 1994 #### GROUND-WATER LEVELS ## **PALO ALTO COUNTY--Continued** 430246094421204. Local number, 95-33-14 ACDD. LOCATION.--Lat 43°02'46', long 94°42'12", Hydrologic Unit 07100002, approximately 3.5 mi south of Emmetsburg on Highway 4, and 1.25 mi west on road north of County Road B53. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Des Moines alluvial: sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in., depth 47 ft, cased 47 ft, perforated 43-47 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,188 ft above sea level, from topographic map. Measuring point: Top of casing, 2.15 ft above landsurface datum. REMARKS.--Well WD-9L PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 0.55 ft above land-surface datum, May 5, 1993; lowest measured, 6.14 ft below land-surface datum, May 3, 1994. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 (MEASUREMENTS ABOVE LAND SURFACE INDICATED BY "+") | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|----------------|------------------------------|----------------| | JUL 27, 1990<br>AUG 07, 1992<br>NOV 05, 1992 | 2.93<br>+0.37<br>0.70 | FEB 04, 1993<br>MAY 05, 1993 | 0.92<br>+0.55 | AUG 10, 1993<br>NOV 02, 1993 | 0.51<br>1.56 | MAY 03, 1994<br>AUG 02, 1994 | 6.14<br>1.76 | WATER YEAR 1994 HIGHEST 1.56 NOV 02, 1993 LOWEST 6.14 MAY 03, 1994 431047094415201. Local number, 97-33-36 BCBB. LOCATION.--Lat 43°10'47', long 94°41'52", Hydrologic Unit 07100002, approximately 3.5 mi north of Emmetsburg on road parallel to and 1 mi west of County Road N40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Des Moines alluvial: sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in., depth 10 ft, cased 10 ft, perforated 6-10 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 2.40 ft above landsurface datum. REMARKS .-- Well WD-6U. PERIOD OF RECORD.--July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.08 ft above land-surface datum, May 3, 1994; lowest measured, 9.84 ft below land-surface datum, July 27, 1990. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|----------------------|------------------------------|-----------------------|------------------------------|----------------|------------------------------|----------------| | JUL 27, 1990<br>AUG 07, 1992<br>NOV 05, 1992 | 9.84<br>5.93<br>5.67 | FEB 04, 1993<br>MAY 05, 1993 | 6.92<br>3.99 | AUG 10, 1993<br>NOV 02, 1993 | 3.55<br>4.42 | MAY 03, 1994<br>AUG 02, 1994 | 1.08<br>5.36 | WATER YEAR 1994 HIGHEST 1.08 MAY 03, 1994 LOWEST 5.36 AUG 02, 1994 431047094415202. Local number, 97-33-36 BCBB. LOCATION.-Lat 43°10'47', long 94°41'52", Hydrologic Unit 07100002, approximately 3.5 mi north of Emmetsburg on road parallel to and 1 mi west of County Road N40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Des Moines alluvial: sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in., depth 20 ft, cased 20 ft, perforated 16-20 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 2.25 ft above landsurface datum. REMARKS .-- Well WD-6M. PERIOD OF RECORD.--July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 1.78 ft above land-surface datum, May 3, 1994; lowest measured, 9.88 ft below land-surface datum, July 27, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------|----------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | JUL 27, 1990<br>AUG 07, 1992 | 9.88<br>5.93 | FEB 04, 1993<br>MAY 05, 1993 | 6.96<br>4.03 | AUG 10, 1993<br>NOV 02, 1993 | 3.60<br>4.49 | MAY 03, 1994<br>AUG 02, 1994 | 1.78<br>5.40 | | NOV 05, 1992 | 5.94 | 141111 05, 1775 | 4.05 | 1101 02, 1775 | 11.17 | 1100 02, 1771 | 5. 10 | WATER YEAR 1994 HIGHEST 1.78 MAY 03, 1994 LOWEST 5.40 AUG 02, 1994 #### PALO ALTO COUNTY--Continued 431047094415203. Local number, 97-33-36 BCBB. LOCATION.—Lat 43°10'47', long 94°41'52", Hydrologic Unit 07100002, approximately 3.5 mi north of Emmetsburg on road parallel to and 1 mi west of County Road N40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Des Moines alluvial: sand and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in., depth 27 ft, cased 27 ft, perforated 24.5-27 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 1.80 ft above landsurface datum. REMARKS.--Well WD-6L. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.21 ft above land-surface datum, May 3, 1994; lowest measured, 9.81 ft below land-surface datum, July 27, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | JUL 27, 1990 | 9.81 | FEB 04, 1993 | 6.89 | AUG 10, 1993 | 3.52 | MAY 03, 1994 | 1.21 | | AUG 07, 1992<br>NOV 05, 1992 | 5.87<br>5.73 | MAY 05, 1993 | 3.94 | NOV 02, 1993 | 4.38 | AUG 02, 1994 | 5.36 | WATER YEAR 1994 HIGHEST 1.21 MAY 03, 1994 LOWEST 5.36 AUG 02, 1994 ## **PLYMOUTH COUNTY** 424552096141301. Local number, 96-46-23 DDC. LOCATION.—Lat 42°45'52', long 96°14'13", Hydrologic Unit 10230002, near Burlington Northern railroad tracks on unnamed east-west road, 2 mil. south of Highway 3, approximately 3 mi southwest of Le Mars. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.— Alluvial: in sands and gravel of Holocene age. WELL CHARACTERISTICS.—Drilled observation well, diameter 1.25 in., depth 23 ft, cased 23 ft, perforated 20-23 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,187 ft above sea level, from topographic map. Measuring point: Top of casing, 1.90 ft above landsurface datum. REMARKS.--Well F-16 PERIOD OF RECORD.--November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.25 ft above land-surface datum, May 5, 1993; lowest measured, 9.85 ft below land-surface datum, July 28, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | NOV 05, 1992 | 9.20 | MAY 05, 1993 | 7.25 | NOV 02, 1993 | 9.19 | MAY 03, 1994 | 8.39 | | FEB 04, 1993 | 9.76 | AUG 04, 1993 | 7.55 | FEB 10, 1994 | 9 <b>.05</b> | JUL 28, 1994 | 9.85 | WATER YEAR 1994 HIGHEST 8.39 MAY 03, 1994 LOWEST 9.85 JUL 28, 1994 424833096324701. Local number, 92-48-06 DDDA. LOCATION.-Lat 41°48'33", long 96°32'47", Hydrologic Umt 10170203, just south of the curve on Iowa Highway 3, 1 mi south of the Town of Akron. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. QUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, depth 581 ft, diameter 4 in. to 184 ft, 2 in. to 581 ft, cased to 576 ft, perforated 430-434 ft and 510-515 ft, open hole 576-581 ft. Paleozoic rock open 576-581 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel,. DATUM. -- Elevation of land-surface datum is 1,282 ft above sea level, from topographic map. Measuring point: Top of casing, 4.80 ft above landsurface datum. REMARKS,--Well D-35. PERIOD OF RECORD.--December 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 136.97 ft below land-surface datum, August 4, 1993; lowest measured, 159.82 ft below land-surface datum, August 6, 1980. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |-------------|----------------|-------------|----------------|--------|----------------|-------------|----------------| | NOV 02 | 137.07 | FEB 10 | 137.21 | MAY 03 | 137.22 | JUL 29 | 137.51 | WATER YEAR 1994 HIGHEST 137.07 NOV 02, 1993 lowest 137.51 JUL 29, 1994 #### PLYMOUTH COUNTY--Continued 424850096074801. Local number, 92-45-02 CBCB. LOCATION.--Lat 41°48'50", long 96°07'48", Hydrologic Unit 10230002, approximately 3.8 mi west and 0.6 mi south of the Village of Oyens. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Cambrian-Ordovician: in dolomite of Cambrian and Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 161 ft, 4 in. to 598 ft, 2 in. to 1,340 ft, depth 1,340 ft, cased to 598 ft, open hole 598-1,340 ft. Well deepened from 1,089 to 1,340 ft in May, 1984. Well penetrates Precambrian-aged rocks. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,245 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above landsurface datum. REMARKS .-- Well D-21. PERIOD OF RECORD.--May 1979 to January 1981, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.56 ft below land-surface datum, February 10, 1994; Lowest measured, 102.10 ft below land-surface datum, August 6, 1980. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 02 | 56.70 | FEB 10 | 56.56 | MAY 02 | 56.66 | JUL 28 | 56.95 | WATER YEAR 1994 HIGHEST 56.56 FEB 10, 1994 LOWEST 56.95 JUL 28, 1994 425249096125001. Local number, 93-46-12 DDDD. LOCATION.--Lat 41°52'49", long 96°12'50", Hydrologic Unit 10230002, 1 mi west and 1 mi south of the Village of Struble. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2.5 in., depth 570 ft, cased to 570 ft, perforated 356-360 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,280 ft above sea level, from topographic map. Measuring point: Top of coupling, 2.25 ft above land-surface datum. REMARKS.--Well D-2. PERIOD OF RECORD.--March 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 117.78 ft below land-surface datum, April 9, 1980; lowest measured, 124.25 ft below land-surface datum, July 2, 1991. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|-------------|-----------------------|--------|-----------------------| | NOV 02 | 120.65 | MAY 03 | 120.67 | JUL 28 | 122.16 | WATER YEAR 1994 HIGHEST 120.65 NOV 02, 1993 LOWEST 122.16 JUL 28, 1994 #### **POCAHONTAS COUNTY** 425329094272501. Local number, 93-31-12 BABB. LOCATION.--Lat 42°53'29', long 94°27'25", Hydrologic Unit 07100002, approximately 4 mi. south of West Bend, on Highway 15, 1 mi. east of intersection of Highway 222. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Des Moines Alluvial: in sands and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation well, diameter 2 in., depth 9 ft, cased 9 ft, perforated 5-9 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,138 ft above sea level, from topographic map. Measuring point: Top of casing, 2.25 ft above landsurface datum. REMARKS.--Well WD-14U. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 0.34 ft above land-surface datum, May 4,1993; lowest measured, 4.33 ft below land-surface datum, July 27, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|----------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | JUL 27, 1990<br>AUG 07, 1992<br>NOV 05, 1992 | 4.33<br>1.48<br>2.03 | FEB 04, 1993<br>MAY 04, 1993 | 3.76<br>0.34 | AUG 10, 1993<br>NOV 02, 1993 | 0.72<br>2.60 | MAY 03, 1994<br>AUG 02, 1994 | 3.49<br>2.50 | WATER YEAR 1994 HIGHEST 2.50 AUG 02, 1994 LOWEST 3.49 MAY 03, 1994 425329094272502. Local number, 93-31-12 BABB. LOCATION.—Lat 42°53'29', long 94°27'25", Hydrologic Unit 07100002, approximately 4 mi. south of West Bend, on Highway 15, 1 mi. east of intersection of Highway 222. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Des Moines Alluvial: in sands and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 31 ft, cased 31 ft, perforated 28-31 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,138 ft above sea level, from topographic map. Measuring point: Top of casing, 1.85 ft above landsurface datum. REMARKS .-- Well WD-14L. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -Highest water level measured, 0.22 ft above land-surface datum, May 4,1993; lowest measured, 4.42 ft below land-surface datum, July 27, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------|----------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | JUL 27, 1990<br>AUG 07, 1992<br>NOV 05, 1992 | 4.42<br>1.58<br>2.07 | FEB 04, 1993<br>MAY 04, 1993 | 3.83<br>0.22 | AUG 10, 1993<br>NOV 02, 1993 | 0.58<br>2.48 | MAY 03, 1994<br>AUG 02, 1994 | 3.57<br>2.62 | WATER YEAR 1994 HIGHEST 2.48 NOV 02, 1993 LOWEST 3.57 MAY 03, 1994 425329094272503. Local number, 93-31-12 BABB. LOCATION.—Lat 42°53'29', long 94°27'25", Hydrologic Unit 07100002, approximately 4 mi. south of West Bend, on Highway 15, 1 mi. east of intersection of Highway 222. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Des Moines Alluvial: in sands and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation well, diameter 2 in., depth 18 ft, cased 18 ft, perforated 14-18 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,138 ft above sea level, from topographic map. Measuring point: Top of casing, 2.05 ft above landsurface datum. REMARKS.--Well WD-14M. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 0.69 ft above land-surface datum, August 10,1993; lowest measured, 4.31 ft below land-surface datum, July 27, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------|----------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------| | JUL 27, 1990<br>AUG 07, 1992 | 4.31<br>1.45 | FEB 04, 1993<br>MAY 04, 1993 | 4.23<br>1.33 | AUG 10, 1993<br>NOV 02, 1993 | 0.69<br>2.58 | MAY 03, 1994<br>AUG 02, 1994 | 3.45<br>2.50 | | NOV 05, 1992 | 2.02 | WIA 1 04, 1993 | 1.33 | NOV 02, 1993 | 2.30 | AUG 02, 1774 | 2.50 | ## POTTAWATTAMIE COUNTY 411024095095501. Local number, 74-38-36 BAAA1. LOCATION.--Lat 41°10'24", long 95°09'55", Hydrologic Unit 10240003, approximately 1.5 mi north of the Town of Elliott on the southwest corner of the junction of County Roads M-55 and G-66. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .- East Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS .- Drilled observation water-table well, diameter 2 in., depth 25 ft, cased to 20 ft, screened 20-25 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,073 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above landsurface datum. REMARKS .-- Well SW-34A. PERIOD OF RECORD.—August 1986 to November 1987 and June 1990 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 2.06 feet below land-surface datum, June 1, 1987; lowest measured, 8.80 ft below land-surface datum, November 20, 1991. #### WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------------|----------------| | OCT 29 | 4.72 | FEB 03 | 7.45 | MAY 05 | 8.05 | JUL 27 | 7.37 | WATER YEAR 1994 HIGHEST 4.72 OCT 29, 1993 LOWEST 8.05 MAY 05, 1994 411024095095502. Local number, 74-38-36 BAAA2. LOCATION.--Lat 41°10′24″, long 95°09′55″, Hydrologic Unit 10240003, approximately 1.5 mi north of the Town of Elliott on the southwest corner of the junction of County Roads M-55 and G-66. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- East Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 39 ft, cased 34-39 ft, gravel-packed. Original depth was 101 ft, back-filled with sand and a bentonite seal to 40 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,073 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above landsurface datum. REMARKS.--Well SW-34 B/L. PERIOD OF RECORD .-- August 1986 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.07 ft below land-surface datum, September 10, 1989; lowest measured, 9.95 ft below land-surface datum, May 25, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|-------------|----------------|--------|----------------| | OCT 29 | 3.29 | FEB 03 | 7.51 | MAY 05 | 8.12 | JUL 27 | 7.43 | WATER YEAR 1994 HIGHEST 3.29 OCT 29, 1993 LOWEST 8.12 MAY 05, 1994 ## POTTAWATTAMIE COUNTY--Continued 411359095171901. Local number, 74-39-01 CCCC. LOCATION.-Lat 41°13'59", long 95°17'19", Hydrologic Unit 10240002, approximately 6.5 mi east of the Town of Carson, on the northeast corner of the junction of Iowa Highway 92 and County Road M-41. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in., depth 216 ft, cased to 206 ft, slotted 189-206 ft, gravel-packed, open to Pennsylvanian shale 207-216 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,245 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well SW-21. PERIOD OF RECORD .-- July 1986 to current year. REVISION.--Lowest water level measured, 129.38 ft below land-surface datum, August 20, 1986. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 124.45 ft below land-surface datum, May 5, 1994; lowest measured, 129.38 ft below land-surface datum, August 20, 1986. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|----------------| | OCT 29 | 125.17 | FEB 03 | 124.62 | MAY 05 | 124.45 | JUL 27 | 124.52 | WATER YEAR 1994 HIGHEST 124.45 MAY 05, 1994 LOWEST 125.17 OCT 29, 1993 ## SAC COUNTY 422500095084801. Local number, 88-37-22 CCCC, LOCATION.-Lat 41°25'00", long 95°08'48", Hydrologic Unit 10230007, approximately 3 mi south of the Town of Early or 0.5 mi south of the junction of U.S. Highways 20 and 71. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Pennsylvanian and Dakota: in limestone of Pennsylvanian age and sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 435 ft, cased to 435 ft, perforated 417-435 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,320 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well D-16. PERIOD OF RECORD .-- December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 163.92 ft below land-surface datum, December 29, 1988; lowest measured, 165.85 ft below land-surface datum, February 12, 1992. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|----------------|--------|----------------|--------|-----------------------| | NOV 03 | 164.72 | JAN 31 | 164.77 | MAY 05 | 164.88 | AUG 02 | 165.09 | WATER YEAR 1994 HIGHEST 164.72 NOV 03, 1993 LOWEST 165.09 AUG 02, 1994 ## **SAC COUNTY--Continued** 422850095171501. Local number, 89-38-36 CBCC LOCATION.--Lat 41°28'50", long 95°17'15", Hydrologic Unit 10230005, just east of Iowa Highway 110, 0.75 mi south of the Town of Schaller and 0.25 mi north of U.S. Highway 20. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 521 ft, cased to 512 ft, perforated 410-430 ft, open hole 512-521 ft. Open to 9 ft of Paleozoic rock. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,445 ft above sea level, from topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum. REMARKS .-- Well D-17. PERIOD OF RECORD .-- December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 233.96 ft below land-surface datum, August 2, 1994; lowest measured, 292.46 ft below land-surface datum, June 12, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|-------------|----------------|-------------|----------------| | NOV 03 | 291.85 | MAY 05 | 234.14 | AUG 02 | 233.96 | WATER YEAR 1994 HIGHEST 233.96 AUG 02, 1994 LOWEST 291.85 NOV 03, 1993 ## SCOTT COUNTY 413544090212901. Local number, 78-5E-03 AADA. LOCATION.-Lat 41°35'44", long 41°21'29", Hydrologic Unit 07080101, at the Bridgeview Elementary School corner of 12th and Davenport Streets, Le Claire. Owner: City of Le Claire. AQUIFER .- Cambrian-Ordovician: in sandstone of Late Cambrian and sandstone and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 16 to 12 in., depth 1,607 ft, cased to 1,128 ft, open hole 1,128-1,607 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder July 1975 to December 1984. DATUM.-Elevation of land-surface datum is 703 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to casing, 2.11 ft above land-surface datum. REMARKS .-- Le Claire Well No. 3. PERIOD OF RECORD .-- July 1975 to current year. REVISED RECORDS.--WRD IA-84-1, WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 247.46 ft below land-surface datum, July 8, 1975; lowest recorded, 276.86 ft below land-surface datum, September 1, 1978. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 08 | 264.91 | FEB 02 | 261.18 | MAY 03 | 260.75 | AUG 01 | 263.25 | WATER YEAR 1994 HIGHEST 260.75 MAY 03, 1994 LOWEST 264.91 NOV 08, 1993 ## SHELBY COUNTY 413255095070401. Local number, 78-37-17 DDDD. LOCATION.--Lat 41°32′55", long 95°07'04", Hydrologic Unit 10240003, 3 mi south and 3 mi west of the Town of Elkhorn on the east side of County Road M-56 near Elkhorn Creek. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, cased to 181 ft, slotted 121-179 ft, gravel-packed, open to Pennsylvanian shale and limestone 140-181 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,208 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS .-- Well WC-16. PERIOD OF RECORD .-- August 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.60 ft below land-surface datum, August 11, 1993; lowest measured, 42.86 ft below land-surface datum, September 24, 1981. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 38.59 | FEB 07 | 40.13 | MAY 04 | 41.24 | JUL 27 | 41.41 | WATER YEAR 1994 HIGHEST 38.59 NOV 04, 1993 LOWEST 41.41JUL 27, 1994 413359095182701. Local number, 78-39-11 CCBC. LOCATION.--Lat 41°33'59", long 95°18'27", Hydrologic Unit 10240002, approximately 5.5 mi south of the City of Harlan, 0.75 mi south of County Road F-58, and 1.5 mi east of U.S. Highway 59. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 2 in., depth 541 ft, cased to 541 ft, slotted 520-535 ft, gravel-packed. Open to Pennsylvanian shale 537-541 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,310 ft above sea level, from topographic map. Measuring point: Top of casing, 1.65 ft above land-surface datum. REMARKS .-- Well WC-227. PERIOD OF RECORD .-- July 1983 to current year. REVISION.--Lowest water level measured, 153.32 below land-surface datum, April 12, 1990. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 146.61 ft below land-surface datum, September 6, 1983; lowest measured, 153.32 ft below land-surface datum, April 12, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 151.31 | FEB 07 | 151.39 | MAY 04 | 150.73 | JUL 29 | 151.50 | WATER YEAR 1994 HIGHEST 150.73 MAY 04, 1994 LOWEST 151.50 JUL 29, 1994 #### SHELBY COUNTY--Continued 413442095193101. Local number, 78-39-10 BBBA. LOCATION.—Lat 41°34'42", long 95°19'31", Hydrologic Unit 10240002, approximately 4.5 mi south of the City of Harlan and 0.25 mi east of the Town of Corely on the north side of County Road F-58. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--West Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 44 ft, cased to 44 ft, slotted 40-44 ft, gravel-packed. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,168 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above landsurface datum. REMARKS .-- Well WC-200. PERIOD OF RECORD .-- June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.87 ft below land-surface datum, July 13, 1990; lowest measured, 22.98 ft below land-surface datum, October 19, 1988. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|----------------|-------------|----------------|-------------|----------------| | NOV 04 | 20.15 | FEB 07 | 20.86 | MAY 04 | 21.87 | WATER YEAR 1994 HIGHEST 20.15 NOV 04, 1993 LOWEST 21.87 MAY 04, 1994 413953095302601. Local number, 79-40-09 DBCA. LOCATION.--Lat 41°39'53", long 95°30'26", Hydrologic Unit 10230006, east of State Highway 191, approximately 1 mi northeast of the Town of Portsmouth. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.—Glacial drift, in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 2 in., depth 200 ft, cased to 175 ft, slotted from 160-175 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,205 ft above sea level, from topographic map. Measuring point: Top of casing, 4.10 ft above landsurface datum. REMARKS .-- Well WC-15. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.37 feet below land-surface datum, August 12, 1993; lowest measured, 19.28 ft below land-surface datum, November 6, 1992. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 18.43 | FEB 07 | 18.58 | MAY 04 | 18.66 | JUL 29 | 18.96 | WATER YEAR 1994 HIGHEST 18.43 NOV 04, 1993 LOWEST 18.96 JUL 29, 1994 414211095161701. Local number, 80-38-33 AABB. LOCATION.—Lat 41°42'11", long 95°16'17", Hydrologic Unit 10240002, on south side of county road approximately 1.75 mi south of the Town of Kirkman. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--West Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 43 ft, cased to 41 ft, slotted from 36-41 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above landsurface datum. REMARKS .-- Well WC-216. PERIOD OF RECORD .-- August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.41 feet below land-surface datum, August 12, 1993; lowest measured, 21.79 ft below land-surface datum, July 29, 1994. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 17.39 | FEB 07 | 19.55 | MAY 04 | 21.22 | JUL 29 | 21.79 | WATER YEAR 1994 HIGHEST 17.39 NOV 04, 1993 LOWEST 21.79 JUL 29, 1994 #### SHELBY COUNTY--Continued 414624095252301. Local number, 80-39-06 AADC. LOCATION.--Lat 41°46'24", long 95°25'23", Hydrologic Unit 10230006, west of the Town of Earling on the north side of Iowa Highway 37 near the junction of Iowa Highways 37 and 191. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.—Drilled observation artesian water well, diameter 2 in., depth 370 ft, cased to 370 ft, slotted 332-347 ft, open to Pennsylvanian sandstone, shale, and limestone 347-370 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,305 ft above sea level, from topographic map. Measuring point: Top of casing, 2.60 ft above land-surface datum. REMARKS.--Well WC-10. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 89.91 ft below land-surface datum, April 10, 1984; lowest measured, 131.70 ft below land-surface datum, April 12, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | |--------|-----------------------|--------|----------------|--------|----------------|-------------|----------------| | NOV 04 | 111.49 | FEB 07 | 110.54 | MAY 04 | 110.80 | JUL 27 | 109.83 | WATER YEAR 1994 HIGHEST 109.83 JUL 27, 1994 LOWEST 111.49 NOV 04, 1993 414856095160101. Local number, 81-38-21 ADAD. LOCATION.--Lat 41°48'56", long 95°16'01", Hydrologic Unit 10240002, approximately 3.75 mi east of the Town of Defiance on the west side of County Road M-36. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Fremont buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 535 ft, cased to 535 ft, slotted 525-535 ft, gravel-packed. Open to Pennsylvanian shale 530-535 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 2,90 ft above land-surface datum. REMARKS .-- Well WC-222. PERIOD OF RECORD .-- August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 208.09 ft below land-surface datum, April 15, 1987; lowest measured, 212.97 ft below land-surface datum, October 11, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 04 | 209.59 | FEB 07 | 209.65 | MAY 04 | 209.71 | ЛЛ. 27 | 209 88 | WATER YEAR 1994 HIGHEST 209.59 NOV 04, 1993 LOWEST 209.88 JUL 27, 1994 ## SIOUX COUNTY 430140095573101. Local number, 95-43-07 AAAA. LOCATION.--Lat 41°04'10", long 95°57'32", Hydrologic Unit 10230002, just south of County Road B-40, 1 mi east of the Village of Newkirk. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 681 ft, cased to 681 ft, perforated 641-681 ft. Open to Paleozoic rock from 674-681 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,390 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above landsurface datum. REMARKS.--Well D-43. PERIOD OF RECORD.--July 1980 to December 1980, May 1982 to current year. REVISED RECORDS.--WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 213.66 ft below land-surface datum, March 13, 1984; lowest measured, 218.56 ft below land-surface datum, November 7, 1991. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 02 | 217.83 | FEB 10 | 217.91 | MAY 03 | 217.73 | JUL 28 | 218.05 | WATER YEAR 1994 HIGHEST 217.73 MAY 03, 1994 LOWEST 218.05 JUL 28, 1994 430913096033201. Local number, 96-44-08 ADAA. LOCATION. -Lat 41°09'13", long 96°03'32", Hydrologic Unit 10230002, west side of County Road K-64, approximately 2.5 mi west of the Town of Boyden and approximately 2.2 mi south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 682 ft, cased to 682 ft, perforated 647-667 ft. Open to Paleozoic rock 681-682 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,373 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above landsurface datum. REMARKS .-- Well D-44. PERIOD OF RECORD.--August 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 187.85 ft below land-surface datum, October 16, 1984; lowest measured, 196.30 ft below land-surface datum, November 7, 1991. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 02 | 195.20 | FEB 10 | 194.34 | MAY 03 | 195.13 | JUL 28 | 195.41 | WATER YEAR 1994 HIGHEST 194.34 FEB 10, 1994 LOWEST 195.41 JUL 28, 1994 431200096221601. Local number, 97-47-23 CCCD. LOCATION.-Lat 43°12'00", long 96°22'16", Hydrologic Unit 10170204, on the north side of U.S. Highway 18, approximately 3 mi west of the Town of Rock Valley. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 21.5 ft, cased to 21.5 ft, slotted 16.5-21.5 ft, gravel packed. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,230 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above landsurface datum REMARKS.--Well RR-9. PERIOD OF RECORD .-- July 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.41 feet below land-surface datum, August 3, 1993; lowest measured, 9.23 ft below land-surface datum, August 5, 1992. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEARS OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 02 | 6.83 | FEB 10 | 7.30 | MAY 03 | 6.26 | JUL 28 | 7.93 | WATER YEAR 1994 HIGHEST 6.26 MAY 03, 1994 LOWEST 7.93 JUL 28, 1994 ## STORY COUNTY 420137093361501. Local number, 83-24-02 DABC. LOCATION .-- Lat 41°01'37", long 93°36'15", Hydrologic Unit 07080105, in Ames, north of the Chicago and Northwestern Railroad and County Road E-41, approximately 0.75 mi east of U.S. Highway 69. Owner: City of Ames. AQUIFER.—Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.—Drilled municipal well, depth 124 ft, casing information unavailable. INSTRUMENTATION .- Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 926 ft above sea level, from topographic map. Measuring point: Top of casing, 0.82 ft above landsurface datum. REMARKS .-- City well No. 4. PERIOD OF RECORD.--September 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.98 ft below land-surface datum, March 14, 1991; lowest measured, 70.56 ft below land-surface datum, November 4, 1992. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|----------------|--------|----------------|--------|-----------------------| | NOV 01 | 54.08 | JAN 31 | 61.35 | MAY 02 | 52.35 | AUG 02 | 53.76 | WATER YEAR 1994 HIGHEST 52.35 MAY 02, 1994 LOWEST 61.35 JAN 31, 1994 # VAN BUREN COUNTY 404150091483001. Local number, 68-08-08 CDD. LOCATION.--Lat 40°41°53", long 91°48'20", Hydrologic Unit 07100009, located at the west end of the park in the City of Bonaparte, south of County Road J-40. Owner: City of Bonaparte. AQUIFER.--Mississippian: in limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused semi-confined public-supply well, diameter 6 in., depth 205 ft, cased to 18 ft, open hole 18-205 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. Graphic water-level recorder December 1988 to July 1990. Intermittent measurement with chalked tape by USGS personnel August 1988 to December 1988. DATUM .-- Elevation of land-surface datum is 552 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 0.65 ft above land-surface datum. REMARKS.--Bonaparte No. 1 well. Recorder removed July 17, 1990. PERIOD OF RECORD.--August 1988 to present. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 15.08 ft below land-surface datum, August 10, 1993; lowest measured, 32.13 ft below land-surface datum, August 16, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------| | FEB 01 | 22.11 | MAY 06 | 19.78 | AUG 01 | 23.11 | WATER YEAR 1994 HIGHEST 19.78 MAY 06, 1994 LOWEST 23.11 AUG 01, 1994 ## WASHINGTON COUNTY 411300091320701. Local number, 74-06-15 BDAC. LOCATION.--Lat 41°13'00", long 91°32'07", Hydrologic Unit 07080107, in the water treatment plant, beneath the water tower in Crawfordsville. Owner: Town of Crawfordsville. AQUIFER .-- Mississippian: in dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 6.5 in., depth 215 ft, cased to 132 ft, open hole 132-215 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 725 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to casing, 1.10 ft above land-surface datum. PERIOD OF RECORD.--September 1983, March 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 69.23 ft below land-surface datum, March 25, 1987; lowest measured, 77.04 ft below land-surface datum, November 27, 1990. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|--------|----------------|--------|----------------| | NOV 09 | 71.59 | FEB 01 | 71.29 | MAY 06 | 72.06 | AUG 02 | 73.94 | WATER YEAR 1994 HIGHEST 71.29 FEB 01, 1994 LOWEST 73.94 AUG 02, 1994 412037091564701. Local number, 76-09-31 CBBC LOCATION.--Lat 41°20'37", long 91°56'47", Hydrologic Unit 07080107, at Pepper Quarry on County Road V-15, 1 mi south of the City of Keota. Owner: River Products Co. AQUIFER .-- Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 5 in., depth 136 ft, cased to 19 ft, open hole 19-136 ft. INSTRUMENTATION.—Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder August 1979 to December 1989. DATUM.--Elevation of land-surface datum is 745 ft above sea level, from topographic map. Measuring point: Top of casing, 2.88 ft above land-surface datum. REMARKS.--Water levels affected by quarrying operations. PERIOD OF RECORD.--August 1979 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 8.45 ft below land-surface datum, May 3, 1993; lowest recorded, 25.72 ft below land-surface datum, December 10, 1989. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | |--------|-----------------------|--------|----------------|--------|----------------|--------|-----------------------| | NOV 09 | 15.78 | FEB 01 | 16.13 | MAY 05 | 16.24 | AUG 01 | 17.80 | WATER YEAR 1994 HIGHEST 15.78 NOV 09, 1993 LOWEST 17.80 AUG 01, 1994 ## WASHINGTON COUNTY--Continued 412750091495201. Local number, 77-09-24 AADA. LOCATION.—Lat 41°27'54", long 91°49'47", Hydrologic Unit 07080209, north of the city sewage treatment plant and west of First Avenue SE, Wellman. Owner: City of Wellman. AQUIFER .-- Mississippian: in dolomite of Mississippian age. WELL CHARACTERISTICS .- Drilled unused artesian water well, diameter 8 in., depth 110 ft, cased to 47 ft, open hole 47 to 110 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 695 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to casing, 1.87 ft above land-surface datum. REMARKS .-- City test well No. 1. PERIOD OF RECORD.--May 1963 to October 1971, May 1973 to current year. REVISED RECORDS.--WDR IA-84-1, WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.38 ft above land-surface datum, May 3, 1993, March 28, 1979, and April 13, 1983; lowest measured, 6.80 ft below land-surface datum, October 20, 1964. ## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br><u>LEVEL</u> | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | |--------|----------------|--------|-----------------------|-------------|-----------------------|--------|----------------| | NOV 09 | 1.77 | FEB 01 | 2.47 | MAY 05 | 2.32 | AUG 02 | 3.49 | WATER YEAR 1994 HIGHEST 1.77 NOV 09, 1994 LOWEST 3.49 AUG 02, 1994 421829091304701. Local number, 75-06-14 ABBB. LOCATION.--Lat 41°18'27", long 91°30'47", Hydrologic Unit 07080209, 1 mi north and 1.5 mi east of the junction of U.S. Highway 218 and Iowa Highway 92. Owner: Mrs. David Armstrong. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Bored unused water-table well, diameter 12 in., depth 45 ft, lined with tile. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 745 ft above sea level, from topographic map. Measuring point: Nipple welded to barrel, 4.08 ft above land-surface datum. PERIOD OF RECORD.--November 1983 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 1.53 ft below land-surface datum, May 23, 1984; lowest measured, 12.65 ft below land-surface datum, November 1, 1988. # WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | DATE | WATER<br><u>LEVEL</u> | |---------------|-----------------------|--------|-----------------------|---------------|-----------------------|--------|-----------------------| | OCT 28 | 4.31 | JAN 25 | 4.91 | APR 19 | 3.44 | JUL 22 | 4.39 | | <b>NOV</b> 30 | 4.58 | FEB 28 | 3.82 | <b>MAY 25</b> | 3.57 | AUG 25 | 6.39 | | DEC 28 | 4.97 | MAR 29 | 4.21 | JUN 24 | 2.27 | SEP 27 | 8.26 | WATER YEAR 1994 HIGHEST 2.27 JUN 24, 1994 LOWEST 8.26 SEP 27, 1994 #### WEBSTER COUNTY 421837094083601. Local number, 87-28-29 CCCD. LOCATION.--Lat 41°18'37", long 94°08'36", Hydrologic Unit 07100006, 3 mi north and 2 mi east of the Town of Harcourt. Owner: Grace Helms. AQUIFER .-- Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS .- Drilled unused water-table well, diameter 12 in., depth 42 ft, lined with tile. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. Graphic water-level recorder October 1942 to December 1976. DATUM.--Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of casing, 1.29 ft above land-surface datum. PERIOD OF RECORD.--October 1942 to June 1956, March 1958 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 0.05 ft below land-surface datum, August 1, 1972; lowest measured, 13.62 ft below land-surface datum, March 12, 1956. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 26 | 4.41 | JAN 26 | 5.60 | APR 25 | 4.17 | JUL 22 | 4.82 | | NOV 22 | 4.91 | FEB 24 | 4.26 | MAY 25 | 5.35 | AUG 22 | 5.20 | | DEC 20 | 4.94 | MAR 22 | 4.05 | JUN 21 | 4.09 | SEP 23 | 7.00 | WATER YEAR 1994 HIGHEST 4.05 MAR 22, 1994 LOWEST 7.00 SEP 23, 1994 423018094214701. Local number, 89-30-23 CCBB. LOCATION.-Lat 41°30'18", long 94°21'47", Hydrologic Unit 07100004, 75 ft west of the new school addition, Barnum. Owner: Johnson Township Consolidated School. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 4 in., reported depth 208 ft, cased to 208 ft, perforated 203-208 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,174 ft above sea level, from topographic map. Measuring point: Top of casing at land-surface datum PERIOD OF RECORD.--October 1942 to September 1945, May 1947 to current year. REVISED RECORDS.--WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.36 ft below land-surface datum, October 21, 1942; lowest measured, 45.85 ft below land-surface datum, July 28, 1980. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | <u>DATE</u> | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|-------------|----------------|--------|----------------| | NOV 05 | 40.27 | MAY 05 | 41.18 | AUG 02 | 41.76 | WATER YEAR 1994 HIGHEST 40.27 NOV 05, 1994 LOWEST 41.76 AUG 02, 1994 ## WOODBURY COUNTY 422058095573701. Local number, 87-44-15 CBBB. LOCATION.-Lat 41°20'58", long 95°57'37", Hydrologic Unit 10230003, approximately 3.5 mi west and 5.5 mi north of the Village of Oto. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 197 ft, cased to 197 ft, perforated 185-189 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above landsurface datum. REMARKS.--Well D-34. PERIOD OF RECORD .-- April 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 53.39 ft below land-surface datum, November 3, 1993; lowest measured, 63.56 ft below land-surface datum, November 2, 1982. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 03 | 53.39 | FEB 08 | 53.62 | MAY 04 | 53.83 | JUL 29 | 53.97 | WATER YEAR 1994 HIGHEST 53.39 NOV 03, 1993 LOWEST 53.97 JUL 29, 1994 422830096000511. Local number, 88-44-16 BAAB11. LOCATION.--Lat 41°28'30", long 96°00'05", Hydrologic Unit 10230004, approximately 3 mi east and 0.5 mi south of the Town of Moville. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 337 ft, cased to 337 ft, perforated 332-337 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,340 ft above sea level, from topographic map. Measuring point: Top of casing, 3.50 ft above landsurface datum. REMARKS.--Well D-33. PERIOD OF RECORD .-- October 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 199.09 ft below land-surface datum, April 13, 1987; lowest measured, 202.90 ft below land-surface datum, October 17, 1979. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 199.73 | FEB 08 | 199.63 | MAY 04 | 199.64 | JUL 28 | 199.45 | WATER YEAR 1994 HIGHEST199.45 JUL 28, 1994 LOWEST 199.73 NOV 01, 1993 422910096135811. Local number, 89-46-36 BBDC11. LOCATION.—Lat 41°29'10", long 96°13'58", Hydrologic Unit 10230004, approximately 0.75 mi northeast of the Eberly Cemetery or 2.5 mi west and 0.75 mi north of the Village of Lawton. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER .-- Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 500 ft, cased to 500 ft, perforated 358-362 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 1,268 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above landsurface datum. REMARKS.--Well D-30. PERIOD OF RECORD .-- April 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 128.10 ft below land-surface datum, July 28, 1994; lowest measured, 135.35 ft below land-surface datum, November 2, 1982. WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | <u>DATE</u> | WATER<br><u>LEVEL</u> | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------|-----------------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 128.49 | FEB 08 | 128.44 | MAY 02 | 128.26 | JUL 28 | 128.10 | WATER YEAR 1994 HIGHEST 128.10 JUL 28, 1994 LOWEST 128.49 NOV 01, 1993 # QUALITY OF GROUND WATER # WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | | | | | | | | GEO- | DEPTH<br>OF<br>WELL, | |------------------------------------|-------------------------------|--------------|------------------------|-------------------|----------------------|----------------|---------------------|----------------------| | STATION NUMBER | LOCAL WELL<br>NUMBER | DATE | LOCAL<br>WELL NAME | COUNTY | SAMPLE<br>DATE | SAMPLE<br>TIME | LOGIC<br>UNIT | TOTAL<br>(FEET) | | 411246094402401 | 07533W32CDDB | 1967 | Bridgewater 2 | Adair | 07-01-94<br>06-30-94 | 0820<br>1020 | *111HLCN<br>111ALVM | 43<br>36 | | 405631094560802<br>413234094552401 | 071N35W20AACA<br>07835W19BCDB | 1978<br>1976 | Nodaway 3<br>Brayton 1 | Adams<br>Audubon | 06-27-94 | 1430 | 111ENRV | 41 | | 420451093561301 | 08427W13DCAA | 1940 | Boone 20 | Boone | 07-13-94 | 1500 | 111ALVM | 63.7 | | 421025094063001 | 08528W16DABA | 1932 | Boxholm 2 | Boone | 07-13-94 | 1300 | 112PLSC | 49 | | 424708094570801 | 09235W14BCCC | 1949 | Albert City 1 | Buena Vista | 07-18-94 | 1500 | 112PLSC | 190 | | 425344095090401 | 09337W01DDDD | 1977 | Sioux Rapids 2 | Buena Vista | 07-18-94 | 1700 | 111ALVM | 54 | | 411622094520901 | 07535W27BBAB | 1921 | Cumberland 1 | Cass | 06-27-94 | 1615 | 112PLSC | 155 | | 414652090153201 | 09106E33ADA | 1956 | Camanche 2 | Clinton | 07-11-94<br>06-28-94 | 1400<br>1045 | 111ALVM<br>111ALVM | 61.2<br>32 | | 420336095115601 | 08437W30BDAD | 1936 | Vail 1 | Crawford | | | | | | 412924094072203 | 078N28W13BCBC | 1986 | Earlham 6 | Dallas | 07-20-94 | 1145 | 111ALVM | 39 | | 415057094065301 | 081N28W09ABBB | 1987 | Perry 9R | Dallas | 07-20-94 | 1400 | 111ALVM | 45 | | 423135090383201 | 08903E18AADD | 1969 | Dubuque 9 | Dubuque | 07-19-94 | 1530 | 111ALVM | 125 | | 432348094285201 | 09931W14BBCD | 1981<br>1956 | Armstrong 5 | Emmet<br>Franklin | 07-19-94<br>07-12-94 | 1300<br>1530 | 112PLSC<br>1100RNR | 130<br>27 | | 425341093132501 | 09320W05DDD | | Sheffield 2 | | | | <del></del> | | | 404327095284801 | 068N40W07BCAA | 1980 | Farragut 79-2 (North) | | 06-29-94 | 1730 | 111ALVM | 65 | | 414236096012501 | 08045W25DABD | 1951 | Mondamin 2, South | Harrison | 06-29-94 | 0750 | 111ALVM | 90 | | 422109095275401 | 08740W14ABDC | 1948 | Ida Grove 2 | Ida | 06-28-94 | 1235 | 112PLSC | 70 | | 422915095323504 | 089N39W33CDDD | 1985 | Holstein 3 | Ida<br>_ | 06-28-94 | 1420 | 111ALVM | 54 | | 414520092112001 | 08012W12AC | 1952 | Ladora 1 | Iowa | 07-18-94 | 1100 | 112PLSC | 72.5 | | 413907093070501 | 07920W13ADDC | 1952 | Newton 7 | Jasper | 07-14-94 | 1030 | 111ALVM | 54 | | 403745091174701 | 067N04W02CBBC | 1991 | Fort Madison 4 | Lee | 07-12-94 | 1520 | 111ALVM | 147 | | 420005091431201 | 08308W13ACDB | 1970 | Cedar Rapids S6 | Linn | 07-15-94 | 1010 | 111ALVM | 65 | | 411644091110703 | 07503W22DCBD | 1975 | Grandview 3 | Louisa | 07-13-94 | 1215 | 112AFNN | 174 | | 432608096201501 | 10047W36DCBD | 1988 | Lester (4) 2 | Lyon | 06-22-94 | 1920 | 111ALVM | 32 | | 420405092545601 | 084N18W23CACA | 1977 | Marshalltown 8 | Marshall | 07-11-94 | 0945 | 112PLSC | 223 | | 410656095380201 | 07342W23AAAC | 1978 | Silver City 3 | Mills | 06-29-94 | 1540 | 111alVM | 60 | | 420955095475601 | 08543W24BDBA | 1973 | Mapleton 5 | Monona | 06-28-94 | 1600 | 111ALVM | 63.5 | | 431157095502901 | 09742W29BBBC | 1949 | Sheldon 5 | O'Brien | 07-19-94 | 1545 | 112PLSC | 24 | | 403906095015001 | 06737W01AAAA | 1985 | Shambaugh 3 | Page | 06-30-94 | 0800 | 111ALVM | 26 | | 423537095583901 | 09043W19CCBB | 1956 | Kingsley 1 | Plymouth | 07-18-94 | 1220 | 110QRNR | 37 | | 411501095251301 | 075N40W35CBCA | 1975 | Carson (5) 3 | Pottawattamie | 07-01-94 | 1545 | 111 ALVM | 25 | | 413049095254501 | 07839W34ACCD | 1968 | Shelby 5 | Shelby | 06-27-94 | 1245 | 111ALVM | 48.5 | | 430017096285301 | 09548W35BDDC | 1931 | Hawarden 2 | Sioux | 06-22-94 | 1700 | 110QRCU | 36 | | 415252093411401 | 08224W30DCBB | 1945 | Slater 1 | Story | 07-14-94 | 0830 | 112PLSC | 180 | | 415417092180101 | 08213W24AAAD | 1961 | Belle Plaine 4 | Tama | 06-29-94 | 1040 | 111ALVM | 42 | | 415753092350201 | 08315W27CDD | 1966 | Tama 5 | Tama | 06-29-94 | 1230 | 111ALVM | 43 | | 403659094285301 | 06732W12CAAD | 1960 | Blockton 1 | Taylor | 06-30-94 | 1240 | 112PLSC | 271 | | 410907092375101 | 07315W06CADD | 1970 | Eddyville 2 | Wapello | 07-12-94 | 1145 | 112PLSC | 30 | | 411820093441201 | 07525W16ABA | 1959 | Saint Marys 1 | Warren | 07-14-94 | 1330 | 112PLSC | 29 | | 413040093290501 | 07823W34DDBD | 1979 | Carlisle 5 | Warren | 07-14-94 | 1230 | 111ALVM | 30 | | 412849091343301 | 07706W17BBDD | 1973 | Riverside 6 | Washington | 07-13-94 | 1430 | 111ALVM | 225 | | 431828091473201 | 098N08W16ACBC | 1972 | Decorah 6 | Winneshiek | 07-19-94 | 1120 | 111ALVM | 82 | | 422831095465102 | 08942W34DDDD | 1927 | Correctionville 1 W | Woodbury | 07-18-94 | 1015 | 111ALVM | 26 | | 423954093535801 | 09126W27CAAD | 1952 | Eagle Grove 3 | Wright | 07-13-94 | 1040 | 112PLSC | 70 | \*Geologic unit abbreviations used in this table are: | 110 QRCU<br>110 ORNR | Quaternary-Cretaceous undifferentiated<br>Ouaternary system | 111HLCN<br>112AFNN | Quaternary Holocene series<br>Quaternary Aftonian interglacial deposits | |----------------------|-------------------------------------------------------------|--------------------|-------------------------------------------------------------------------| | 111ALVM | Quaternary alluvium | 112PLSC | Quaternary Pleistocene series | | 111ENRV | Quaternary East Nishnabotna River alluvium | | · · | # QUALITY OF GROUND WATER | STATION NUMBER | DATE | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |------------------------------------|----------------------|----------------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------| | 411046004400401 | 07 01 04 | | | | 274 | 6.3 | 8.6 | 120 | 57 | 1.60 | <.1 | | 411246094402401<br>405631094560802 | 07-01-94<br>06-30-94 | | >20<br>>30 | 11.0<br>12.0 | 596 | 6.5 | .4 | 280 | 164 | 168<br>348 | .2 | | 413234094552401 | 06-27-94 | | >30 | 12.0 | 878 | 6.8 | .6 | 400 | 318 | 506 | <.1 | | 420451093561301 | 07-13-94 | 260 | 120 | 15.0 | 718 | 7.0 | | 390 | 280 | 498 | .1 | | 421025094063001 | 07-13-94 | 32 | 25 | 11.0 | 1,090 | 6.5 | | 530 | 363 | 706 | 1.7 | | 424708094570801 | 07-18-94 | 130 | 20 | 10.0 | 1,380 | 7.2 | 1.0 | 660 | 393 | 982 | 1.8 | | 425344095090401 | 07-18-94 | 286 | >20 | 10.5 | 898 | 7.0 | 3.1 | 470 | 306 | 576 | <.1 | | 411622094520901 | 06-27-94 | 30 | 30 | 13.0 | 342 | 6.8 | 3.1 | 160 | 168 | 178 | <.1 | | 414652090153201 | 07-11-94 | 215 | >60 | 13.0 | 447 | 7.6 | 6.0 | | | | <.1 | | 420336095115601 | 06-28-94 | 180 | 20 | 12.5 | 911 | 7.1 | 1.8 | 410 | 287 | 574 | <.1 | | 412924094072203 | 07-20-94 | 120 | 25 | 13.0 | 631 | 6.5 | | 340 | 280 | 388 | .2 | | 415057094065301 | 07-20-94 | 300 | 40 | 11.0 | 810 | 6.8 | | 430 | 294 | 536 | .1 | | 423135090383201 | 07-19-94 | 700 | >360 | 12.5 | 418 | 7.4 | .3 | 170 | 160 | 260 | . 4 | | 432348094285201 | 07-19-94 | 250 | 20 | 10.0 | 1,140 | 7.3 | .5 | 540<br>300 | 436<br>229 | 746 | 1.0<br><.1 | | 425341093132501 | 07-12-94 | 45 | 35 | 11.0 | 580 | 7.1 | | 300 | 229 | 382 | \•.ı | | 404327095284801 | 06-29-94 | 165 | >30 | 13.0 | 649 | 6.8 | .9 | 310 | 243 | 338 | .3 | | 414236096012501 | 06-29-94 | 160 | >30 | 12.5 | 1,230 | 7.1 | .4 | 580 | 538 | 724 | 1.5 | | 422109095275401 | 06-28-94 | 160 | >30 | 12.0 | 904 | 7.1 | 5.6 | 410 | 298 | 580 | .1 | | 422915095323504 | 06-28-94 | 100 | 30 | 11.0 | 833 | 7.1 | 5.4 | 400 | 268 | 502 | .1 | | 414520092112001 | 07-18-94 | 75 | >30 | 13.5 | 1,040 | 7.8 | .5 | 330 | 380 | 614 | 4.9 | | 413907093070501 | 07-14-94 | 350 | >120 | 17.0 | 731 | 7.0 | | 380 | 282 | 488 | .1 | | 403745091174701 | 07-12-94 | 600 | >30 | 14.0 | 517 | 7.3 | .8 | 240 | 242 | 248 | 5.5 | | 420005091431201 | 07-15-94 | 900 | >360 | 16.5 | 533 | 7.6 | 2.9 | 250 | 206 | 300 | <.1 | | 411644091110703 | 07-13-94 | 60 | 30 | 14.0 | 454 | 7.4 | .4 | 230 | 243 | 248 | .7 | | | 06-22-94 | 45 | >30 | 9.5 | 1,185 | 7.3 | .4 | 650 | 304 | 856 | .5 | | 420405092545601 | 07-11-94 | 860 | 120 | 10.5 | 759 | 7.4 | .4 | | | | 1.2 | | 410656095380201 | 06-29-94 | 100 | 20 | 11.5 | 919 | 7.1 | 8.2 | 450 | 289 | 522 | . 4 | | 420955095475601 | 06-28-94 | 350 | >30 | 11.5 | 851 | 7.1 | 4.2 | 410 | 317 | 524 | <.1 | | 431157095502901 | 07-19-94 | 50 | >20 | 10.5 | 974 | 7.1 | .2 | 510 | 387 | 626<br>272 | .4 | | 403906095015001 | 06-30-94 | 30 | >30 | 11.0 | 482 | 6.3 | . 4 | 210 | 134 | 212 | .2 | | 423537095583901 | 07-18-94 | 220 | 30 | 10.0 | 891 | 7.1 | 4.4 | 440 | 320 | 554 | <.1 | | 411501095251301 | 07-01-94 | 40 | 20 | 11.0 | 758 | 7.1 | .5 | 410 | 318 | 408 | .2 | | 41304 <b>90</b> 95254501 | 06-27-94 | 15 | >30 | 10.5 | 576 | 7.0 | 8.6 | 260 | 193 | 356 | <.1 | | 430017096285301 | 06-22-94 | 150 | >30 | 11.5 | 950 | 7.3 | 7.0 | 460 | 307 | 632 | <.1 | | 415252093411401 | 07-14-94 | 90 | 30 | 12.0 | 805 | 7.1 | | 280 | 420 | 460 | 7.5 | | 415417092180101 | 06-29-94 | 225 | 20 | 15.5 | 697 | 6.6 | 6.8 | 340 | 230 | 420 | | | 415753092350201 | 06-29-94 | | 25 | 12.0 | 662 | 7.6 | 4.8 | 310 | 224 | 386 | | | 403659094285301 | 06-30-94 | 40 | 20 | 13.0 | 1,770 | 7.8 | .4 | 150 | 413 | 1,020 | 2.8 | | 410907092375101 | 07-12-94 | | >45 | 14.5 | 786 | 7.4 | 1.5 | 410 | 244 | 514 | <.1 | | 411820093441201 | 07-14-94 | 20 | >60 | 11.0 | 363 | 7.0 | | 180 | 123 | 278 | <.1 | | 413040093290501 | 07-14-94 | 220 | <25 | 11.0 | 602 | 7.3 | | 310 | 220 | 414 | <.1 | | 412849091343301 | 07-13-94 | 230 | >60 | 14.0 | 71 <b>7</b> | 8.0 | .2 | 330 | 382 | 402 | 4.4 | | 431828091473201 | 07-19-94 | 425 | >45 | 12.0 | 634 | 7.4 | 1.9 | 320 | 270 | 378 | <.1 | | 422831095465102 | 07-18-94 | 30 | >20 | 11.5 | 767 | 7.2 | 7.2 | 400 | 266 | 476 | 1 | | 423954093535801 | 07-13-94 | 300 | >90 | 11.5 | 767 | 7.1 | | 380 | 395 | 446 | 1.1 | # QUALITY OF GROUND WATER | STATION NUMBER | DATE | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680) | TRIAZIN<br>SCREEN<br>(ELISA)<br>WAT, WH<br>REC, AS<br>ATRAZIN<br>(UG/L)<br>(34757) | ALA-<br>CHLOR<br>(ELISA)<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82695) | ATRA-<br>ZINE<br>WATER<br>UNFLTRD<br>REC<br>(UG/L)<br>(39630) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>(81757) | |-----------------|----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------| | 411246094402401 | 07-01-94 | 8.5 | <.1 | <.1 | .1 | <1.0 | <.10 | <.12 | | | | 405631094560802 | 06-30-94 | .1 | <.1 | .2 | .2 | <1.0 | <.10 | <.12 | | | | 413234094552401 | 06-27-94 | <.1 | <.1 | <.1 | .2 | 1.3 | <.10 | <.10 | | | | 420451093561301 | 07-13-94 | 4.4 | .1 | .2 | .1 | 2.2 | .30 | .13 | | | | 421025094063001 | 07-13-94 | <.1 | <.1 | 1.6 | .2 | 1.8 | <.10 | <.12 | ~- | | | 424708094570801 | 07-18-94 | <.1 | <.1 | 1.8 | <.1 | 2.8 | <.10 | <.12 | | | | 425344095090401 | 07-18-94 | 8.8 | <.1 | .1 | <.1 | 1.4 | . 90 | .14 | .30 | <.10 | | 411622094520901 | 06-27-94 | <.1 | <.1 | <.1 | <.1 | 1.2 | <.10 | <.10 | | | | 414652090153201 | 07-11-94 | 5.3 | <.1 | <.1 | <.1 | <1.0 | <.10 | <.10 | | | | 420336095115601 | 06-28-94 | 7.6 | <.1 | <.1 | .1 | <1.0 | <.10 | <.10 | | | | 412924094072203 | 07-20-94 | .4 | <.1 | .2 | .1 | 1.5 | <.10 | <.12 | | | | 415057094065301 | 07-20-94 | .1 | <.1 | .2 | <.1 | 1.9 | <.10 | <.12 | | | | 423135090383201 | 07-19-94 | <.1 | .2 | .6 | .4 | 3.5 | <.10 | .14 | <.10 | <.10 | | 432348094285201 | 07-19-94 | <.1 | <.1 | 1.0 | <.1 | 2.1 | <.10 | <.12 | | | | 425341093132501 | 07-12-94 | 12.0 | <.1 | <.1 | <.1 | <1.0 | .40 | <.12 | <.10 | <.10 | | 404327095284801 | 06-29-94 | 1.2 | <.1 | .3 | .2 | <1.0 | <.10 | <.12 | | | | 414236096012501 | 06-29-94 | <.1 | .2 | 1.7 | .4 | 3.1 | <.10 | <.10 | | | | 422109095275401 | 06-28-94 | 8.6 | <.1 | .1 | <.1 | <1.0 | <.10 | <.10 | | | | 422915095323504 | 06-28-94 | 16.0 | <.1 | .2 | <.1 | 1.1 | . 60 | .12 | .40 | <.10 | | 414520092112001 | 07-18-94 | <.1 | .2 | 5.1 | .3 | 3.5 | <.10 | <.12 | <.10 | <.10 | | 413907093070501 | 07-14-94 | 5.2 | <.1 | .1 | <.1 | 1.1 | <.10 | <.12 | | | | 403745091174701 | 07-12-94 | <.1 | .1 | 5.6 | . 9 | 5.2 | <.10 | .35 | <.10 | <.10 | | 420005091431201 | 07-15-94 | 2.5 | .2 | .2 | <.1 | 1.7 | 1.0 | .59 | 1.0 | .13 | | 411644091110703 | 07-13-94 | <.1 | <.1 | .7 | .3 | 1.1 | <.10 | <.10 | <.10 | <.10 | | | 06-22-94 | <.1 | <.1 | .5 | .2 | 1.4 | <.10 | .12 | <.10 | <.10 | | 420405092545601 | 07-11-94 | <.1 | <,1 | 1.2 | <.1 | 1.4 | <.10 | .17 | <.10 | <.10 | | 410656095380201 | 06-29-94 | <.1 | .1 | .5 | .2 | 1.3 | <.10 | < .12 | | | | 420955095475601 | 06-28-94 | 11.0 | <.1 | <.1 | <.1 | <1.0 | <.10 | <.10 | | | | 431157095502901 | 07-19-94 | .5 | <.1 | . 4 | <.1 | 2.4 | <.10 | <.12 | | | | 403906095015001 | 06-30-94 | <.1 | <.1 | .2 | .3 | 1.6 | <.10 | <.12 | | | | 423537095583901 | 07-18-94 | 12.0 | <.1 | .2 | .1 | 1.2 | <.10 | <.12 | | | | 411501095251301 | 07-01-94 | <.1 | .2 | .4 | <.1 | <1.0 | <.10 | <.12 | | | | 413049095254501 | 06-27-94 | 15.0 | <.1 | <.1 | <.1 | <1.0 | <.10 | <.10 | | | | 430017096285301 | 06-22-94 | 9.2 | <.1 | <.1 | <.1 | 1.3 | <.10 | <.10 | | | | 415252093411401 | 07-14-94 | <.1 | <.1 | 7.5 | <.1 | 16 | <.10 | <.12 | | | | 415417092180101 | 06-29-94 | 8.4 | <.1 | .1 | <.1 | 1.2 | <.10 | .26 | <.10 | <.10 | | 415753092350201 | 06-29-94 | 4.0 | <.1 | .2 | .1 | <1.0 | <.10 | <.10 | <.10 | <.10 | | 403659094285301 | 06-30-94 | <.1 | .3 | э <b>.</b> ī | .4 | 13 | <.10 | <.12 | | | | 410907092375101 | 07-12-94 | 1.7 | <.1 | <.1 | <.1 | <1.0 | <.10 | <.10 | | | | 411820093441201 | 07-14-94 | 9.1 | <.1 | ₹.1 | ₹.1 | <1.0 | <.10 | <.12 | | | | 413040093290501 | 07-14-94 | 1.8 | <.1 | <.1 | <.1 | <1.0 | <.10 | <.12 | <.10 | <.10 | | 412849091343301 | 07-13-94 | <.1 | <.1 | 4.4 | ·.3 | 2.5 | <.10 | <.10 | | | | 431828091473201 | 07-19-94 | 2.5 | <.1 | <.1 | <.1 | 1.0 | .20 | <.12 | .20 | <.10 | | 422831095465102 | 07-18-94 | 17.0 | <.1 | .2 | <.1 | 1.4 | .30 | <.12 | <.10 | <.10 | | 423954093535801 | 07-13-94 | <.1 | <.1 | . 9 | <.1 | 1.2 | <.10 | <.12 | | | | | | | | | | | | | | | | STATION NUMBER | DATE | METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | BUTY-<br>LATE<br>TOTAL<br>(UG/L)<br>(99901) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030) | PRO-<br>METRYN,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04036) | DEETHYL<br>ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | DEISO-<br>PROPYL<br>ATRAZIN<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04038) | ACETO-<br>CHLOR,<br>WATER,<br>UNFLTRD<br>REC<br>(UG/L)<br>(49259) | |------------------------------------|----------------------|--------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------| | 411246094402401 | 07-01-94 | | | | | | | | | | | 405631094560802 | 06-30-94 | | | | | | | | | | | 413234094552401 | 06-27-94 | | | | | | | | | | | 420451093561301 | 07-13-94 | | | | | | | | | | | 421025094063001 | 07-13-94 | | | | | | | | | | | 424708094570801 | 07-18-94 | | | | | | | | | | | 425344095090401 | 07-18-94 | <.10 | <.10 | 2.1 | <.10 | <.10 | .73 | <.10 | <.10 | <.10 | | 411622094520901 | 06-27-94 | | | | | | | | | | | 414652090153201 | 07-11-94 | | | | | | | | | | | 420336095115601 | 06-28-94 | | | | | | | | | | | | | | | | | | | | | | | 412924094072203<br>415057094065301 | 07-20-94<br>07-20-94 | | | | | | | | | | | 423135090383201 | 07-19-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | | 432348094285201 | 07-19-94 | | | | | | | | | | | 425341093132501 | 07-12-94 | <.10 | <.10 | <.10 | <.10 | <.10 | .53 | <.10 | <.10 | <.10 | | | | | | | | | | | _ | | | 404327095284801 | 06-29-94 | | | | | | | | | | | 414236096012501 | 06-29-94 | | | | | | | | | | | 422109095275401 | 06-28-94 | | | | | | | | | | | 422915095323504 | 06-28-94 | <.10 | <.10 | .82 | <.10 | <.10 | <.10 | .14 | <.10 | <.10 | | 414520092112001 | 07-18-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | | 413907093070501 | 07-14-94 | | | | | | | | | | | 403745091174701 | 07-12-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | | 420005091431201 | 07-15-94 | <.10 | <.10 | .23 | <.10 | <.10 | <.10 | .23 | <.10 | <.10 | | 411644091110703 | 07-13-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | | | 06-22-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | | 420405092545601 | 07-11-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | | 410656095380201 | 06-29-94 | | | | | | | | | | | 420955095475601 | 06-28-94 | | | | | | | | | | | 431157095502901 | 07-19-94 | | | | | | | | | | | 403906095015001 | 06-30-94 | | | | | | | | | | | 423537095583901 | 07-18-94 | | | | | | | | | | | 411501095251301 | 07-01-94 | | | | | | | | | | | 413049095254501 | 06-27-94 | | | | | | | | | | | 430017096285301 | 06-22-94 | | | | | | | | | | | 415252093411401 | 07-14-94 | | | | | | | | | | | 415417092180101 | 06-29-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | .22 | <.10 | <.10 | | 415753092350201 | 06-29-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | | 403659094285301 | 06-30-94 | | | | | | | | | | | 410907092375101 | 07-12-94 | | | | | | | | | · | | 411820093441201 | 07-14-94 | | | | | | | | | | | | | | | | | | | | | | | 413040093290501 | 07-14-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10 | | 412849091343301 | 07-13-94 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | 431828091473201<br>422831095465102 | 07-19-94<br>07-18-94 | <.10 | <.10 | <.10 | <.10 | <.10 | <.10<br><.10 | .10<br>.13 | <.10<br><.10 | <.10<br><.10 | | 423954093535801 | 07-13-94 | <.10 | <.10 | <.10 | <.10 | <.10 | | | | | | .2393493333001 | U, 13 34 | | | | | | | | | | | | | BENZENE<br>TOTAL<br>(UG/L) | CARBON-<br>TETRA-<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L) | 1,2-DI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L) | ETHYL-<br>BENZENE<br>TOTAL<br>(UG/L) | METHYL-<br>ENE<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L) | TETRA-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | TOLUENE<br>TOTAL<br>(UG/L) | 1,1,1-<br>TRI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L) | XYLENE<br>TOTAL<br>WATER<br>WHOLE<br>TOT REC<br>(UG/L) | |------------------------------------|----------------------|----------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------|--------------------------------------------------------|--------------------------------------------------------| | STATION NUMBER | DATE | (34030) | (32102) | (32103) | (34371) | (34423) | (34475) | (34010) | (34506) | (81551) | | 411246094402401 | 07-01-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 405631094560802 | 06-30-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 413234094552401 | 06-27-94 | <0.5 | <0.5 | 0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 420451093561301 | 07-13-94 | <0.5 | <0.1 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 421025094063001 | 07-13-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 424708094570801 | 07-18-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 425344095090401 | 07-18-94 | <0.5 | <0.5 | <0.5 | 1.5 | <1.0 | <0.5 | <0.5 | <0.5 | 8.6 | | 411622094520901 | 06-27-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 414652090153201<br>420336095115601 | 07-11-94<br>06-28-94 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5 | <0.5 | <1.0 | <0.5<br><0.5 | <0.5 | <0.5 | <0.5 | | 420336093113601 | 00-20-94 | <b>~0.</b> 5 | 10.5 | <0.5 | <0.5 | <1.0 | (0.5 | <0.5 | <0.5 | <0.5 | | 412924094072203 | 07-20-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 415057094065301 | 07-20-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 423135090383201<br>432348094285201 | 07-19-94<br>07-19-94 | <0.1<br><0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 425341093132501 | 07-12-94 | <0.5 | <0.5<br><0.5 | <0.5<br><0.5 | 0.6<br><0.5 | <1.0<br><1.0 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | 3.5<br><0.5 | | | 0, 12 31 | 10.0 | 40.5 | 10.5 | 10.5 | 11.0 | 10.5 | 10.5 | 10.5 | 10.5 | | 404327095284801 | 06-29-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 414236096012501 | 06-29-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 422109095275401 | 06-28-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 422915095323504<br>414520092112001 | 06-28-94<br>07-18-94 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <1.0<br><1.0 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5 | <0.5 | | 414320032112001 | 01-10-34 | | (0.5 | <b>CU.</b> 5 | CO.5 | 11.0 | (0.5 | (0.5 | <0.5 | <0.5 | | 413907093070501 | 07-14-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 403745091174701 | 07-12-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 420005091431201 | 07-15-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 411644091110703 | 07-13-94<br>06-22-94 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <1.0<br><1.0 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | | | 00-22-34 | 10.5 | .0.5 | VV.5 | <b>\0.</b> 5 | (1.0 | <b>\0.</b> 5 | 10.5 | <b></b> | (0.5 | | 420405092545601 | 07-11-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 410656095380201 | 06-29-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 420955095475601 | 06-28-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 431157095502901 | 07-19-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 403906095015001 | 06-30-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 423537095583901 | 07-18-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 411501095251301 | 07-01-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 413049095254501 | 06-27-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 430017096285301 | 06-22-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 415252093411401 | 07-14-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 415417092180101 | 06-29-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 415753092350201 | 06-29-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 403659094285301 | 06-30-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 410907092375101 | 07-12-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 411820093441201 | 07-14-94 | <0.5 | 2.1 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 413040093290501 | 07-14-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | 1.7 | <0.5 | <0.5 | <0.5 | | 412849091343301 | 07-13-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 431828091473201 | 07-19-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | | 422831095465102 | 07-18-94 | <0.5 | <0.5 | <0.5 | 1.7 | <1.0 | <0.5 | <0.5 | <0.5 | 9.1 | | 423954093535801 | 07-13-94 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | # MCNAY RESEARCH STATION NEAR CHARITON, IOWA LOCATION.--Lat 40°57'47", long 93°23'34", in SW1/4 NE1/4 sec. 9, T.71 N., R.23 W., Lucas County, Hydrologic Unit 10280201, 3.1 mi east and 2.0 mi north of Derby, Iowa, 3.4 mi west and 2.8 mi south of Chariton, Iowa. OWNER .-- U.S. Geological Survey. PERIOD OF RECORD. -- September 1984 to current year. INSTRUMENTATION.—Wet/dry precipitation collector, weighing-bucket type recording rain gage with alter wind shield and event recorder. National Weather Service standard 8-inch rain and snow gage (back-up only). REMARKS,--None. EXTREMES FOR PERIOD OF RECORD.--Maximum field pH, 7.07, April 19-26, 1988; minimum field pH, 3.84, February 12-19, 1985. EXTREMES FOR CURRENT YEAR.--Maximum field pH, 6.5, June 1-8; minimum field pH, 4.0, February 9-16. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | |-------------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------| | OCT<br>05-12 | 4.5 | 15 | 0.13 | 0.01 | 0.02 | 0.04 | 0.23 | 0.28 | 0.08 | 1.4 | <0.007 | | OCT<br>12-19 | 4.7 | 20 | 0.43 | 0.02 | 0.03 | 0.02 | 0.54 | 0.58 | 0.08 | 2.2 | <0.007 | | OCT<br>19-26 | | | 0.04 | 0.00 | 0.00 | 0.10 | 0.02 | 0.04 | 0.13 | 0.04 | <0.007 | | OCT 26-<br>NOV 02 | | | | | | | | | | | | | NOV<br>02-09 | | | | | | | | | | | | | NOV<br>09-16<br>NOV | 5.5 | 5 | 0.23 | 0.02 | 0.01 | 0.03 | 0.26 | 0.14 | 0.05 | 0.58 | <0.007 | | 16-23<br>NOV | | | | | | | | | | | | | 23-30<br>NOV 30- | 4.7 | 32 | 0.94 | 0.07 | 0.08 | 0.15 | 1.38 | 1.04 | 0.18 | 4.7 | <0.007 | | DEC 07<br>DEC | | | | | | | | | | | | | 07-14<br>DEC | 4.7 | 13 | 0.32 | 0.02 | 0.02 | 0.04 | 0.22 | 0.34 | 0.07 | 1.2 | 0.002 | | 14-21<br>DEC | 4.2 | 43 | 0.33 | 0.03 | 0.04 | 0.11 | 0.89 | 1.08 | 0.22 | 3.3 | <0.001 | | 21-28<br>DEC 28 1993- | | | | | | | | | | | | | JAN 04 1994<br>JAN | 5.1 | 5 | 0.22 | 0.01 | 0.01 | 0.05 | 0.20 | 0.19 | 0.07 | 0.47 | <0.001 | | 04-11<br>JAN | | | | | | | | | | | | | 11-18<br>JAN | | | | | | | | | | | | | 18-25<br>JAN 25- | | | | | | | | | | | | | FEB 01<br>FEB | | | 0.29 | 0.02 | 0.04 | 0.09 | 0.08 | 0.12 | 0.12 | 0.55 | 0.001 | | 01-08<br>FEB | | | | | | | | | | | | | 08-15<br>FEB | 4.7 | 22 | 0.97 | 0.07 | 0.05 | 0.22 | 0.58 | 1.08 | 0.14 | 1.8 | 0.002 | | 15-22<br>FEB 22- | 4.9 | 6 | 0.07 | 0.01 | 0.00 | 0.04 | 0.30 | 0.18 | 0.03 | 0.83 | <0.001 | | MAR 01<br>MAR | 4.7 | 9 | 0.14 | 0.01 | 0.00 | 0.03 | 0.15 | 0.33 | 0.04 | 0.35 | <0.001 | | 01-08<br>Mar | 5.2 | 14 | 0.45 | 0.03 | 0.03 | 0.07 | 0.87 | 0.63 | 0.11 | 1.2 | 0.001 | | 08-15<br>MAR | | | 0.15 | 0.01 | 0.01 | 0.15 | 0.06 | 0.04 | 0.13 | 0.07 | 0.002 | | 22-29<br><b>Mar 29-</b> | | | 6.0 | 0.38 | 0.36 | 0.47 | 1.91 | 1.84 | 0.47 | 6.6 | 0.006 | | APR 05<br>APR | | | 0.15 | 0.01 | 0.04 | 0.06 | 0.13 | 0.04 | 0.15 | 0.04 | 0.002 | | 05-12<br>APR | 5.0 | 13 | 0.64 | 0.05 | 0.03 | 0.06 | 0.63 | 0.44 | 0.09 | 2.0 | 0.002 | | 12-19<br>APR | 5.5 | 9 | 0.12 | 0.01 | 0.02 | 0.06 | 0.64 | 0.22 | 0.06 | 0.53 | <0.001 | | 19-26<br>APR 26- | 6.7 | 17 | 0.98 | 0.10 | 0.12 | 0.05 | 0.99 | 0.56 | 0.10 | 2.4 | 0.037 | | MAY 03<br>May | 6.1 | 13 | 0.60 | 0.16 | 0.34 | 0.06 | 1.23 | 0.30 | 0.09 | 1.1 | 0.176 | | 03-10<br>MAY | 5.8 | 12 | 0.27 | 0.12 | 0.36 | 0.02 | 1.19 | 0.28 | 0.07 | 1.2 | 0.231 | | 10-17<br>MAY | 5.1 | 10 | 0.41 | 0.06 | 0.12 | 0.04 | 0.58 | 0.45 | 0.11 | 1.2 | <0.001 | | 17-24 | 5.1 | 21 | 1.3 | 0.15 | 0.45 | 0.04 | 1.21 | 0.46 | 0.13 | 2.6 | 0.038 | # MCNAY RESEARCH STATION NEAR CHARITON, IOWA--Continued | DATE | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | |-------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------| | MAY | | | | | | | | | | | | | 24-31 | 6.2 | 16 | 1.0 | 0.09 | 0.09 | 0.05 | 1.14 | 0.57 | 0.08 | 0.96 | 0.003 | | MAY 31- | | | | | | • • • • | | | | | | | JUN 07<br>JUN | 6.8 | 43 | 0.38 | 0.29 | 1.4 | 0.11 | 4.27 | 0.23 | 0.44 | 1.9 | 1.05 | | 07-14<br>JUN | 5.5 | 9 | 0.27 | 0.02 | 0.03 | 0.02 | 0.44 | 0.28 | 0.05 | 0.98 | <0.001 | | 14-21<br>JUN | 4.7 | 23 | 0.91 | 0.07 | 0.32 | 0.07 | 0.73 | 0.49 | 0.25 | 3.8 | <0.122 | | 21-28<br>JUN 28- | 4.9 | 15 | 0.58 | 0.04 | 0.06 | 0.02 | 0.64 | 0.38 | 0.10 | 2.4 | <0.001 | | JUL 05<br>JUL | 7.1 | 35 | 0.65 | 0.11 | 0.81 | 0.03 | 3.47 | 0.55 | 0.24 | 1.7 | 0.315 | | 05-12<br>JUL | 5.1 | 10 | 0.45 | 0.05 | 0.04 | 0.21 | 0.42 | 0.38 | 0.29 | 1,3 | <0.001 | | 12-19 | | | 1.6 | 0.08 | 0.05 | 0.08 | 0.33 | 0.41 | 0.13 | 3.8 | <0.001 | | JUL<br>19-26 | 5.4 | 8 | 0.61 | 0.05 | 0.04 | 0.09 | 0.35 | 0.33 | 0.13 | 0.92 | <0.001 | | JUL 26-<br>AUG 02 | 5.4 | 8 | 0.78 | 0.07 | 0.05 | 0.03 | 0.34 | 0.31 | 0.08 | 0.59 | 0.001 | | AUG<br>02-09 | 4.7 | 14 | 0.37 | 0.02 | 0.03 | 0.06 | 0.44 | 0.45 | 0.11 | 1.4 | <0.001 | | AUG | | | | | | 0.00 | •••• | | **** | | 40.001 | | 09-16<br>AUG | 5.5 | 15 | 0.94 | 0.06 | 0.08 | 0.08 | 0.78 | 0.71 | 0.14 | 1.6 | 0.002 | | 16-23<br>AUG | | | 0.11 | 0.01 | 0.05 | 0.08 | 0.10 | 0.04 | 0.13 | 0.07 | 0.002 | | 23-30<br>AUG 30- | 4.8 | 15 | 0.45 | 0.03 | 0.02 | 0.08 | 0.42 | 0.39 | 0.12 | 1.5 | <0.001 | | SEP 06<br>SEP | 4.6 | 11 | 0.07 | 0.01 | 0.01 | 0.03 | 0.12 | 0.16 | 0.05 | 0.97 | <0.001 | | 06-13<br>SEP | | | 0.06 | 0.00 | 0.02 | 0.09 | 0.11 | 0.09 | 0.11 | 0.07 | 0.003 | | 13-20<br>SEP | 5.0 | 10 | 0.49 | 0.04 | 0.04 | 0.13 | 0.21 | 0.31 | 0.13 | 1.1 | 0.001 | | 20-27<br>SEP 27- | 4.6 | 16 | 0.19 | 0.01 | 0.02 | 0.01 | 0.40 | 0.30 | 0.05 | 1.9 | <0.001 | | OCT 04 | 4.1 | 40 | 0.42 | 0.05 | 0.03 | 0.02 | 0.54 | 0.57 | 0.09 | 4.4 | <0.001 | # BIG SPRING FISH HATCHERY NEAR ELKADER, IOWA LOCATION.--Lat 42°54'35", long 91°28'11", in SE1/4 SE1/4 sec. 31, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, 3.0 mi north and 2.8 mi west of Elkader, Iowa. OWNER .-- U.S. Geological Survey. PERIOD OF RECORD.-August 1984 to current year. INSTRUMENTATION.--Wet/dry precipitation collector, weighing-bucket type recording rain gage with alter wind shield and event recorder and National Weather Service standard 8-inch rain and snow gage (back-up only). REMARKS .-- None. EXTREMES FOR PERIOD OF RECORD.--Maximum field pH, 7.3, May 11-18; minimum field pH, 3.83, July 30 to August 6, 1985. EXTREMES FOR CURRENT YEAR .-- Maximum field pH, 7.3, May. 11-18; minimum field pH, 4.1, Mar. 30 to Apr. 6. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 | DATE | PH<br>WATER<br>WHOLE<br>FIELD<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | |-----------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------| | ОСТ<br>05-12 | 5.0 | 13 | 0.61 | 0.13 | 0.30 | 0.07 | <0.02 | 0.28 | 0.16 | 1.5 | <0.007 | | ОСТ<br>12-19 | 4.9 | 18 | 0.66 | 0.08 | 0.04 | 0.05 | 0.77 | 0.61 | 0.09 | 2.7 | <0.007 | | ОСТ<br>19-26 | 4.6 | 19 | 0.23 | 0.06 | 0.05 | 0.04 | 0.66 | 0.74 | 0.07 | 1.6 | <0.007 | | OCT 26-<br>NOV 02 | | | | | | | | | | | | | NOV<br>02-09 | | | | | | | | | | | | | NOV<br>09-16 | 5.1 | 13 | 0.30 | 0.08 | 0.02 | 0.02 | 0.68 | 0.40 | 0.07 | 1.6 | <0.007 | | NOV<br>16-23 | | | | | | | | | | | ~- | | NOV<br>23-30 | 4.3 | 30 | 0.11 | 0.02 | 0.02 | 0.02 | 0.37 | 0.48 | 0.05 | 2.4 | <0.007 | | NOV 30-<br>DEC 07 | | | 1.3 | 0.13 | 0.07 | 0.26 | 2.70 | 1.48 | 0.37 | 4.6 | <0.001 | | DEC<br>07-14 | 4.8 | 16 | 0.67 | 0.15 | 0.02 | 0.06 | 0.37 | 0.32 | 0.11 | 2.5 | <0.001 | | DEC<br>_14-21 | 4.4 | 24 | 0.19 | 0.02 | 0.09 | 0.08 | 0.13 | 0.50 | 0.14 | 2.1 | 0.002 | | DEC<br>21-28 | 6.0 | 6 | 0.69 | 0.11 | 0.02 | 0.06 | 0.18 | 0.17 | 0.10 | 0.32 | 0.002 | | DEC 28 1993-<br>JAN 04 1994 | 5.8 | 7 | 0.68 | 0.12 | 0.01 | 0.06 | 0.26 | 0.33 | 0.09 | 0.50 | <0.001 | | JAN<br>04-11 | 4.4 | 24 | 0.29 | 0.04 | 0.02 | 0.08 | 0.38 | 0.71 | 0.22 | 1.3 | 0.002 | | JAN<br>11-18 | 4.5 | 23 | 0.57 | 0.09 | 0.02 | 0.08 | 0.12 | 0.75 | 0.24 | 0.94 | 0.004 | | JAN<br>18-25 | 4.4 | 20 | 0.28 | 0.03 | 0.03 | 0.08 | 0.23 | 0.59 | 0.17 | 0.95 | 0.011 | | JAN 25-<br>FEB 01 | 4.4 | 22 | 0.09 | 0.02 | 0.01 | 0.03 | 0.17 | 0.30 | 0.07 | 1.8 | <0.001 | | FEB<br>01-08 | 4.9 | 10 | 0.16 | 0.02 | 0.01 | 0.06 | 0.24 | 0.32 | 0.09 | 0.48 | <0.001 | | FEB<br>08-15 | 4.2 | 33 | 0.27 | 0.05 | 0.03 | 0.11 | 0.11 | 0.99 | 0.42 | 0.51 | 0.005 | | FEB<br>15-22 | 5.6 | 21 | 0.68 | 0.08 | 0.07 | 0.30 | 1.24 | 0.58 | 0.26 | 2.6 | <0.001 | | FEB 22-<br>MAR 01<br>MAR | 5.2 | 7 | 0.36 | 0.06 | 0.01 | 0.02 | 0.10 | 0.29 | 0.05 | 0.39 | <0.001 | | 01-08<br>MAR | | | | | | | | | | | ~- | | 08-15<br>MAR | | | 0.94 | 0.09 | 0.06 | 0.13 | 0.75 | 0.22 | 0.16 | 1.2 | <0.003 | | 17-22<br>MAR | 5.7 | 35 | 1.2 | 0.22 | 0.09 | 0.14 | 2.16 | 0.95 | 0.20 | 5.2 | 0.004 | | 22-29<br>MAR 29- | | | 4.1 | 0.19 | 0.12 | 0.16 | 1.52 | 0.72 | 0.19 | 3.2 | 0.004 | | APR 05 | 6.5 | 19 | 1.3 | 0.11 | 0.05 | 0.03 | 1.16 | 0.36 | 0.06 | 1.7 | 0.003 | | 05-12<br>APR | 6.7 | 50 | 3.8 | 0.48 | 0.21 | 0.22 | 1.68 | 1.39 | 0.29 | 7.9 | <0.001 | | 12-19<br>APR | 5.2 | 14 | 0.55 | 0.07 | 0.12 | 0.05 | 0.53 | 0.41 | 0.08 | 2.2 | 0.002 | | 19-26<br>APR 26- | 6.4 | 20 | 1.6 | 0.33 | 1.7 | 0.12 | 0.69 | 0.38 | 0.38 | 2.3 | 0.254 | | MAY 03<br>MAY | 5.8 | 20 | 0.11 | 0.02 | 0.02 | 0.02 | 0.49 | 0.38 | 0.06 | 1.4 | <0.001 | | 03-10<br>MAY | 5.9 | 12 | 0.28 | 0.08 | 0.02 | 0.02 | 0.85 | 0.50 | 0.04 | 1.2 | <0.001 | | 10-17 | 5.3 | 20 | 0.42 | 0.09 | 0.05 | 0.05 | 1.22 | 0.80 | 0.11 | 2.6 | <0.001 | # BIG SPRING FISH HATCHERY NEAR ELKADER, IOWA--Continued | DATE | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | |-------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------| | MAY | | | | | | | | | | | | | 17-24<br>MAY | 6.2 | 20 | 1.2 | 0.17 | 0.19 | 0.03 | 0.97 | 0.46 | 0.06 | 2.4 | <0.001 | | 24-31 | 6.5 | 11 | 0.44 | 0.09 | 0.06 | 0.02 | 0.82 | 0.38 | 0.03 | 0.74 | <0.001 | | MAY 31-<br>JUN 07 | | | | | | | | | | | | | JUN | | • | 0.43 | | | | | | 0.04 | 0 71 | .0.001 | | 07-14<br>JUN | 6.5 | 9 | 0.47 | 0.08 | 0.04 | 0.04 | 0.53 | 0.29 | 0.04 | 0.71 | <0.001 | | 14-21 | 4.5 | 27 | 0.71 | 0.22 | 0.02 | 0.03 | 0.61 | 0.53 | 0.13 | 4.1 | <0.001 | | JUN<br>21-28 | 4.7 | 10 | 0.03 | 0.01 | 0.00 | 0.02 | 0.12 | 0.19 | <0.03 | 0.72 | <0.001 | | JUN 28-<br>JUL 05 | 5.0 | 10 | A 25 | 0.05 | 0 00 | 0.05 | 0 21 | A 25 | 0 10 | 1 2 | -0 007 | | JOT 02 | 3.0 | 10 | 0.35 | 0.05 | 0.03 | 0.05 | 0.31 | 0.35 | 0.10 | 1.2 | <0.001 | | 05-12<br>JUL | 5.1 | 7 | 0.29 | 0.03 | 0.03 | 0.08 | 0.19 | 0.23 | 0.12 | 0.82 | <0.001 | | 12-19 | 5.1 | 19 | 1.0 | 0.12 | 0.04 | 0.02 | 0.72 | 0.70 | 0.08 | 3.1 | 0.001 | | JUL<br>19-26 | 5.9 | 7 | 0.45 | 0.05 | 0.04 | 0.07 | 0.30 | 0.23 | 0.08 | 1.0 | <0.001 | | JUL 26- | ••• | • | | | | | | | | | | | AUG 02<br>AUG | | | 3.0 | 0.26 | 0.12 | 0.06 | 0.65 | 1.24 | 0.22 | 3.2 | 0.001 | | 02-09 | | | 2.3 | 0.30 | 0.42 | 0.16 | 0.58 | 0.52 | 0.29 | 1.8 | <0.001 | | AUG<br>09-16 | 4.4 | 27 | 0.29 | 0.05 | 0.02 | 0.03 | 0.51 | 0.48 | 0.09 | 3,1 | <0.001 | | AUG | 7.7 | 21 | 0.29 | 0.03 | 0.02 | 0.03 | A.2T | 0.40 | 0.09 | 3.1 | (U.UUI | | 16-23 | 6.6 | 14 | 1.3 | 0.11 | 0.07 | 0.03 | 0.54 | 0.41 | 0.08 | 1.6 | <0.001 | | AUG<br>23-30 | 5.3 | 9 | 0.59 | 0.08 | 0.08 | 0.04 | 0.24 | 0.32 | 0.06 | 1.3 | <0.001 | | AUG 30- | | | | | | | | | | | | | SEP 06<br>SEP | 4.8 | 12 | 0.35 | 0.06 | 0.02 | 0.02 | 0.27 | 0.36 | 0.06 | 1.3 | <0.001 | | 06-13 | 6.8 | 15 | 1.3 | 0.22 | 0.71 | 0.04 | 0.26 | 0.44 | 0.19 | 0.86 | 0.023 | | SEP<br>13-20 | 6.7 | 11 | 1.3 | 0.16 | 0.07 | 0.05 | 0.25 | 0.14 | 0.07 | 0.80 | 0.001 | | SEP | | | | | | | | | | | | | 20-27<br>SEP 27- | 5.2 | 8 | 0.45 | 0.04 | 0.02 | 0.01 | 0.25 | 0.23 | 0.06 | 1.3 | <0.001 | | OCT 04 | 4.3 | 42 | 1.2 | 0.11 | 0.09 | 0.05 | 0.82 | 0.92 | 0.14 | 5.0 | 0.001 | | Page | | Page | |--------------------------------------------------------------------------|----------------------------------------------------------------|---------| | Α | Coralville Lake near Coralville | 84 | | | Corydon Lake, at spillway, Corydon | 256 | | Acre-foot, definition of | 2150 ft u/s from dam, at Corydon | 250 | | Annual 7-day minimum, definition of | 350 ft upstream of dam, at Corydon | 254 | | Aquifer, definition of | North arm, at Corydon | 252 | | Artesian, definition of | Crest-stage stations, maximum stage and discharge, made at | | | n | partial-record stations in | 218 | | В | Crow Creek at Bettendorf | | | Bacteria, definition of | Crow Creek basin, gaging-station records in | 71 | | Beaver Creek (tributary to Des Moines River), near Grimes 139,240 | Cubic feet per second per square mile, definition of | 41 | | near Woodward | Cubic feet per second, definition of | 41 | | Beaver Creek (tributary to lowa River) at New Hartford100, 236 | Cubic foot per second day, definition of | 41 | | Bed load discharge, definition of | 1 | | | Bed load, definition of | D | | | Bed material, definition of | Deer Creek near Toledo | 234 | | Big Bear Creek at Ladora | Definition of terms | 41 | | Big Sioux River at Akron | Des Moines River basin, crest-stage partial-record stations in | | | Big Sioux River basin, crest-stage partial-record stations in 225 | gaging-station records in | 128 | | gaging-station records in | Des Moines River, at Estherville | | | Big Spring Fish Hatchery near Elkader | at Des Moines | 240 | | gaging station records | at Eddyville | 243 | | precipitation water quality data for | at Emmetsburg | 238 | | Black Hawk Creek at Hudson103, 236 | at Fort Dodge | | | Bloody Run Creek near Marquette 51, 231 | at Humboldt | | | Bloody Run Site No. 2 near Giard | at Keosauqua | | | Bloody Run tributary at Spook Cave near Froelich 231 | at Ottumwa | | | Boone River, near Goldfield | below Raccoon River, at Des Moines | | | near Webster City132, 239 | East Fork, at Dakota City13 | | | Bottom material, definition of | near Pella | | | Boyer River at Logan191, 246 | near Runnells | | | Boyer River basin, crest-stage partial-record stations in 227 | near Saylorville13 | | | gaging-station records in | near Stratford13 | | | Butterick Creek near Jefferson | near Tracy16 | 65, 243 | | С | Discharge, definition of | 42 | | C | Dissolved, definition of | 42 | | Cedar Creek (tributary to Des Moines River) near Bussey166, 243 | Dissolved-solids concentration, definition of | 42 | | Cedar Creek (tributary to Skunk River) near Oakland Mills 121, 238 | Downstream order system | 25 | | Cedar River, at Cedar Rapids105, 237 | Drainage area, definition of | 42 | | at Cedar Falls | Drainage basin, definition of | 42 | | at Charles City | Е | | | at Janesville | L | | | at Waterloo104, 237 | East Branch Iowa River near Klemme | 72 | | Little Cedar, near Ionia | East Fork Des Moines River at Dakota City13 | 30, 239 | | near Conesville106, 237 | East Fork One Hundred and Two River at Bedford 20 | 07, 248 | | West Fork, at Finchford | East Nishnabotna River, at Red Oak20 | 03, 247 | | Chariton River basin, crest-stage partial-record stations in 230 | near Atlantic20 | 02, 247 | | gaging-station records in | Elk Creek near Decatur City | | | Chariton River, near Chariton212, 249 | English Creek near Knoxville16 | 54, 242 | | near Moulton | English River at Kalona 9 | 1, 235 | | near Rathbun | F | | | South Fork, near Promise City213, 249 | Γ | | | Clear Creek, near Coralville 87, 235 near Oxford 235 | Fecal coliforn bacteria, definition of | 41 | | Clear Lake at Clear Lake | Fecal streptococcal bacteria, definition of | 41 | | Contents, definition of | Floyd River basin, crest-stage partial-record stations in | 226 | | Control structure, definition of | gaging-station records in | 177 | | Control, definition of | Floyd River, at Alton17 | | | Cooperation | at James | | | | West Branch, near Struble17 | /8, 244 | | | Page | | Page | |------------------------------------------------------------|----------|----------------------------------------------------------------------------|-----------| | Fourmile Creek at Des Moines | 156, 242 | Little Cedar River near Ionia | . 94, 236 | | Fox River basin, crest-stage partial-record stations in | | Little Maquoketa River basin, crest-stage partial-record | • | | | | stations in | 218 | | G | | Little Sioux River basin, crest-stage partial-record stations | | | Gage height (G.H.), definition of | 42 | gaging-station records in | . 183 | | Gaging station, definition of | 42 | Little Sioux River, at Correctionville | | | Grand River basin, gaging-station records in | 208 | at Linn Grove | | | Ground-water level data, by county | 257 | near Turin | .189, 246 | | Ground-water levels, records of | 36 | M | | | Data collection and computation | 37 | | | | Data presentation | 37 | Maple River at Mapleton | | | Ground-water quality data, by county | 358 | Maquoketa River basin, crest-stage partial-record stations in | | | Ground-water quality, records of | 38 | Maquoketa River near Maquoketa | . 67, 233 | | Data presentation | 38 | McNay Research Station near Chariton, precipitation | 262 | | Explanation of descriptive headings | 39 | water-quality data for | | | H . | | Mean concentration, definition of | | | | | Mean discharge, definition of | | | Hardness, definition of | 42 | Measuring point (MP), definition of | | | Hazelbrush Creek near Maple River | | Micrograms per liter (UG/L, mg/L), definition of | - | | Hydrologic Benchmark Network, definition of | 42 | Middle Raccoon River, at Panora | | | Hydrologic conditions, summary of | 4 | near Bayard | | | Ground water | 12 | Middle River near Indianola | | | Ground-water quality | 19 | Milligrams per liter (MG/L, mg/L), definition of | | | Surface water | 4 | Mississippi River basin, crest-stage partial-record stations in | | | Surface-water quality | 18 | Mississippi River, Main Stem | | | Suspended sediment | 8 | at Clinton | | | Hydrologic unit, definition of | 42 | at Keokuk | | | I | | at McGregor | | | | | Missouri River basin, gaging station records in | | | Indian Creek near Mingo | | Missouri River Main Stem | | | Instantaneous discharge, definition of | 42 | Missouri River, at Decatur, Nebraska | | | Introduction | 1 | at Nebraska City, Nebraska | | | Iowa River basin, crest-stage partial-record stations in | 220 | at Omaha, Nebraska | | | gaging-station records in | 72 | at Rulo, Nebraska | | | Iowa River, at Iowa City | | at Sioux City | .172, 244 | | at Columbus Junction | 237 | Monona-Harrison Ditch basin, crest-stage partial-record | | | at Marengoat Marshalltown | | stations in | | | at Wapello | | gaging-station records in | | | below Coralville Dam near Coralville | | Monona-Harrison Ditch near Turin | | | East Branch, near Klemme | | Mosquito Creek basin, crest-stage partial-record stations in | 227 | | near Lone Tree | | N | | | near Rowan | | | | | | , | National Geodetic Vertical Datum (NGVD), definition of | 43 | | L | | National Stream Quality Accounting Network (NASQAN), | | | Lake Panorama at Panora | 148 | definition of | | | Lake Red Rock near Pella | 162 | National Trends Network (NTN), definition of | | | Lakes and Reservoirs | 102 | data presentation | | | Clear Lake at Clear Lake | 98 | Nishnabotna River above Hamburg | | | Coralville Lake near Coralville | 84 | Nishnabotna River basin, crest-stage partial-record stations | | | Panorama, Lake, at Panora | 148 | gaging-station records in | | | Rathbun Lake near Rathbun | 214 | Nodaway River at Clarinda | | | Red Rock, Lake, near Pella | 162 | Nodaway River basin, crest-stage partial-record stations in | 229 | | Saylorville Lake near Saylorville | 134 | gaging-station records in | | | Spirit Lake near Orleans | 183 | North Codar Creek near Clayton | | | West Okoboji Lake at Lakeside Laboratory near Milford | | North Fork English River near Parnell North Raccoon River, near Jefferson | | | Lamont Creek basin, crest-stage partial-record stations in | 219 | near Lanesboro | | | Land-surface datum, definition of | 42 | near Lanesoure | 240 | | Page | | Page | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------| | near Newell140, 240 | No. 3 Site, near Clayton | . 231 | | near Perry | West Fork, near Clayton | | | near Sac City141, 240 | Sny Magill tributary near Clayton | . 232 | | North River near Norwalk157, 242 | Sodium adsorption ratio (SAR), definition of | . 45 | | North Skunk River near Sigourney120, 238 | Soldier River at Pisgah | . 190, 246 | | Numbering system for wells | Soldier River basin, gaging station records in | . 190 | | | Solute, definition of | . 45 | | 0 | South Branch Ralston Creek at Iowa City | | | Ocheyedan River near Spencer185, 245 | South Fork Chariton River near Promise City | | | Old Mans Creek near Iowa City | South Raccoon River at Redfield | | | • | South River near Ackworth | | | P | South Skunk River, at Colfax | | | Parameter code, definition of | below Squaw Creek, near Ames | | | Partial-record station, definition of | near Ames | - | | Partial-record stations and miscellaneous discharges at 218 | near Oskaloosa | - | | Particle-size classification, definition of | Special networks and programs | | | Particle-size, definition of | Hydrologic Benchmark Network | | | Perry Creek at 38th Street, Sioux City176, 244 | National Stream Quality Accounting Network (NASC | | | Perry Creek basin, crest-stage partial-record stations in 226 | National Trends Network (NTN) | | | gaging-station records in | Radiochemical program | | | Pesticides, definition of | Tritium Network | | | Picocurie (PC, pCi), definition of | Specific conductance, definition of | | | Pilot Creek near Bradgage | Spirit Lake near Orleans | | | Platte River basin, crest-stage partial-record stations in 230 | Squaw Creek at Ames | | | gaging-station records in | Stage and water discharge, records of | | | Prairie Creek downstream of Blairstown | Accuracy of the records Data collection and computation | | | Precipitation water-quality data | Data presentation | | | Publications on techniques of water-resources investigations 47 | Identifying estimated daily discharge | | | D. | Other records available | | | R | Stage-discharge relation, definition of | | | Raccoon River, at 63rd Street, at Des Moines | Station identification numbers | | | at Van Meter151, 241 | Downstream order system | | | Radiochemical program, definition of | Latitude-longitude system | | | Rapid Creek near Iowa City | Streamflow, definition of | | | Rathbun Lake near Rathbun | Surface area, definition of | | | Records, explanation of | Surface-water quality, records of | | | Recoverable from bottom material, definition of 44 | Arrangement of records | | | Return period, definition of | Classification of records | . 33 | | Richland Creek near Haven 79, 234 | Data presentation | . 35 | | Roberts Creek above Saint Olaf | Laboratory measurements | . 35 | | Rock River near Rock Valley170, 243 | On-site measurements and sample collection | | | Runoff in inches, definition of | Remark codes | | | S | Sediment | | | S | Water temperature and specific conductance | | | Salt Creek near Elberon 80, 234 | Surficial bed material, definition of | | | Saylorville Lake near Saylorville | Suspended sediment, definition of | | | Sea level, definition of | Suspended, definition of | | | Sediment, definition of | Suspended, recoverable, definition of | | | 7-day 10-year low flow, definition of | Suspended, total, definition of | | | Shell Rock River at Shell Rock | Suspended-sediment concentration, definition of | | | Silver Creek near Luana | Suspended-sediment discharge, definition of | | | Skunk River at Augusta | Suspended-sediment load, definition of | . 43 | | Skunk River basin, crest-stage partial-record stations in 223 | | | | gaging station records in | T | | | | | <u>.</u> | | General Control of the th | Tarkio River basin, crest-stage partial-record stations in | | | Sny Magill Creek, near Clayton | Thermograph, definition of | . 46 | | No. 2 Site, near Clayton | | | | Pa | age | | Pa | ge | |------------------------------------------------------------------|--------------|-------------------------------------------------------|--------|-------| | Thompson River at Davis City211 | , 248 | Grundy County | •• | 289 | | Timber Creek near Marshalltown 78 | | Guthrie County | •• | 289 | | Time-weighted average, definition of | 46 | Hardin County | •• | 292 | | Tons per acre-foot, definition of | 46 | Harrison County | 292 | , 358 | | Tons per day (T/DAY), definition of | 46 | Henry County | | 297 | | Total discharge, definition of | 46 | Humboldt County | | 298 | | Total recoverable, definition of | 47 | Ida County | 299 | , 358 | | Total sediment discharge, definition of | 45 | Iowa County | 300 | , 358 | | Total, definition of | 46 | Jackson County | | 301 | | Total-sediment load, definition of | 45 | Jasper County | 304 | , 358 | | Tritium network, definition of | 47 | Johnson County | | 305 | | Turkey River at Garber 66, | , 233 | Jones County | | 309 | | Turkey River basin, crest-stage partial-record stations in | 218 | Keokuk County | | 310 | | gaging-station records in | 63 | Lee County | | 358 | | TWRI (Techniques of Water-Resources Investigations), list of | | Linn County | . 310 | , 358 | | publications | 47 | Louisa County | | 358 | | T.I. | | Lyon County | . 316 | , 358 | | U | | Madison County | • | 320 | | Upper Iowa River basin, crest-stage partial-record stations in | 218 | Mahaska County | • | 320 | | gaging-station records in | 50 | Marion County | | 322 | | Upper Iowa River near Dorchester | - | Marshall County | . 324, | , 358 | | opportona revolución botonesco | 251 | Mills County | . 325, | 358 | | W | | Mitchell County | | 326 | | W. 1 . 2 . 1 . 12 . 12 . 12 . 12 . 12 . | | Monona County | . 328, | 358 | | Walnut Creek, at Des Moines154 | | Montgomery County | | 332 | | near Hartwick | | Muscatine County | | 335 | | Wapsipinicon River basin, crest-stage partial-record stations in | | O'Brien County | . 335, | 358 | | gaging station records in | 69 | Osceola County | | 337 | | Wapsipinicon River, at Independence | | Page County | . 340, | 358 | | near De Witt | | Palo Alto County | | 341 | | Water year, definition of | 47 | Plymouth County | . 343, | 358 | | - · · | 231 | Pocahontas County | | 345 | | WATSTORE data, access to | 40 | Pottawattamie County | | 358 | | WDR, definition of | 47 | Sac County | | 347 | | Weighted average, definition of | 47 | Scott County | | 348 | | Wells, ground water, levels and quality of water data, by county | | Shelby County | | 349 | | Adair County | 358 | Sioux County | . 352, | 358 | | Adams County257 | , | Story County | . 353, | 358 | | Audubon County258 | | Tama County | | 358 | | | 260 | Taylor County | | 358 | | Boone County | 358 | Van Buren County | | 353 | | Buena Vista County | | Wapello County | | 358 | | Calhoun County | 264 | Warren County | | 358 | | Carroll County | 264 | Washington County | . 354, | 358 | | Cass County | • | Webster County | | 356 | | Cerro Gordo County | 269 | Winneshiek County | | 358 | | | 270 | Woodbury County | . 357, | 358 | | | 274 | Wright County | | 358 | | | 275 | West Branch Floyd River near Struble | | 178 | | • | 358 | West Fork Cedar River at Finchford | | 236 | | Crawford County278, | | West Fork Ditch at Hornick | | | | • | 3 <b>5</b> 8 | West Nishnabotana River, at Hancock | - | 200 | | | 281 | at Randolph | | 247 | | Dubuque County | 358 | West Nishnabotna River, at Hancock | | 247 | | · · · · · · · · · · · · · · · · · · · | 358 | at Randolph | | 201 | | Floyd County | 282 | West Okoboji Lake at Lakeside Laboratory near Milford | | 184 | | Franklin County283, | 358 | White Breast Creek near Dallas | | | | Fremont County284, | 358 | Winnebago River at Mason City | | | | Greene County | 285 | WSP, definition of | | 47 | | | | | | | # **CONVERSION FACTORS AND VERTICAL DATUM** | Multiply | Ву | To obtain | |----------------------------------------------------|---------------------------------------------|----------------------------| | | Length | | | inch (in.) | $2.54 \times 10^{1} \\ 2.54 \times 10^{-2}$ | millimeter<br>meter | | foot (ft) | $3.048 \times 10^{-1}$ | meter | | mile (mi) | $1.609 \times 10^{0}$ | kilometer | | | Area | | | acre | $4.047 \times 10^3$ | square meter | | dere | $4.047 \times 10^{-1}$ | square hectometer | | | $4.047 \times 10^{-3}$ | square kilometer | | square mile (mi <sup>2</sup> ) | $2.590 \times 10^{0}$ | square kilometer | | square time (tim ) | 2.370X10 | square kironiciei | | | Volume | | | gallon (gal) | $3.785 \times 10^{0}$ | liter | | | $3.785 \times 10^{0}$ | cubic decimeter | | | $3.785 \times 10^{-3}$ | cubic meter | | million gallons (Mgal) | $3.785 \times 10^3$ | cubic meter | | | $3.785 \times 10^{-3}$ | cubic hectometer | | cubic foot (ft <sup>3</sup> ) | $2.832 \times 10^{1}$ | cubic decimeter | | | 2.832x10 <sup>-2</sup> | cubic meter | | cubic-foot-per-second day [(ft <sup>3</sup> /s) d] | $2.447 \times 10^3$ | cubic meter | | the second any (the total) | $2.447 \times 10^{-3}$ | cubic hectometer | | acre-foot (acre-ft) | $1.233 \times 10^3$ | cubic meter | | | $1.233 \times 10^{-3}$ | cubic hectometer | | | $1.233 \times 10^{-6}$ | cubic kilometer | | | Flow | | | cubic foot per second (ft <sup>3</sup> /s) | 2.832x10 <sup>1</sup> | liter per second | | case receiper second (1175) | $2.832 \times 10^{1}$ | cubic decimeter per second | | | $2.832 \times 10^{-2}$ | cubic meter per second | | gallon per minute (gal/min) | $6.309 \times 10^{-2}$ | liter per second | | Barren ber minare (Barrinin) | $6.309 \times 10^{-2}$ | cubic decimeter per second | | | $6.309 \times 10^{-5}$ | cubic meter per second | | million gallons per day (Mgal/d) | $4.381 \times 10^{1}$ | cubic decimeter per second | | minor garons per day (mgana) | 4.381x10 <sup>-2</sup> | cubic meter per second | | | Mass | | | ton (short) | 9.072x10 <sup>-1</sup> | megagram or metric ton | | | | | Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929. U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey P.O. Box 1230 Iowa City, IA 52244